ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Three-dimensional slope stability model of the Turaida castle mound; pp. 185–195

Full article in PDF format | 10.3176/earth.2021.12

Authors
Kārlis Kukemilks, Mārtiņš Vilnītis

Abstract

The state-of-the-art finite element software Plaxis 3D was applied in a real-world study site of the Turaida castle mound to investigate the slope stability of the mound and understand the mechanisms triggering landslides there. During the simulation, the stability of the castle mound was analysed and the most landslide-susceptible zones of hillslopes were determined. The 3D finite-element stability analysis has significant advantages over conventional 2D limit-equilibrium methods where locations of 2D stability sections are arbitrarily selected. Two modelling scenarios of the slope stability were elaborated considering deep-seated slides in bedrock and shallow landslides in the colluvial material of slopes. The model shows that shallow slides in colluvium are more probable. In the finite-element model, slope failure occurs along the weakest zone in colluvium, similarly to the situation observed in previous landslides in the study site. The physical basis of the model allows results to be obtained very close to natural conditions and delivers valuable insight in triggering mechanisms of landslides.


References

Āboltiņš, O. 1971. Razvitie doliny reki Gauya [Development of the Gauja River Valley]. Zinātne, Riga, 104 pp. [in Russian].

Baligh, M. & Azzouz, A. 1975. End effects on stability of cohesive slopes. Journal of Geotechnical Engineering Division101, 1105–1117.
https://doi.org/10.1061/AJGEB6.0000210

Cheng, Y. & Yip, C. 2007. Three-dimensional asymmetrical slope stability analysis extension of Bishop’s, Junbu’s, and Morgenstern–Price’s techniques. Journal of Geotechnical and Geoenvironmental Engineering133, 1544–1555. 
https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1544)

Das, B. M. 1998. Principles of Geotechnical Engineering, 4th edn. PWS Publishing Company, Boston, 736 pp.

Fredlund, M., Fredlund, D. G. & Zhang, L. 2017. Moving from 2D to a 3D unsaturated slope stability analysis. In Proceedings of the 2nd PanAmerican Conference on Unsaturated Soils (Hoyos, L. R., McCartney, J. S., Houston, S. L. & Likos, W. J., eds), pp. 136–145. American Society of Civil Engineers, Dallas, Texas.

Gens, A., Hutchinson, J. & Cavounidis, S. 1988. Three-dimen­sional analysis of slides in cohesive soils. Géotechnique38, 1–23. 
https://doi.org/10.1680/geot.1988.38.1.1

Griffiths, D. V. & Lane, P. A. 1999. Slope stability analysis by finite elements. Géotechnique49, 387–403. 
https://doi.org/10.1680/geot.1999.49.3.387

Hovland, H. 1977. Three-dimensional slope stability analysis method. Journal of the Geotechnical Engineering Division103, 971–986.
https://doi.org/10.1061/AJGEB6.0000493

Kalatehjari, R. & Ali, N. 2013. A review of three-dimensional slope stability analyses based on limit equilibrium method. Electronic Journal of Geotechnical Engineering18, 119–134.

Kohv, M., Talviste, P., Hang, T., Kalm, V. & Rosentau, A. 2009. Slope stability and landslides in proglacial varved clays of western Estonia. Geomorphology106, 315–323. 
https://doi.org/10.1016/j.geomorph.2008.11.013

Kohv, M., Talviste, P., Hang, T. & Kalm, V. 2010. Retrogressive slope failure in glaciolacustrine clays: Sauga landslide, western Estonia. Geomorphology124, 229–237.
https://doi.org/10.1016/j.geomorph.2010.03.007

Kukemilks, K. 2018. Landslide inventory in the Abava spillway valley, Latvia. Estonian Journal of Earth Sciences67, 165–175. 
https://doi.org/10.3176/earth.2018.13

Kukemilks, K. & Saks, T. 2013. Landslides and gully slope erosion on the banks of the Gauja River between the towns of Sigulda and Ligatne. Estonian Journal of Earth Sciences63, 231–243.
https://doi.org/10.3176/earth.2013.17

Kukemilks, K., Wagner, J.-F., Saks, T. & Brunner, P. 2018. Physically based hydrogeological and slope stability modeling of the Turaida castle mound. Landslides15, 2267–2278.
https://doi.org/10.1007/s10346-018-1038-5

LGIA. 2015. Open LiDAR data, scanned in 2015. Available at 
https://www.lgia.gov.lv/lv/Digit%C4%81lais%20virsmas%20modelis [in Latvian; accessed 30 October 2020]. 

Lu, N. & Godt, J. W. 2013. Hillslope Hydrology and Stability. Cambridge University Press, Cambridge, 458 pp.
https://doi.org/10.1017/CBO9781139108164

Mūrnieks, A., Meirons, Z., Lācis, A. & Levins, I. 2002. Pārskats par Turaidas pilskalna, tā apkārtnes ģeoloģisko, hidro­ģeoloģisko un inženierģeoloģisko izpēti[Technical Report of Geological, Hydrogeological and Engineering Geological Investigation of the Turaida Castle Mound and Its Vicinity]. Latvian Environment, Geology and Meteorology Centre, Riga, 102 pp. [in Latvian].

Soms, J. 2006. Regularities of gully erosion network devel­opment and spatial distribution in south-eastern Latvia. Baltica19, 72–79.

van der Sloot, M. 2019. Ignoring suction after a fully coupled flow-deformation analysis in Safety analysis gives incorrect stresses in PLAXIS 2D [Solved]. Available at 
https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/45789/ignoring-suction-after-a-fully-coupled-flow-deformation-analysis-in-safety-analysis-gives-incorrect-stresses-in-plaxis-2d-solved [accessed 30 October 2020].

van der Sloot, M. 2020. PLAXIS 3D CE V21.01: 1 – Tutorial Manual.pdf, Chapter 5: Construction of a road embankment. Available at 
https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/46137/manuals---plaxis [accessed 18 November 2020].

Zelčs, V. & Markots, A. 2004. Deglaciation history of Latvia. In Quaternary Glaciations  Extent and Chronology, Part I: Europe (Ehlers, J. & Gibbard, P. L., eds), pp. 225–243. Elsevier B.V., Amsterdam.
https://doi.org/10.1016/S1571-0866(04)80074-5

Zelčs, V., Markots, A., Nartiss, M. & Saks, T. 2011. Pleistocene glaciations in Latvia. In Developments in Quaternary Science. Quaternary Glaciations  Extent and Chronology. A Closer Look, Vol. 15 (Ehlers, J., Gibbard, P. L. & Hughe, P. H., eds), pp. 221–229. Elsevier B.V., Amsterdam.
https://doi.org/10.1016/B978-0-444-53447-7.00018-0

 


Back to Issue