ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Geochemistry, mineral chemistry and pressure–temperature conditions of the Jõhvi magnetite quartzites and magnetite-rich gneisses, NE Estonia; pp. 71–93

Full article in PDF format | 10.3176/earth.2021.05 | Erratum

Authors
Alvar Soesoo, Siim Nirgi, Kristjan Urtson, Margus Voolma

Abstract

The Jõhvi magnetite quartzites (MagQ) occur as subvertical beds with a complicated structural outline in biotite-garnet-cordierite and pyroxene gneisses which in places also contain high concentrations of iron. Drill core study shows that the complex of MagQ and magnetite-rich gneisses may be up to 100 m thick. The MagQ provide a wide range of chemical composition: SiO2 ranges between 40.3 and 60.1 wt%, Al2O3 between 1.7 and 19.7 wt% and total iron between 15 and 45.2 wt%. This study also revealed unusually high manganese contents of 1–6 wt%. The rare earth element (REE) patterns of MagQ and the surrounding gneisses partly overlap. Cutting granitoids form two different REE patterns. Magnetite occurs as anhedral grains elongated along rock fabric, as rounded inclusions in other minerals or as tiny platelets along grain edges and along cleavage planes of amphibole and biotite. Sulphides are present as pyrite, pyrrhotite and other minor sulphide minerals (chalcopyrite, galena and sphalerite). Analysis of the magnetite grains from drill core J-1 shows that classifying Jõhvi magnetites into a certain deposit type is not unambiguous.

The garnet–biotite geothermometer revealed metamorphic temperatures between 650 and 750 ºC. The garnet–biotite–plagioclase–quartz geobarometer yielded the pressure range of 2.9 to 4.9 kbar. However, having in mind that the entire Jõhvi ore complex may be a result of repeated metasomatic events, which have influenced the primary volcanic-sedimentary sequences, the estimate of primary pressure–temperature conditions might not be a straightforward task. The current understanding of the geological-geochemical correlation hints at geological similarities between the Bergslagen area in Sweden and the Jõhvi Zone in Estonia.


References

Allen, R., Stuart, B., Ripa, M. & Jonsson, R. 2003. Regional Stratigraphy, Basin Evolution, and the Setting of Stratabound Zn-Pb-Cu-Ag-Au Deposits in Bergslagen, Sweden. Final report for SGU-FoU project 03-1203/99. 

Allen, R., Ripa, M. & Jansson, N. 2008. Palaeoproterozoic Volcanic- and Limestone-Hosted Zn-Pb-Ag-(Cu-Au) Massive Sulphide Deposits and Fe Oxide Deposits in Bergslagen, Sweden. 33 IGC excursion No. 12, August 14–20.

Anders, E. & Grevesse, N. 1989. The abundances of the elements: meteoritic and solar. Geochimica et Cosmochimica Acta53, 197–214. 
https://doi.org/10.1016/0016-7037(89)90286-X

Berman, R. G., Aranovich, L. Y. & Pattison, D. R. M. 1995. Reassessment of the garnet-clinopyroxene Fe−Mg exchange thermometer: II. Thermodynamic analysis. Contributions to Mineralogy and Petrology119, 30–42.
https://doi.org/10.1007/s004100050026

Bhattacharya, A., Mohanty, L., Maji, A., Sen, S. K. & Raith, M. 1992. Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg–Fe partitioning and reformulation of the biotite-garnet geothermometer. Contributions to Mineralogy and Petrology111, 87–93.
https://doi.org/10.1007/BF00296580

Bogdanova, S., Gorbachev, R., Skridlaite, G., Soesoo, A., Taran, L. & Kurlovich, D. 2015. Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna. Precambrian Research259, 5–33.
https://doi.org/10.1016/j.precamres.2014.11.023

Craig, J. R. & Vaughan, D. J. 1994. Ore Microscopy and Ore Petrography, 2nd ed. John Wiley & Sons, Inc., New York, 434 pp.

Dasgupta, S., Sengupta, P. & Guha, D. 1991. A refined garnet - biotite Fe–Mg exchange geothermometer and its application in amphibolites and granulites. Contributions to Mineralogy and Petrology109, 130–137.
https://doi.org/10.1007/BF00687206

Deer, W. A., Howie, R. A. & Zussman, J. 1992. An Introduction to the Rock Forming Minerals, 2nd ed. Pearson Ed. Ltd., Essex, 696 pp.

Dupuis, C. & Beaudoin, G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita46, 319–335.
https://doi.org/10.1007/s00126-011-0334-y

Ellis, D. J. & Green, D. H. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contributions to Mineralogy and Petrology71, 13–22.
https://doi.org/10.1007/BF00371878

Erisalu, E., Arvisto, E., Norman, A., Danchenko, V., Koppelmaa, H., Niin, M. & Kivisilla, J. 1969. Otchet po izucheniyu kristallicheskogo fundamenta Jykhviskoj magnitnoj anomalii i ee okrestnostej [Report of the Basement Studies on Jõhvi Magnetic Anomaly and Nearby]. Geological Survey of Estonia, Tallinn, EGF 3032, 257 pp [in Russian].

Ferry, J. M. & Spear, F. S. 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology,66, 113–117.
https://doi.org/10.1007/BF00372150

Ganguly, J. 1979. Garnet and clinopyroxene solid solutions, and geothermometry based on Fe–Mg distribution coef­ficient. Geochimica et Cosmochimica Acta43, 101–129.
https://doi.org/10.1016/0016-7037(79)90091-7

Ganguly, J. & Saxena, S. K. 1984. Mixing properties of aluminosilicate garnets: constraints from natural and experimental data, and applications to geothermo-baro­metry. American Mineralogist69, 88–97.

Ganguly, J., Cheng, W. & Tirone, M. 1996. Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications. Contributions to Mineralogy and Petrology126, 131–151.
https://doi.org/10.1007/s004100050240

Hall, A. J. 1986. Pyrite-pyrrhotine redox reactions in nature. Mineralogical Magazine50, 223–229. 
https://doi.org/10.1180/minmag.1986.050.356.05

Hodges, K. V. & Spear, F. S. 1982. Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. American Mineralogist67, 1118–1134. 

Holdaway, M. J. 2000. Application of new experimental and garnet Margules data to the garnet‐biotite geothermometer. American Mineralogist85, 881–892.
https://doi.org/10.2138/am-2000-0701

Holdaway, M. J. & Lee, S. M. 1977. Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical and natural observation. Contributions to Mineralogy and Petrology63, 175–198.
https://doi.org/10.1007/BF00398778

Lagoeiro, L. E. 2004. Transformation of magnetite to hematite and its influence on the dissolution of iron oxide minerals. Journal of Metamorphic Petrology16, 415–423.
https://doi.org/10.1111/j.1525-1314.1998.00144.x

Linari, A. A. 1940. Aruanne sügavpuurimistest Jõhvi lähedal [Report on diamond drilling near Jõhvi]. Tallinna Tehnikaülikooli Toimetused, Ser. A, 15, 1–27 [in Estonian, with English summary].

Luha, A. 1946. Eesti NSV maavarad. Rakendusgeoloogiline kokkuvõtlik ülevaade [Earth Resources in the ÉSSR. Concluding Overview of Geological Appliances]. Teaduslik Kirjandus, Tartu, 176 pp. [in Estonian].

Nakamura, D. 2009. A new formulation of garnet–clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set. Journal of Metamorphic Geology27, 495–508. 
https://doi.org/10.1111/j.1525-1314.2009.00828.x

Nirgi, S. & Soesoo, A. 2019. Precambrian iron-sulphide mineralization of NE Estonia. In 21st EGU General Assembly, EGU2019, 712 April, 2019 Vienna, AustriaGeophysical Research Abstracts21, id.12651.

North American Geologic-Map Data Model Science Language Technical Team. 2004. Report on progress to develop a North American science-language standard for digital geologic-map databases; Appendix B – Classification of metamorphic and other composite-genesis rocks, including hydrothermally altered, impact-metamorphic, mylonitic, and cataclastic rocks, Version 1.0 (12/18/2004). In Digital Mapping Techniques ’04 – Workshop Proceedings: U.S. Geological Survey Open-File Report 20041451 (Soller, D. R., ed.), 56 pp. 

Perchuk, L. L. & Lavrent´eva, I. V. 1983. Experimental investigation of exchange equilibria in the system cordierite–garnet–biotite. In Kinetics and Equilibrium in Mineral Reactions (Saxena, S. K., ed.), pp. 199–239. Springer, Berlin, Heidelberg, New York.
https://doi.org/10.1007/978-1-4612-5587-1_7

Petersell, V. 1976. Osnovnye cherty geologii i rudonosnosti kristallicheskogo fundamenta yuzhnogo sklona Baltijskogo shchita [Geological and Metallogeny Features of the Crystalline Basement of the Southern Slope of the Baltic Shield]. ENSV Teaduste Akadeemia Geoloogia Instituut, Tallinn, 28 pp. [in Russian].

Petersell, V., Kivisilla, J., Pukkonen, E., Põldvere, A. & Täht, K. 1991. Otchet ob otsenke rudoproyavlenij i tochek mineralizatsii v osadochnom chekhle i kristallicheskom fundamente Éstonii [Evaluation of Ore Occurrences and Mineralization Points in Estonian Bedrock and Crystalline Basement]Geological Survey of Estonia, Tallinn, EGF 4523, 284 pp. [in Russian].

Plado, J., Kiik, K., Jokinen, J. & Soesoo, A. 2020. Magnetic field of the Jõhvi iron ore anomaly, northeastern Estonia, controlled by subvertical remanent magnetization. Estonian Journal of Earth Sciences69, 189–199. 
https://doi.org/10.3176/earth.2020.13

Powell, R. 1985. Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. Journal of Metamorphic Geology3, 231–243. 
https://doi.org/10.1111/j.1525-1314.1985.tb00319.x

Puura, V. & Kuuspalu, T. 1966. Metallogenicheskaya karta Éstonskoj SSR m-ba 1:500000. Otchet III. Rudoproyavleniya v kristallicheskom fundamente uchastkov Jyhvi i Ul´yaste [Map of Metallogeny of the Estonian S.S.R. in a Scale of 1:500 000. Volume III. Ore Occurrences in the Crystalline Basement of the Jõhvi and Uljaste Areas]Geological Survey of Estonia, Tallinn, EGF 2801, 267 pp. [in Russian].

Puura, V., Vaher, R., Klein, V., Koppelmaa, H., Niin, M., Vanamb, V. & Kirs, J. 1983. Kristallicheskij fundament Éstonii [The Crystalline Basement of Estonian Territory]. Nauka, Moscow, 208 pp. [in Russian, with extended English summary].

Puura, V., Klein, V., Kikas, R., Konsa, M., Kuldkepp, R. & Soesoo, A. 2004. Svecofennian metamorphic zones in the basement of Estonia. Proceedings of the Estonian Academy of Sciences, Geology53, 190–209. 

Ravna, E. J. K. 2000. The garnet–clinopyroxene Fe2+–Mg geothermometer: An updated calibration. Journal of Metamorphic Geology18, 211–219.
https://doi.org/10.1046/j.1525-1314.2000.00247.x

Robertson, S. 1999. BGS Rock Classification Scheme: Classification of Metamorphic Rocks. British Geological Survey Research Report, Volume 2, RR 99–02, 26 pp.

Slotznick, S. P., Eiler, J. M. & Fischer, W. W. 2018. The effects of metamorphism on iron mineralogy and the iron speciation redox proxy. Geochimica et Cosmochimica Acta224, 96–115.
https://doi.org/10.1016/j.gca.2017.12.003

Soesoo, A., Puura, V., Kirs, J., Petersell, V., Niin, M. & All, T. 2004. Outlines of the Precambrian basement of Estonia. Proceedings of the Estonian Academy of Sciences, Geology53, 149–164.

Soesoo, A., Košler, J. & Kuldkepp, R. 2006. Age and geo­chemical constraints for partial melting of granulites in Estonia. Mineralogy and Petrology86, 277–300.
https://doi.org/10.1007/s00710-005-0110-8

Soesoo, A., Nirgi, S. & Plado, J. 2020. The evolution of the Estonian Precambrian basement: geological, geophysical and geochronological constraints. Transactions of the Karelian Research Centre of the Russian Academy of Sciences2, 18–33.
https://doi.org/10.17076/geo1185

Thompson, A. B. 1976. Mineral reactions in pelitic rocks, II: Calculation of some P-T-X (Fe-Mg) phase relations. American Journal of Science276, 425–454.
https://doi.org/10.2475/ajs.276.4.425

Tikhomirov, S. N. 1966. Geologiya kristallicheskogo fundamenta v Leningradskoj oblasti i Pribaltiki [Geology of the Crystalline Basement in the Leningrad Region and Baltics]. VSEGEI, Leningrad, 24 pp. [in Russian].

Vaganova, Z. & Kadyrova, M. 1948. Dokembrijskie kristallicheskie porody i zhelezistye kvartsity Ést. SSR [Precambrian Crystalline Rocks and Iron-Rich Quartzites of the Estonian S.S.R.]. Ministry of Geology of the S.S.S.R., Leningrad, 228 pp. [in Russian].

Voolma, M., Soesoo, A. & Hade, S. 2010. Geochemistry and P–T conditions of magnetite quartzites from Jõhvi Zone, NE Estonia. In Proceedings of the 5th Annual Meeting of Nordic Mineralogical Network, Tallinn, 14th18th June 2010 (Tuisku, P. & Nemliher, J., eds), Res Terrae: Publications of the Department of Geosciences, University of OuluA31, 42–46. 

Williams, M. L. & Grambling, J. A. 1990. Manganese, ferric iron, and the equilibrium between garnet and biotite. American Mineralogist75, 886–908.

Wu, C., Zhang, J. & Ren, L. 2004. Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium- to high-grade metapelites. Journal of Petrology45, 1907–1921.
https://doi.org/10.1093/petrology/egh038


Back to Issue