ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Metal enrichment in lithologically complex black shales: a case study from the Tremadocian of NE Estonia; pp. 36–50

Full article in PDF format | 10.3176/earth.2021.04

Authors
Rutt Hints, Siim Pajusaar, Kristjan Urtson, Merlin Liiv, Toivo Kallaste

Abstract

Significantly elevated U, Mo, Zn and Pb contents characterize the Early Ordovician black shales in the Sillamäe area, NE Estonia. The presence of silty interlayers with sulphidic mineralization and authigenic carbonates suggests unique physicochemical conditions for metal enrichment in this location. We investigated metallogenesis of these shallow-water black shales based on high-resolution mapping of element distribution in the Sõtke drill core and nearby Päite outcrop using X-ray fluorescence spectroscopy, inductively coupled plasma mass spectrometry and organic elemental analysis, complemented by optical microscopy and scanning electron microscopy of selected samples. Enriched metals in the black shales of the study area show dissimilar distribution trends with sharp vertical concentration gradients. The recorded variance ranges were 88–275 ppm for U, 70–2467 ppm for Mo, 85–1600 ppm for V, 21–17 283 ppm for Zn and 95–26 549 ppm for Pb, while total organic carbon varied from 0.5 to 13 wt%. In most cases, the metals showed no clear covariance with organic matter or other major compounds such as S or P. The development of a sulphate reduction zone near the sediment–water interface with a sharp decrease in Eh, production of H2S, elevated alkalinity and pH, and (re)distribution of phosphorus probably controlled the syngenetic capture of Mo and U. Enhanced transfer of fluids and solutes in coarse-grained permeable beds facilitated the accumulation of metals, while the deposit probably acted as a semi-open geochemical system throughout its geological evolution. Local Zn and Pb enrichment developed due to the intrusion of late diagenetic metal-bearing fluids and the entrapment of metals in beds that contained authigenic carbonates. 


References

Algeo, T. J. & Lyons, T. W. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography21, PA1016.
https://doi.org/10.1029/2004PA001112

Algeo, T. J. & Maynard, J. B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology206, 289–318.
https://doi.org/10.1016/j.chemgeo.2003.12.009

Algeo, T. J. & Tribovillard, N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology268, 211–225.
https://doi.org/10.1016/j.chemgeo.2009.09.001

Andersson, A., Dahlman, B., Gee, D. G. & Snäll, S. 1985. The Scandinavian Alum Shales. Sveriges Geologiska Under­sökning, Serie Ca, 56, 1–52.

Artyushkov, E. A., Lindström, M. & Popov, L. E. 2000. Relative sea-level changes in Baltoscandia in the Cumbrian and early Ordovician: the predominance of tectonic factors and the absence of large scale eustatic fluctuations. Tectono­physics320, 375–407.
https://doi.org/10.1016/S0040-1951(00)00038-X

Baturin, G. N. & Ilyin, A. V. 2013. Comparative geochemistry of shell phosphorites and dictyonema shales of the Baltic. Geochemistry International51, 23–32.
https://doi.org/10.1134/S0016702913010023

Bogdanov, R., Ozernaja, S., Pihlak, A. & Lippmaa, E. 1994. The detection of the markedly depleted in U-234 Dictyoneme shale component. Geokhimiya11, 1626–1632 [in Russian, with English summary].

Bogdanov, R., Ozernaja, S., Pihlak, A.-T. & Timofeev, S. 2007. Radiogenic uranium-234 in humus acids of graptolitic argillite. Oil Shale24, 73–89.

Bone, S. E., Dynes, J. J., Cliff, J. & Bargar, J. R. 2017. Uranium(IV) adsorption by natural organic matter in anoxic sediments. Proceedings of the National Academy of Sciences of the United States of America114, 711–716.
https://doi.org/10.1073/pnas.1611918114

Breit, G. N. & Wanty, R. B. 1991. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis. Chemical Geology91, 83–97.
https://doi.org/10.1016/0009-2541(91)90083-4

Cocks, L. R. M. & Torsvik, T. H. 2006. European geography in a global context from the Vendian to the end of the Palaeozoic. Geological Society, London, Memoirs32, 83–95.
https://doi.org/10.1144/GSL.MEM.2006.032.01.05

Coveney, R. M. & Nansheng, C. 1991. Ni-Mo-PGE-Au-rich ores in Chinese black shales and speculations on possible analogues in the United States. Mineralium Deposita26, 83–88.
https://doi.org/10.1007/BF00195253

Cumberland, S. A., Douglas, G., Grice, K. & Moreau, J. W. 2016. Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth-Science Reviews159, 160–185.
https://doi.org/10.1016/j.earscirev.2016.05.010

Dellwig, O., Leipe, T., März, C., Glockzin, M., Pollehne, F., Schnetger, B., Yakushev, E. V., Böttcher, M. E. & Brumsack, H. J. 2010. A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins. Geochimica et Cosmochimica Acta74, 7100–7115.

Deng, Y., Chen, F., Hu, Y., Guo, Q., Cao, J., Chen, H., Zhou, J., Jiang, X. & Zhu, J. 2020. Methane seepage patterns during the middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea. Ore Geology Reviews125, 103701.

Eensaar, J., Gaškov, M., Pani, T., Sepp, H., Somelar, P. & Kirsimäe, K. 2017. Hydrothermal fracture mineralization in the stable cratonic northern part of the Baltic Paleobasin: sphalerite fluid inclusion evidence. GFF139, 52–62.
https://doi.org/10.1080/11035897.2016.1196499

Eichwald, C. E. von. 1840. Ueber das silurische Schichtensystem in Esthland. Medizinischen Akademie, St. Petersburg, 210 pp.

Erickson, B. E. & Helz, G. R. 2000. Molybdenum(VI) speciation in sulfidic waters. Geochimica et Cosmochimica Acta64, 1149–1158.
https://doi.org/10.1016/S0016-7037(99)00423-8

Felitsyn, S. B., Vidal, G. & Moczydłowska, M. 1998. Trace elements and Cr and C isotopic signatures in late Neoproterozoic and earliest Cambrian sedimentary organic matter from siliciclastic successions in the East European Platform. Geological Magazine135, 537–551.

Gill, B. C., Lyons, T. W., Young, S. A., Kump, L. R., Knoll, A. H. & Saltzman, M. R. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature469, 80–83.
https://doi.org/10.1038/nature09700

Guilbaud, R., Slater, B., Poulton, S., Harvey, T., Brocks, J., Nettersheim, B. & Butterfield, N. 2017. Oxygen minimum zones in the early Cambrian ocean. Geochemical Perspectives Letters6, 33–38.
https://doi.org/10.7185/geochemlet.1806

Gustafsson, J. P. 2019. Vanadium geochemistry in the biogeosphere – speciation, solid-solution interactions & ecotoxicity. Applied Geochemistry102, 1–25.
https://doi.org/10.1016/j.apgeochem.2018.12.027

Hade, S. & Soesoo, A. 2014. Estonian graptolite argillites revisited. A future resource? Oil Shale31, 4–18.

Heinsalu, H. N. 1987. Lithostratigraphical subdivision of Tremadoc deposits of North Estonia. Proceedings of the Academy of Sciences of the Estonian SSR, Geology36, 66–78 [in Russian, with English summary].

Heinsalu, H. & Bednarczyk, W. 1997. Tremadoc of the East European Platform: lithofacies and palaeogeography. Proceedings of the Estonian Academy of Sciences, Geology46, 59–74.

Heinsalu, H., Kaljo, D., Kurvits, T. & Viira, V. 2003. The stratotype of the Orasoja Member (Tremadocian, Northeast Estonia): lithology, mineralogy, and biostratigraphy. Proceedings of the Estonian Academy of Sciences, Geology52, 135–154.

Helz, G. R. & Vorlicek, T. P. 2019. Precipitation of molybdenum from euxinic waters and the role of organic matter. Chemical Geology509, 178–193.
https://doi.org/10.1016/j.chemgeo.2019.02.001

Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. F. W., Pattrick, R. A. D., Garner, C. D. & Vaughan, D. J. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta60, 3631–3642.
https://doi.org/10.1016/0016-7037(96)00195-0

Hints, R., Hade, S., Soesoo, A. & Voolma, M. 2014. Depositional framework of the East Baltic Tremadocian black shale revisited. GFF136, 464–482.
https://doi.org/10.1080/11035897.2013.866978

Johnson, S. C., Large, R. R., Coveney, R. M., Kelley, K. D., Slack, J. F., Steadman, J. A., Gregory, D. D., Sack, P. J. & Meffre, S. 2017. Secular distribution of highly metalliferous black shales corresponds with peaks in past atmosphere oxygenation. Mineralium Deposita52, 791–798.
https://doi.org/10.1007/s00126-017-0735-7

Jones, B. & Manning, D. A. C. 1994. Comparison of geo­chemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology111, 111–129.
https://doi.org/10.1016/0009-2541(94)90085-X

Kaljo, D. & Kivimägi, E. 1970. On the distribution of graptolites in the dictyonema shale of Estonia and on the uncontemporaneity of its different facies. Eesti NSV Teaduste Akadeemia Toimetised, Keemia, Geoloogia19, 334–341 [in Russian, with English summary].

Kallaste, T. & Pukkonen, E. 1992. Pyrite varieties in Estonian Tremadocian argillite (Dictyonema shale). Proceedings of the Estonian Academy of Sciences, Geology41, 11–22.

Karimov, M., Petersell, V. & Tarros, S. 2017. Puuraugu rajamine Sõtke uuringuruumis [Making a Borehole in the Sõtka Study Area]. Unpublished report, Eesti Geoloogiakeskus, Tallinn, 25 pp. [in Estonian].

Kiipli, T., Batchelor, R. A., Bernal, J. P., Cowing, C., Hagel-Brunnstrom, M., Ingham, M. N., Johnson, D., Kivisilla, J., Knaack, C., Kump, P., Lozano, R., Michiels, D., Orlova, K. & Pirrus, E. 2000. Seven sedimentary rock reference samples from Estonia. Oil Shale17, 215–223.

Kirsimäe, K., Jørgensen, P. & Kalm, V. 1999. Low-temperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals34, 151–163.
https://doi.org/10.1180/claymin.1999.034.1.16

Kochenov, A. V. & Baturin, G. N. 2002. The paragenesis of organic matter, phosphorus, and uranium in marine sediments. Lithology and Mineral Resources37, 107–120.
https://doi.org/10.1023/A:1014816315203

Kunzmann, M., Schmid, S., Blaikie, T. N. & Halverson, G. P. 2019. Facies analysis, sequence stratigraphy, and carbon isotope chemostratigraphy of a classic Zn-Pb host succession: The Proterozoic middle McArthur Group, McArthur Basin, Australia. Ore Geology Reviews106, 150–175.
https://doi.org/10.1016/j.oregeorev.2019.01.011

Leach, D., Macquar, J.‐C., Lagneau, V., Leventhal, J., Emsbo, P. & Premo, W. 2006. Precipitation of lead–zinc ores in the Mississippi Valley‐type deposit at Trèves, Cévennes region of southern France. Geofluids6, 24–44.
https://doi.org/10.1111/j.1468-8123.2006.00126.x

Leventhal, J. S. 1983. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition. Geochimica et Cosmochimica Acta47, 133–137.
https://doi.org/10.1016/0016-7037(83)90097-2

Lippmaa, E., Maremäe, E., Pihlak, A.-T. & Aguraiuja, R. 2009. Estonian graptolitic argillites – ancient ores or future fuels? Oil Shale26, 530–539.
https://doi.org/10.3176/oil.2009.4.08

Lippmaa, E., Maremäe, E. & Pihlak, A.-T. 2011. Resources, production and processing of Baltoscandian multimetal black shales. Oil Shale28, 68–77.
https://doi.org/10.3176/oil.2011.1.08

Loog, A., Kurvits, T., Aruväli, J. & Petersell, V. 2001. Grain size analysis and mineralogy of the Tremadocian Dictyonema shale in Estonia. Oil Shale18, 281–297.

März, C., Riedinger, N., Sena, C. & Kasten, S. 2018. Phosphorus dynamics around the sulphate-methane transition in continental margin sediments: Authigenic apatite and Fe(II) phosphates. Marine Geology404, 84–96.
https://doi.org/10.1016/j.margeo.2018.07.010

Mikhailova, K., Vasileva, K., Fedorov, P., Ershova, V., Vereshchagin, O., Rogov, M. & Pokrovsky, B. 2019. Glendonite-like carbonate aggregates from the Lower Ordovician Koporye Formation (Russian Part of the Baltic Klint): Detailed mineralogical and geochemical data and paleogeographic implications. Minerals9, 524.
https://doi.org/10.3390/min9090524

Morford, J. L., Martin, W. R., Kalnejais, L. H., François, R., Bothner, M. & Karle, I.-M. 2007. Insights on geochemical cycling of U, Re and Mo from seasonal sampling in Boston Harbor, Massachusetts, USA. Geochimica et Cosmo­chimica Acta71, 895–917.
https://doi.org/10.1016/j.gca.2006.10.016

Nielsen, A. T. & Schovsbo, N. H. 2006. Cambrian to basal Ordovician lithostratigraphy in Southern Scandinavia. Bulletin of the Geological Society of Denmark53, 47–92.

Pagès, A., Barnes, S., Schmid, S., Coveney, R. M., Schwark, L., Liu, W., Grice, K., Fan, H. & Wen, H. 2018. Geochemical investigation of the lower Cambrian mineralised black shales of South China and the late Devonian Nick deposit, Canada. Ore Geology Reviews94, 396–413.
https://doi.org/10.1016/j.oregeorev.2018.02.004

Peacor, D. R., Coveney, R. M. & Zhao, G. 2000. Authigenic illite and organic matter: The principal hosts of vanadium in the Mecca Quarry Shale at Velpen, Indiana. Clays and Clay Minerals48, 311–316.
https://doi.org/10.1346/CCMN.2000.0480301

Petersell, V. 1997. Dictyonema argillite. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 327–331. Estonian Academy Publishers, Tallinn.

Petersell, V. H., Zhukov, F. I., Loog, A. R. & Fomin, Y. A. 1987. Origin of Tremadoc kerogen-bearing siltstones and argil­lites of North Estonia. Oil Shale4, 7–13 [in Russian, with English summary].

Popov, L. E., Álvaro, J. J., Holmer, L. E., Bauert, H., Ghobadi Pour, M., Dronov, A. V., Lehnert, O., Hints, O., Männik, P., Zhang, Z. & Zhang, Z. 2019. Glendonite occurrences in the Tremadocian of Baltica: first Early Palaeozoic evidence of massive ikaite precipitation at temperate latitudes. Scientific Reports9, 7205.
https://doi.org/10.1038/s41598-019-43707-4

Pukkonen, E. 1989. Major and minor elements in Estonian graptolite argillite. Oil Shale6, 11–18.

Puura, V. & Sudov, B. 1976. The tectonically active platform zones on the south slope of the Baltic shield and their metallogeny. Eesti NSV Teaduste Akadeemia Toimetised, Keemia, Geoloogia25, 206–214 [in Russian, with English summary].

Puura, V. & Vaher, R. 1997. Cover structure. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 167–177. Estonian Academy Publishers, Tallinn.

Salmon, V., Derenne, S., Lallier-Vergès, E., Largeau, C. & Beaudoin, B. 2000. Protection of organic matter by mineral matrix in a Cenomanian black shale. Organic Geochemistry31, 463–474.
https://doi.org/10.1016/S0146-6380(00)00013-9

Schieber, J. & Riciputi, L. 2005. Pyrite and marcasite coated grains in the Ordovician Winnipeg Formation, Canada: An intertwined record of surface conditions, strati­graphic condensation, geochemical “reworking”, and microbial activity. Journal of Sedimentary Research75, 907–920.
https://doi.org/10.2110/jsr.2005.070

Schieber, J., Southard, J. B. & Thaisen, K. 2007. Accretion of mudstone beds from migrating floccule ripples. Science318, 1760–1763.
https://doi.org/10.1126/science.1147001

Schlanger, S. O., Arthur, M. A., Jenkyns, H. C. & Scholle, P. A. 1987. The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. Geological Society Special Publication26, 371–399.
https://doi.org/10.1144/GSL.SP.1987.026.01.24

Schlesinger, W. H., Klein, E. M. & Vengosh, A. 2017. Global biogeochemical cycle of vanadium. Proceedings of the National Academy of Sciences of the United States of America114, E11092–E11100.
https://doi.org/10.1073/pnas.1715500114

Scholz, F., Baum, M., Siebert, C., Eroglu, S., Dale, A. W., Naumann, M. & Sommer, S. 2018. Sedimentary molybdenum cycling in the aftermath of seawater inflow to the intermittently euxinic Gotland Deep, Central Baltic Sea. Chemical Geology491, 27–38.
https://doi.org/10.1016/j.chemgeo.2018.04.031

Schovsbo, N. H. 2002. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum Shale. GFF124, 107–115.
https://doi.org/10.1080/11035890201242107

Schulz, H.-M., Yang, S., Panova, E. & Bechtel, A. 2019. The role of Pleistocene meltwater-controlled uranium leaching in assessing irradiation-induced alteration of organic matter and petroleum potential in the Tremadocian Koporie Formation (Western Russia). Geochimica et Cosmochimica Acta245, 133–153.
https://doi.org/10.1016/j.gca.2018.10.029

Schulz, H. N. & Schulz, H. D. 2005. Large sulfur bacteria and the formation of phosphorite. Science307, 416–418.
https://doi.org/10.1126/science.1103096

Scott, C. & Lyons, T. W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology324–325, 19–27.
https://doi.org/10.1016/j.chemgeo.2012.05.012

Scott, C., Slack, J. F. & Kelley, K. D. 2017. The hyper-enrichment of V and Zn in black shales of the Late Devonian-Early Mississippian Bakken Formation (USA). Chemical Geology452, 24–33.
https://doi.org/10.1016/j.chemgeo.2017.01.026

Scranton, M. I., Sayles, F. L., Bacon, M. P. & Brewer, P. G. 1987. Temporal changes in the hydrography and chemistry of the Cariaco Trench. Deep Sea Research Part A. Oceanographic Research Papers34, 945–963.
https://doi.org/10.1016/0198-0149(87)90047-1

Smedley, P. L. & Kinniburgh, D. G. 2017. Molybdenum in natural waters: A review of occurrence, distributions and controls. Applied Geochemistry84, 387–432.
https://doi.org/10.1016/j.apgeochem.2017.05.008

Sturesson, U. L. F., Popov, L. E., Holmer, L. E., Bassett, M. G., Felitsyn, S. & Belyatsky, B. 2005. Neodymium isotopic composition of Cambrian–Ordovician biogenic apatite in the Baltoscandian Basin: implications for palaeogeo­graphical evolution and patterns of biodiversity. Geological Magazine142, 419–439.
https://doi.org/10.1017/S0016756805000877

Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Science, Oxford, 312 pp.

Thickpenny, A. 1984. The sedimentology of the Swedish Alum Shales. Geological Society, London, Special Publications15, 511–525.
https://doi.org/10.1144/GSL.SP.1984.015.01.33

Tribovillard, N., Algeo, T. J., Lyons, T. W. & Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology232, 12–32.
https://doi.org/10.1016/j.chemgeo.2006.02.012

Tyson, R. V. 2001. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry32, 333–339.
https://doi.org/10.1016/S0146-6380(00)00161-3

Utsal, K., Kivimägi, E. & Utsal, V. 1980. About the method of investigating Estonian graptolithic argillite and its mineralogy. Tartu Riikliku Ülikooli Toimetised527, 116–138 [in Russian, with English summary].

Vind, J. & Bauert, H. 2020. Geochemical Characterisation of the Tremadocian Black Shale in North-Western Estonia. No. EGF9330. Geological Survey of Estonia, Rakvere, 91 pp.

Wignall, P. B. & Newton, R. 2001. Black shales on the basin margin: A model based on examples from the Upper Jurassic of the Boulonnais, Northern France. Sedimentary Geology144, 335–356.

Wilde, P., Quinby-Hunt, M. S., Berry, W. B. N. & Orth, C. J. 1989. Palaeo-oceanography and biogeography in the Tremadoc (Ordovician) Iapetus Ocean and the origin of the chemostratigraphy of Dictyonema flabelliforme black shales. Geological Magazine126, 19–27.
https://doi.org/10.1017/S0016756800006117

Wilde, P., Lyons, T. W. & Quinby-Hunt, M. S. 2004. Organic carbon proxies in black shales: Molybdenum. Chemical Geology206, 167–176.

Zhao, M. Y., Zheng, Y. F. & Zhao, Y. Y. 2016. Seeking a geochemical identifier for authigenic carbonate. Nature Communications7, 1–7.

 


Back to Issue