ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Spatial variations in the Caspian Sea wave climate in 2002–2013 from satellite altimetry; pp. 225–240

Full article in PDF format | https://doi.org/10.3176/earth.2019.16

Authors
Nadezhda Kudryavtseva, Kuanysh Kussembayeva, Zaure B. Rakisheva, Tarmo Soomere

Abstract

The core properties of the wave climate and its changes in the Caspian Sea are established in terms of the annual mean significant wave height and its regional changes in 2002–2013 based on the outcome of the satellite altimetry mission JASON-1. Remotely estimated wave heights are validated against properties of the empirical distribution of instrumentally measured wave heights in the southern Caspian Sea and monthly averages of visually observed wave heights at three locations. A correction for systematic differences leads to very good correspondence between monthly averaged in situ and satellite data with a typical root mean square difference of 0.06 m.
The average significant wave height in the Caspian Sea is 0.5–0.7 m in the northern basin of the sea, around 1.2 m in large parts of the central and southern basins and reaches up to 1.8 m in the northern segment of the central basin. The basin-wide average wave intensity varied insignificantly in the range of 1.02–1.14 m in 2002–2013. These estimates overestimate the wave heights by about 30% because low wave conditions are ignored. Substantial and statistically significant changes in the wave height occurred in certain areas. The wave height decreased by 0.019 ± 0.007 m/yr in the eastern segment of the central basin and by 0.04 ± 0.04 m/yr in the western segment of the southern basin. These changes can be explained by an increase in the frequency of westerly winds at the expence of southerly winds. Both basin-wide and regional extreme wave heights exhibit large interannual variations but do not show any significant trend. The patterns of changes in mean and extreme wave height are different. The average wave height has increased while the extreme wave height has decreased in the eastern segment of the southern basin.


References

Amante, C. & Eakins, B. W. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA, https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc. mgg.dem:316 [accessed 28.10.2019].

Ambrosimov, S. A. 2008. Instrumental´nye nablyudeniya za polem volneniya v Tsentral´noj chasti Kaspijskogo morya s pritoplennykh bujkovykh stantsij [Instrumental Measure­ments of Properties of Wave Fields in the Central Part of the Caspian Sea Using Underwater Devices]. Cand. Math. Phys. Sci. = PhD thesis. P. P. Shirshov Institute of Oceanology, 151 pp., http://www.dissercat.com/content/instrumentalnye-nablyudeniya-za-polem-volneniya-v-tsentralnoi-chasti-kaspiiskogo-morya-s-pri#ixzz4f4KnAQuS/ [in Russian; accessed 08.09.2019].

Amirinia, G., Kamranzad, B. & Mafi, S. 2017. Wind and wave energy potential in southern Caspian Sea using uncertainty analysis. Energy, 120, 332–345.
https://doi.org/10.1016/j.energy.2016.11.088

Boukhanovsky, A. V., Chernyshyova, E. S., Ivanov, S. V. & Lopatoukhin, L. I. 2011. New generation of wind and wave climate handbooks – Guide to naval architect and for offshore activity. Marine Technology and Engineering, 1, 35–44.

Bruneau, N. & Toumi, R. 2016. A fully-coupled atmosphere-ocean-wave model of the Caspian Sea. Ocean Modelling, 107, 97–111.
https://doi.org/10.1016/j.ocemod.2016.10.006

Cazenave, A., Bonnefond, P., Dominh, K. & Schaeffer, P. 1997. Caspian sea level from Topex-Poseidon altimetry: level now falling. Geophysical Research Letters, 24, 97GL00809.
https://doi.org/10.1029/97GL00809

Chelton, D. B., Walsh, E. J. & MacArthur, J. L. 1989. Pulse compression and sea level tracking in satellite altimetry. Journal of Atmospheric and Oceanic Technology, 6, 407–438.
https://doi.org/10.1175/1520-0426(1989)006<0407:PCASLT>2.0.CO;2

Chen, J. L., Pekker, T., Wilson, C. R., Tapley, B. D., Kostianoy, A. G., Cretaux, J.-F. & Safarov, E. S. 2017a. Long-term Caspian Sea level change. Geophysical Research Letters, 44, 6993–7001.
https://doi.org/10.1002/2017GL073958

Chen, J. L., Wilson, C. R., Tapley, B. D., Save, H. & Cretaux, J.-F. 2017b. Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements. Journal of Geophysical Research – Solid Earth, 122, 2274–2290.
https://doi.org/10.1002/2016JB013595

Cherneva, Z., Petrova, P., Andreeva, N. & Guedes Soares, C. 2005. Probability distributions of peaks, troughs and heights of wind waves measured in the Black Sea coastal zone. Coastal Engineering, 52, 599–615.
https://doi.org/10.1016/j.coastaleng.2005.02.006

Dibarboure, G., Pujol, M.-I., Briol, F., Le Traon, P. Y., Larnicol, G., Picot, N., Mertz, F. & Ablain, M. 2011. Jason-2 in DUACS: updated system description, first tandem results and impact on processing and products. Marine Geodesy, 34, 214–241.
https://doi.org/10.1080/01490419.2011.584826

Golshani, A., Taebi, S. & Chegini, V. 2007. Wave hindcast and extreme value analysis for the southern part of the Caspian Sea. Coastal Engineering Journal, 49, 443–459.
https://doi.org/10.1142/S057856340700168X

Gulev, S. K. & Hasse, L. 1998. North Atlantic wind waves and wind stress fields from voluntary observing ship data. Journal of Physical Oceanography, 28, 1107–1130.
https://doi.org/10.1175/1520-0485(1998)028<1107:NAWWAW>2.0.CO;2

Gulev, S. K. & Hasse, L. 1999. Changes of wind waves in the North Atlantic over the last 30 years. International Journal of Climatology, 19, 1091–1117.
https://doi.org/10.1002/(SICI)1097-0088(199908)19:10<1091::AID-JOC403>3.0.CO;2-U

Hadadpour, S., Etemad-Shahidi, A., Jabbari, E. & Kamranzad, B. 2014. Wave energy and hot spots in Anzali port. Energy, 74, 529–536.
https://doi.org/10.1016/j.energy.2014.07.018

Hartgerink, P. E. 2005. Analysis and Modelling of Wave Spectra on the Caspian Sea. TU Delft, Fluid mechanics, Report. M.Sc. Thesis 9308358, 214 pp.

Hemer, M. A., Church, J. A. & Hunter, J. R. 2007. Waves and climate change on the Australian coast. Journal of Coastal Research, Special Issue 50, 432–437.

Kamranzad, B., Etemad-Shahidi, A. & Chegini, V. 2016. Sustainability of wave energy resources in southern Caspian Sea. Energy, 97, 549–559.
https://doi.org/10.1016/j.energy.2015.11.063

Karimova, S. 2012. Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data. Advances in Space Research, 50, 1107–1124.
https://doi.org/10.1016/j.asr.2011.10.027

Kostianoy, A. G. & Kosarev, A. N. (eds). 2005. The Caspian Sea Environment. The Handbook of Environmental Chemistry, Vol. 5P, Springer, Berlin, Heidelberg, 271 pp.
https://doi.org/10.1007/b138238

Kovaleva, O., Eelsalu, M. & Soomere, T. 2017. Hot-spots of large wave energy resources in relatively sheltered sections of the Baltic Sea coast. Renewable & Sustainable Energy Reviews, 74, 424–437.
https://doi.org/10.1016/j.rser.2017.02.033

Kudryavtseva, N. A. & Soomere, T. 2016. Validation of the multi-mission altimeter wave height data for the Baltic Sea region. Estonian Journal of Earth Sciences, 65, 161–175.
https://doi.org/10.3176/earth.2016.13

Kudryavtseva, N. A. & Soomere, T. 2017. Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate. Earth Systems Dynamics, 8, 697–706.
https://doi.org/10.5194/esd-8-697-2017

Lavrova, O. Y., Mityagina, M. I., Sabinin, K. D. & Serebryany, A. N. 2011. Satellite observations of surface manifestations of internal waves in the Caspian Sea. Izvestiya Atmospheric and Oceanic Physics, 47, 1119–1126.
https://doi.org/10.1134/S000143381109009X

Lebedev, S. A. 2015. The dynamics of the Caspian Sea based on satellite altimetry data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Contemporary Problems of Remote Sensing of the Earth from Space], 12(4), 72–85 [in Russian, with English summary].

Lebedev, S. A. & Kostianoy, A. G. 2008. Integrated use of satellite altimetry in the investigation of the meteoro­logical, hydrological, and hydrodynamic regime of the Caspian Sea. Terrestrial, Atmospheric and Oceanic Sciences, 19, 71–82.
https://doi.org/10.3319/TAO.2008.19.1-2.71(SA)

Leppäranta, M. & Myrberg, K. 2009. Physical Oceanography of the Baltic Sea. Springer, Berlin, 378 pp.
https://doi.org/10.1007/978-3-540-79703-6

Longuet-Higgins, M. S. 1952. On the statistical distribution of the heights of sea waves. Journal of Marine Research, 11, 245–266.

Lopatoukhin, L. I. & Yaitskaya, N. A. 2019. Wave climate of the Caspian Sea, input wind data for hydrodynamic modeling, and some calculation results. Oceanology, 59, 7–16.
https://doi.org/10.1134/S0001437019010120

Lopatoukhin, L. I., Boukhanovsky, A. V., Degtyarev, A. B. & Rozhkov, V. (eds). 2003. Spravochnye dannye po rezhimy vetra i volneniya Barentseva, Okhotskogo i Kaspijskogo morej [Wind and Wave Climate in the Okhotsk, Barents and Caspian Seas. Handbook]. Russian Maritime Register of Shipping, 213 pp. [in Russian].

Ménard, Y., Fu, L.-L., Escudier, P., Parisot, F., Perbos, J., Vincent, P., Desai, S., Haines, B. & Kunstmann, G. 2003. The Jason-1 mission. Marine Geodesy, 26, 131–146.
https://doi.org/10.1080/714044514

Mityagina, M. I. & Lavrova, O. Y. 2015. Multi-sensor satellite survey of the surface oil pollution in the Caspian Sea. In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2015 (Bostater, C. R., Mertikas, S. P. & Neyt, X., eds), Proceedings of SPIE, 9638, Art. No. 96380Q.
https://doi.org/10.1117/12.2194511

Mityagina, M. I. & Lavrova, O. Y. 2016. Results of the Caspian Sea satellite survey: internal wave climate. In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2016 (Bostater, C. R., Neyt, X., Nichol, C. & Aldred, O., eds), Proceedings of SPIE, 9999, Art. No. 99991B.
https://doi.org/10.1117/12.2241656

Muraleedharan, G., Rao, A. D., Kurup, P. G., Nair, N. U. & Sinha, M. 2007. Modified Weibull distribution for maximum and significant wave height simulation and prediction. Coastal Engineering, 54, 630–638.
https://doi.org/10.1016/j.coastaleng.2007.05.001

Myslenkov, S. A., Arkhipkin, V. S., Pavlova, A. V. & Dobrolybov, S. A. 2018. Wave climate in the Caspian Sea based on wave hindcast. Russian Meteorology and Hydrology, 43, 670–678.
https://doi.org/10.3103/S1068373918100060

Nejad, M. F., Shariati, O. & Zin, A. A. B. 2013. Feasibility study of wave energy potential in southern coasts of Caspian Sea in Iran. In Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference (PEOCO2013) (Musirin, I. & Salimin, R. H., eds), pp. 57–60. IEEE Malaysia.

Prevosto, M., Krogstad, H. E. & Robin, A. 2000. Probability distributions for maximum wave and crest heights. Coastal Engineering, 40, 329–360.
https://doi.org/10.1016/S0378-3839(00)00017-X

Rakisheva, Z. B., Kudryavtseva, N., Kussembayeva, K. K. & Sakhayeva, A. K. 2019. Studying the change of average waves of the Caspian Sea using the altimetry data. Journal of Mathematics, Mechanics, Computer Science, 101(1), 59–75.
https://doi.org/10.26577/JMMCS-2019-1-618

Rusu, E. & Onea, F. 2013. Evaluation of the wind and wave energy along the Caspian Sea. Energy, 50, 1–14.
https://doi.org/10.1016/j.energy.2012.11.044

Scharroo, R., Leuliette, E. W., Lillibridge, J. L., Byrne, D., Naeije, M. C. & Mitchum, G. T. 2013. RADS: Con­sistent multi-mission products. In Proceedings of the Symposium on 20 Years of Progress in Radar Altimetry, 20–28 September 2012, Venice. European Space Agency Special Publication, ESA SP-710, 4.

Soares, C. G. 1986. Assessment of the uncertainty in visual observations of wave height. Ocean Engineering, 13, 37–56.
https://doi.org/10.1016/0029-8018(86)90003-X

Soomere, T. 2013. Extending the observed Baltic Sea wave climate back to the 1940s. Journal of Coastal Research, Special Issue 65, 1969–1974.
https://doi.org/10.2112/SI65-333.1

Soomere, T. 2016. Extremes and decadal variations in the Baltic Sea wave conditions. In Extreme Ocean Waves (Pelinovsky, E. & Kharif, C., eds), pp. 107–140. Springer.
https://doi.org/10.1007/978-3-319-21575-4_7

Soomere, T. & Räämet, A. 2014. Decadal changes in the Baltic Sea wave heights. Journal of Marine Systems, 129, 86–95.
https://doi.org/10.1016/j.jmarsys.2013.03.009

Soomere, T., Zaitseva-Pärnaste, I., Räämet, A. & Kurennoy, D. 2010. Spatio-temporal variations of wave fields in the Gulf of Finland. Fundamental and Applied Hydrophysics, 4(10), 90–101 [in Russian, with English summary].

Vignudelli, S., Kostianoy, A., Ginzburg, A., Sheremet, N., Lebedev, S., Sirota, A., Snaith, H. M., Bouffard, J., Roblou, L. & Cipollini, P. 2008. Reprocessing altimeter data records along European coasts: lessons learned from the ALTICORE project. In 2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 3(1), 4779373, III419–III422.
https://doi.org/10.1109/IGARSS.2008.4779373

Wessel, P. & Smith, W. H. F. 1996. A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research: Solid Earth, 101, 8741–8743.
https://doi.org/10.1029/96JB00104

Yaitskaya, N. A. 2017. Retrospective analysis of wind waves in the Caspian Sea in the second half of the XX – beginning of the XXI century and its connection with the regional climate changes. Geographical Bulletin, 2(41), 57–70 [in Russian, with English summary].
https://doi.org/10.17072/2079-7877-2017-2-57-70

Zamani, A. R. & Badri, M. A. 2015. Wave energy estimation by using a statistical analysis and wave buoy data near the southern Caspian Sea. China Ocean Engineering, 29, 275–286.
https://doi.org/10.1007/s13344-015-0019-x

Zounemat-Kermani, M. & Kisi, O. 2015. Time series analysis on marine wind-wave characteristics using chaos theory. Ocean Engineering, 100, 46–53.
https://doi.org/10.1016/j.oceaneng.2015.03.013


Back to Issue