eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

The impact of seasonal changes in stratification on the dynamics of internal waves in the Sea of Okhotsk; pp. 238–255

Full article in PDF format |

Oxana E. Kurkina, Tatyana G. Talipova, Tarmo Soomere, Andrey A. Kurkin, Artem V. Rybin


The properties and dynamics of internal waves in the ocean crucially depend on the vertical structure of water masses. We present detailed analysis of the impact of spatial and seasonal variations in the density-driven stratification in the Sea of Okhotsk on the properties of the classic kinematic and nonlinear parameters of internal waves in this water body. The resulting maps of the phase speed of long internal waves and coefficients at various terms of the underlying Gardner’s equation make it possible to rapidly determine the main properties of internal solitary waves in the region and to choose an adequate set of parameters of the relevant numerical models. It is shown that the phase speed of long internal waves almost does not depend on the particular season. The coefficient at the quadratic term of the underlying evolution equation is predominantly negative in summer and winter and therefore internal solitons usually have negative polarity. Numerical simulations of the formation of internal solitons and solibores indicate that seasonal variations in the coefficient at the cubic term of Gardner’s equation lead to substantial variations in the shape of solibores.


Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centuroni, L. R., Chao, S.-Y., Chang, M.-H., Farmer, D. M., Fringer, O. B., Fu, K.-H., Gallacher, P. C., Graber, H. C., Helfrich, K. R., Jachec, S. M., Jackson, C. R., Klymak, J. M., Ko, D. S., Jan, S., Johnston, T. M. S., Legg, S., Lee, I.-H., Lien, R.-C., Mercier, M. J., Moum, J. N., Musgrave, R., Park, J.-H., Pickering, A. I., Pinkel, R., Rainville, L., Ramp, S. R., Rudnick, D. L., Sarkar, S., Scotti, A., Simmons, H. L., St Laurent, L. C., Venayagamoorthy, S. K., Wang, Y.-H., Wang, J., Yang, Y. J., Paluszkiewicz, T. & Tang, T.-Y. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550), 65–69.

Bourgault, D., Morsilli, M., Richards, C., Neumeier, U. & Kelley, D. E. 2014. Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes. Continental Shelf Research, 72, 21–33.

Carnes, M. R. 2009. Description and Evaluation of GDEM-V3.0. Naval Research Laboratory (NRL) Report NRL/MR/7330-09-9165, Naval Research Laboratory, 27 pp.

Grimshaw, R., Pelinovsky, E., Talipova, T. & Kurkin, A. 2004. Simulation of the transformation of internal solitary waves on oceanic shelves. Journal of Physical Oceanography, 34, 2774–2791.

Grimshaw, R., Talipova, T., Pelinovsky, E. & Kurkina, O. 2010. Internal solitary waves: propagation, deformation and disintegration. Nonlinear Processes in Geophysics, 17, 633–649.

Fofonoff, N. & Millard, R. Jr. 1983. Algorithms for computation of fundamental properties of seawater. UNESCO Technical Paper in Marine Science, 44, 15–25.

Holloway, P., Pelinovsky, E., Talipova, T. & Barnes, B. 1997. A nonlinear model of internal tide transformation on the Australian North West shelf. Journal of Physical Oceanography, 27, 871–896.<0871:ANMOIT>2.0.CO;2

Ivanov, V. A., Pelinovsky, E. N. & Talipova, T. G. 1993. Recurrence frequency of internal wave amplitudes in the Mediterranean. Oceanology, 33, 147–150.

Jackson, C. R. 2004. An Atlas of Internal Solitary-like Waves and Their Properties. Prepared for Office of Naval Research, Code 322 PO. Global Ocean Associates, 560 pp. [accessed 10 June 2017].

Kurkina, O. E. & Talipova, T. G. 2011. Huge internal waves in the vicinity of the Spitsbergen Island (Barents Sea). Natural Hazards and Earth System Sciences, 11, 981–986.

Kurkina, O., Talipova, T., Pelinovsky, E. & Soomere T. 2011. Mapping the internal wave field in the Baltic Sea in the context of sediment transport in shallow water. Journal of Coastal Research, SI 64, 2042–2047.

Kurkina, O. E., Kurkin, A. A., Rouvinskaya, E. A. & Soomere, T. 2015. Propagation regimes of interfacial solitary waves in a three-layer fluid. Nonlinear Processes in Geophysics, 22, 117–132.

Kurkina, O. E., Kurkin, A. A., Pelinovsky, E. N., Semin, S. V., Talipova, T. G. & Churaev, E. N. 2016. Structure of currents in the soliton of an internal wave. Oceanology, 56, 767–773.

Kurkina, O., Rouvinskaya, E., Talipova, T. & Soomere, T. 2017a. Propagation regimes and populations of internal waves in the Mediterranean Sea basin. Estuarine, Coastal and Shelf Science, 185, 44–54.

Kurkina, O., Talipova, T., Soomere, T., Giniyatullin, A. & Kurkin, A. 2017b. Kinematic parameters of internal waves of the second mode in the South China Sea. Nonlinear Processes in Geophysics, 24, 645–660.

Lamb, K. & Yan, L. 1996. The evolution of long wave undular bores: comparisons of fully nonlinear numerical model with weakly nonlinear theory. Journal of Physical Oceanography, 26, 2712–2734.<2712:TEOIWU>2.0.CO;2

Liao, G., Hua, X. X., Liang, C., Dong, C., Zhou, B., Ding, T., Huang, W. & Xu, D. 2014. Analysis of kinematic parameters of internal solitary waves in the northern South China Sea. Deep-Sea Research, I, 94, 159–172.

Liu, A. K., Su, F.-Ch., Hsu, M.-K., Kuo, N.-J. & Ho, Ch.-R. 2013. Generation and evolution of mode-two internal waves in the South China Sea. Continental Shelf Research, 59, 18–27.

Maderich, V., Talipova, T., Grimshaw, R., Pelinovsky, E., Choi, B. H., Brovchenko, I., Terletska, K. & Kim, D. C. 2009. Internal solitary wave transformation at the bottom step in two-layer flow: the Gardner and Navier–Stokes frameworks. Nonlinear Processes in Geophysics, 16, 33–42.

Maderich, V., Talipova, T., Grimshaw, R., Pelinovsky, E., Choi, B. H., Brovchenko, I. & Terletska, K. 2010. Interaction of a large amplitude interfacial solitary wave of depression with a bottom step. Physics of Fluids, 22, Art. No. 076602.

Nagovitsyn, A. P. & Pelinovsky, E. N. 1988. Observations of solitons of internal waves in the coastal zone of the Sea of Okhotsk. Meteorology and Hydrology, 4, 124–126 [in Russian].

Nagovitsyn, A. P., Pelinovsky, E. N. & Stepanyants, Yu. A. 1991. Observation and analysis of solitary internal waves in the coastal zone of the Sea of Okhotsk. Soviet Journal of Physical Oceanography, 2, 65–70.

Osborne, A. R. 2010. Nonlinear Ocean Waves and the Inverse Scattering Transform. Elsevier, San Diego, 944 pp.

Pan, X., Wong, G. T. F., Shiah, F.-K. & Ho, T.-Y. 2012. Enhancement of biological productivity by internal waves: observations in the summertime in the northern South China Sea. Journal of Oceanography, 68, 427–437.

Pelinovsky, E., Polukhina, O., Slunyaev, A. & Talipova, T. 2007. Internal solitary waves. In Solitary Waves in Fluids (Grimshaw, R. H. J., ed.), pp. 85–110. WIT Press. Southampton, Boston.

Pettersen, T. 2011. Largest accident in Russian oil sector. Barents Observer, December 22, 2011.

Poloukhin, N. V., Talipova, T. G., Pelinovsky, E. N. & Lavrenov, I. V. 2003. Kinematic characteristics of the high-frequency internal wave field in the Arctic Ocean. Oceanology, 43, 333–343.

Polukhin, N. V., Pelinovsky, E. N., Talipova, T. G. & Muyakshin, S. I. 2004. On the effect of shear currents on the vertical structure and kinematic parameters of internal waves. Oceanology, 44, 22–29.

Ramp, S. R., Yang, Y. J. & Bahr, F. L. 2010. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes in Geophysics, 17, 481–498.

Reeder, D. B., Ma, B. B. & Yang, Y. J. 2011. Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves. Marine Geology, 279, 12–18.

Rutenko, A. N. 2010. The influence of internal waves on losses during sound propagation on a shelf. Acoustical Physics, 56, 703–713.

Si, Z., Zhang, Y. & Fan, Z. 2012. A numerical simulation of shear forces and torques exerted by large-amplitude internal solitary waves on a rigid pile in South China Sea. Applied Ocean Research, 37, 127–132.

Song, Z. J., Teng, B., Gou, Y., Lua, L., Shi, Z. M., Xiao, Y. & Qu, Y. 2011. Comparisons of internal solitary wave and surface wave actions on marine structures and their responses. Applied Ocean Research, 33, 120–129.

Stastna, M. & Lamb, K. G. 2008. Sediment resuspension mechanisms associated with internal waves in coastal waters. Journal of Geophysical Research, 113, Art. No. C10016.

Stober, U. & Moum, J. N. 2011. On the potential for automated realtime detection of nonlinear internal waves from seafloor pressure measurements. Applied Ocean Research, 33, 275–285.

Talipova, T. G. & Pelinovsky, E. N. 2013. Modeling of propagating long internal waves in an inhomogeneous ocean: the theory and its verification. Fundamental and Applied Hydrophysics, 6, 46–54 [in Russian].

Talipova, T., Pelinovsky, E. & Kõuts, T. 1998. Kinematics characteristics of the internal wave field in the Gotland Deep in the Baltic Sea. Oceanology, 38, 33–42.

Talipova, T. G., Pelinovsky, E. N. & Kharif, Ch. 2011. Modulational instability of long internal waves of moderate amplitudes in a stratified and horizontally inhomogeneous ocean. JETP Letters, 94, 182–186.

Talipova, T. G., Pelinovsky, E. N., Kurkin, A. A. & Kurkina, O. E. 2014. Modeling the dynamics of intense internal waves on the shelf. Izvestiya, Atmospheric and Oceanic Physics, 50, 630–637.

Talipova, T. G., Kurkina, O. E., Rouvinskaya, E. A. & Pelinovsky, E. N. 2015. Propagation of solitary internal waves in two-layer ocean of variable depth. Izvestiya, Atmospheric and Oceanic Physics, 51, 89–97.

Teague, W. J., Carron, M. J. & Hogan, P. J. 1990. A comparison between the Generalized Digital Environmental Model and Levitus climatologies. Journal of Geophysical Research, 95, 7167–7183.

Vázquez, A., Flecha, S., Bruno, M., Macías, D. & Navarro, G. 2009. Internal waves and short-scale distribution patterns of chlorophyll in the Strait of Gibraltar and Alborán Sea. Geophysical Research Letters, 36, Art. No. L23601.

Vlasenko, V. & Stashchuk, N. 2015. Internal tides near the Celtic sea shelf break: a new look at a well known problem. Deep Sea Research, I, 103, 24–36.

Vlasenko, V., Stashchuk, N. & Hutter, K. 2005. Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge University Press, Cambridge, 348 pp.

Xu, J., Chen, Z, Xie, J. & Cai, S. 2016. On generation and evolution of seaward propagating internal solitary waves in the northwestern South China Sea. Communications in Nonlinear Science and Numerical Simulation, 32, 122–136.

Zonn, I. S. & Kostianoy, A. G. 2009. Okhotskoe More [Sea of Okhotsk]. Encyclopedia. Publishing house “International relations”, Moscow, 256 pp. [in Russian].

Warn-Varnas, A., Chin-Bing, S. A., King, D. B., Hawkins, J. & Lamb, K. 2009. Effects on acoustics caused by ocean solitons, Part A. Oceanography. Nonlinear Analysis, 71, e1807–e1817.

Back to Issue