ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Magnetic susceptibility of Middle Ordovician sedimentary rocks, Pakri Peninsula, NW Estonia; pp. 125–137

Full article in PDF format | doi: 10.3176/earth.2016.11

Authors
Jüri Plado, Leho Ainsaar, Marija Dmitrijeva, Kairi Põldsaar, Siim Ots, Lauri J. Pesonen, Ulla Preeden

Abstract

Magnetic susceptibility (MS), its frequency-dependence and anisotropy of the Middle Ordovician Dapingian and Darriwilian sedimentary sequence from three sites (Uuga, Testepere and Leetse) in the Pakri Peninsula, NW Estonia are analysed in combination with the mineralogical composition. The study is based on 463 cores drilled at intervals of a few centimetres to a maximum of about 1 m. All the samples show low and positive MS, which suggests the presence of small quantities of para- and/or ferromagnetic minerals. The stratigraphic units of the three studied sites have a similar along-section appearance, which provides a base for a composite curve. The relatively higher susceptibilities are carried by secondary Fe–Ti oxides (Toila Formation), goethite ooids (Kandle Formation) and ferrous dolomite (Pae Member), whereas paramagnetic minerals are mostly responsible for the rest of the sequence. Considering the dependence of MS on regressive–transgressive cycles (high/low MS within deposits of regressive/transgressive parts of the cycles, respectively), the MS data do not agree with sedimentologically derived sea-level compilations. The measured changes in MS in the Pakri Peninsula outcrops correlate at certain characteristic levels with those deposited in the deeper part of the palaeobasin (Viki core), indicating that the post-depositional iron mobilization within the sediments took place at least at a regional level. Because of post-depositional reorganization of ferromagnetic carrier minerals, the MS values may, however, not be used as a detrital proxy.


References

Ainsaar, L., Kaljo, D., Martma, T., Meidla, T., Männik, P., Nõlvak, J. & Tinn, O. 2010. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: a correlation standard and clues to environmental history. Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 189–201.
http://dx.doi.org/10.1016/j.palaeo.2010.01.003

Alm, E., Huhma, H. & Sundblad, K. 2005. Preliminary Palaeo­zoic Sm–Nd ages of fluoritecalcite-galena veins in the southeastern part of the Fennoscandian Shield. Svensk Kärnbränslehantering AB, R-04–27.

Alwmark, C., Schmitz, B. & Kirsimäe, K. 2010. The mid-Ordovician Osmussaar breccia in Estonia linked to the disruption of the L-chondrite parent body in the asteroid belt. Geological Society of America Bulletin, 122, 1039–1046.
http://dx.doi.org/10.1130/B30040.1

Bogdanova, S., Gorbatchev, R., Grad, M., Janik, T., Guterch, A., Kozlovskaya, E., Motuza, G., Skridlaite, G., Starostenko, V. & Taran, L. 2006. EUROBRIDGE: new insights into the geodynamic evolution of the East European Craton. In European Lithosphere Dynamics (Gee, D. G. & Stephenson, R. A., eds), Geological Society Memoirs, 32, 599–625.
http://dx.doi.org/10.1144/gsl.mem.2006.032.01.36

Crick, R. E., Ellwood, B. B., El Hassani, A., Feist, R. & Hladil, J. 1997. Magnetosusceptibility event and cyclostratigraphy (MSEC) of the Eifelian–Givetian GSSP and associated boundary sequences in north Africa and Europe. Episodes, 20, 167–175.

Crick, R. E., Ellwood, B. B., El Hassani, A. & Feist, R. 2000. Proposed magnetostratigraphy susceptibility magneto­stratotype for the Eifelian–Givetian GSSP (Anti-Atlas, Morocco). Episodes, 23, 93–101.

Da Silva, A.-C. & Boulvain, F. 2006. Upper Devonian carbonate platform correlations and sea level variations recorded in magnetic susceptibility. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 373–388.
http://dx.doi.org/10.1016/j.palaeo.2006.02.012

Dearing, J. 1999. Magnetic susceptibility. In Environmental Magnetism: A Practical Guide (Walden, J, Oldfield, F., & Smith, J., eds), Quaternary Research Association, London, Technical Guide, 6, 35–62.

De Vleeschouwer, D., Whalen, M. T., Day, J. E. & Claeys, P. 2012. Cyclostratigraphic calibration of the Frasnian (Late Devonian) time scale (western Alberta, Canada). GSA Bulletin, 124, 928–942.
http://dx.doi.org/10.1130/B30547.1

Dronov, A. & Holmer, E. 1999. Depositional sequences in the Ordovician of Baltoscandia. Acta Universitatis Carolinae, Geologica, 43, 133–136.

Dronov, A. V., Ainsaar, L., Kaljo, D., Meidla, T., Saadre, T. & Einasto, R. 2011. Ordovician sequence of Balto­scandia: facies, sequences and sea-level changes. In Ordovician of the World (Gutiérrez-Marco, J. C., Rábano, I. & García-Bellido, D., eds), Instituto Geológico y Minero de España, Madrid, Cuadernos del Museo Geominero, 14, 143–150.

Ellwood, B. B., Crick, R. E., El Hassani, A., Benoist, S. L. & Young, R. H. 2000. Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks: detrital input versus carbonate productivity. Geology, 28, 1135–1138.
http://dx.doi.org/10.1130/0091-7613(2000)28<1135:MEACMA>2.0.CO;2
http://dx.doi.org/10.1130/0091-7613(2000)028<1135:MEACMA>2.3.CO;2

Ellwood, B. B., García-Alcalde, J. L., El Hassani, A., Hladil, J., Soto, F. M., Truyóls-Massoni, M., Weddige, K. & Koptikova, L. 2006. Stratigraphy of the Middle Devonian boundary: formal definition of the susceptibility magneto­stratotype in Germany with comparisons to sections in the Czech Republic, Morocco and Spain. Tectono­physics, 418, 31–49.

Ellwood, B. B., Brett, C. A. & MacDonald, W. D. 2007. Magneto­stratigraphy susceptibility of the Upper Ordo­vician Kope Formation, northern Kentucky. Palaeo­geo­graphy, Palaeoclimatology, Palaeoecology, 243, 42–54.
http://dx.doi.org/10.1016/j.palaeo.2006.07.003

Ellwood, B. B., Tomkin, J. H., El Hassani, A., Bultynck, P., Brett, C. E., Schindler, E., Feist, R. & Bartholomew, A. J. 2011. A climate-driven model and development of a floating point time scale for the entire Middle Devonian Givetian Stage: a test using magnetostratigraphy sus­ceptibility as a climate proxy. Palaeogeography, Palaeo­climatology, Palaeoecology, 304, 85–95.
http://dx.doi.org/10.1016/j.palaeo.2010.10.014

Essalhi, M., Sizaret, S., Barbanson, L., Chen, Y., Branquet, Y., Panis, D., Camps, P., Rochette, P. & Canals, A. 2009. Track of fluid paleocirculation in dolomite host rock at regional scale by the Anisotropy of Magnetic Sus­ceptibility (AMS): an example from Aptian carbonates of La Florida, Northern Spain. Earth and Planetary Science Letters, 277, 501–513.
http://dx.doi.org/10.1016/j.epsl.2008.11.011

Griffith, E. M. & Paytan, A. 2012. Barite in the ocean – Occurrence, geochemistry and paleoceanographic appli­cators. Sedimentology, 59, 1817–1835.
http://dx.doi.org/10.1111/j.1365-3091.2012.01327.x

Haq, B. U. & Schutter, S. R. 2008. A chronology of Palaeozoic sea-level changes. Science, 322, 64–68.
http://dx.doi.org/10.1126/science.1161648

Hirt, A. M., Banin, A. & Gehring, A. U. 1993. Thermal generation of ferromagnetic minerals from iron-enriched smectites. Geophysical Journal International, 115, 1161–1168.
http://dx.doi.org/10.1111/j.1365-246X.1993.tb01518.x

Jaanusson, V. 1973. Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia, 6, 11–34.
http://dx.doi.org/10.1111/j.1502-3931.1973.tb00871.x

Jelinek, V. 1981. Characterisation of the magnetic fabrics of rocks. Tectonophysics, 79, 63–67.
http://dx.doi.org/10.1016/0040-1951(81)90110-4

Katinas, V. & Nawrocki, J. 2006. Application of magnetic susceptibility for correlation of the Lower Triassic red beds of the Baltic basin. Geologija (Vilnius), 56, 53–59.

Kiipli, T. 1983. Dolomites of the Estonian Middle Ordovician Väo Formation. Proceedings of the Estonian Academy of Sciences, Geology, 32, 60–68.

Kirsimäe, K., Jørgensen, P. & Kalm, V. 1999. Low-tempe­rature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals, 34, 151–163.
http://dx.doi.org/10.1180/000985599546000
http://dx.doi.org/10.1180/claymin.1999.034.1.16

Larson, S. Å., Tullborg, E.-L., Cederbom, C. & Stiberg, J.-P. 1999. Sveconorwegian and Caledonian foreland basins in the Baltic Shield revealed by fission-track thermo­chronology. Terra Nova, 11, 210–215.
http://dx.doi.org/10.1046/j.1365-3121.1999.00249.x

Lindström, M. 1984. The Ordovician climate based on study of carbonate rocks. Palaeontological Contributions from the University of Oslo, 295, 81–88.

Lurcock, P. C. & Wilson, G. S. 2013. The palaeomagnetism of glauconitic sediments. Global and Planetary Change, 110, 278–288.
http://dx.doi.org/10.1016/j.gloplacha.2013.06.010

Maloof, A. C., Kopp, R. E., Grotzinger, J. P., Fike, D. A., Bosak, T., Vali, H., Poussart, P. M., Weiss, B. P. & Kirschvink, J. L. 2007. Sedimentary iron cycling and the origin and preservation of magnetization in platform carbonate muds, Andros Island, Bahamas. Earth and Planetary Science Letters, 259, 581–598.
http://dx.doi.org/10.1016/j.epsl.2007.05.021

Männil, R. 1966. Evolution of the Baltic Basin During the Ordovician. Valgus, Tallinn, 200 pp. [in Russian, with English summary].

Meidla, T., Ainsaar, L. & Tinn, O. 1998. Volkhov Stage in North Estonia and sea level changes. Proceedings of the Estonian Academy of Sciences, Geology, 47, 141–157.

Miidel, A. 1994. Geological background of the present regional uplift anomaly in Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 43, 69–80.

Nestor, H. & Einasto, R. 1997. Formation of the territory. Ordovician and Silurian carbonate sedimentation basin. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 192–204. Estonian Academy Publishers, Tallinn.

Nielsen, A. T. 2004. Ordovician sea-level changes: a Balto­scandian perspective. In The Great Ordovician Bio­diversification Event (Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G., eds), pp. 84–93. Columbia University Press, New York.

Nikishin, A. M., Ziegler, P. A., Stephenson, R. A., Cloetingh, S. A. P. L., Furne, A. V., Fokin, P. A., Ershov, A. V., Bolotov, S. N., Korotaev, M. V., Alekseev, A. S., Gorbachev, V. I., Shipilov, E. V., Lankreijer, A., Bembinova, E. Yu. & Shalimov, I. V. 1996. Late Precambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution. Tectonophysics, 268, 23–63.
http://dx.doi.org/10.1016/S0040-1951(96)00228-4

Orviku, K. 1940. Lithologie der Tallinna-serie (Ordovizium, Estland) I. Acta et Commentationes Universitatis Tartuensis, A, 36, 1–216.

Orviku, K. 1960. Über die lithostratigraphie der Wolchow- und der Kunda-Stufe in Estland. ENSV TA Geoloogia Instituut, Uurimused, 5, 45–87 [in Russian, with German summary].

Plado, J. & Kalberg, A.-L. 2010. Magnetic susceptibility of Ordovician rocks. In Viki Drill Core (Põldvere, A., ed.), Estonian Geological Sections, 10, 28–30.

Plado, J., Preeden, U., Jõeleht, A., Pesonen, L. J. & Mertanen, S. 2016. Palaeomagnetism of Middle Ordovician carbonate sequence, Vaivara Sinimäed area, northeast Estonia, Baltica. Acta Geophysica (accepted).

Põldsaar, K. & Ainsaar, L. 2014. Extensive soft-sediment deformation structures in the early Darriwilian (Middle Ordovician) shallow marine siliciclastic sediments formed on the Baltoscandian carbonate ramp, northwestern Estonia. Marine Geology, 356, 111–127.
http://dx.doi.org/10.1016/j.margeo.2013.08.012

Põldvere, A. & Nestor, H. 2010. General geological setting and stratigraphy. In Viki Drill Core (Põldvere, A., ed.), Estonian Geological Sections, 10, 6–16.

Racki, G., Racka, M., Matyja, H. & Devleeschouwer, X. 2002. The Frasnian/Famennian boundary interval in the South Polish–Moravian shelf basins: integrated event strati­graphical approach. Palaeogeography, Palaeo­climatology, Palaeoecology, 181, 251–297.
http://dx.doi.org/10.1016/S0031-0182(01)00481-3

Raidla, V., Kirsimäe, K., Bityukova, L., Jõeleht, A., Shogenova, A. & Šliaupa, S. 2006. Lithology and diagenesis of the poorly consolidated Cambrian silici­clastic sediments in the northern Baltic Sedimentary Basin. Geological Quarterly, 50, 395–406.

Rasmussen, C. M. Ø., Ullmann, C. V., Jakobsen, K. G., Lindskog, A., Hansen, J., Hansen, T., Eriksson, M. E., Dronov, A., Frei, R., Korte, C., Nielsen, A. T. & Harper, D. A. T. 2016. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports, 6, 18884.
http://dx.doi.org/10.1038/srep18884

Riquier, L., Averbuch, O., Devleeschouwer, X. & Tribovillard, N. 2010. Diagenetic versus detrital origin of the magnetic susceptibility variations in some carbonate Frasnian–Famennian boundary sections from Northern Africa and Western Europe: implications for paleoenvironmental reconstructions. International Journal of Earth Sciences, 99, S57–S73.
http://dx.doi.org/10.1007/s00531-009-0492-7

Śliwiński, M. G., Whalen, M. T., Meyer, F. J. & Majs, F. 2012. Constraining clastic input controls on magnetic susceptibility and trace element anomalies during the Late Devonian punctata Event in the Western Canada Sedimentary Basin. Terra Nova, 24, 301–309.
http://dx.doi.org/10.1111/j.1365-3121.2012.01063.x

Sturesson, U. & Bauert, H. 1994. Origin and palaeogeographical distribution of the Viruan iron and phosphate ooids in Estonia: evidence from mineralogical and chemical compositions. Sedimentary Geology, 93, 51–72.
http://dx.doi.org/10.1016/0037-0738(94)90028-0

Suk, D.-W. & Halgedahl, S. L. 1996. Hysteresis properties of magnetic spherules and whole-rock specimens from some Palaeozoic platform carbonate rocks. Journal of Geophysical Research B: Solid Earth, 101, 25053–25076.
http://dx.doi.org/10.1029/96JB02271

Suuroja, K., Kirsimäe, K., Ainsaar, L., Kohv, M., Mahaney, W. C. & Suuroja, S. 2003. The Osmussaar Breccia in Northwestern Estonia – evidence of a 475 Ma earthquake of an impact? In Impact Markers in the Stratigraphic Record (Koeberl, C. & Martinez-Ruiz, F., eds), pp. 333–347. Springer Verlag, Berlin-Heidelberg.
http://dx.doi.org/10.1007/978-3-642-55463-6_14

Svensen, H. H., Hammer, Ø. & Corfu, F. 2015. Astronomically forced cyclicity in the Upper Ordovician and U–Pb ages of interlayered tephra, Oslo Region, Norway. Palaeo­­geography, Palaeoclimatology, Palaeoecology, 418, 150–159.
http://dx.doi.org/10.1016/j.palaeo.2014.11.001

Tammekänd, M., Hints, O. & Nõlvak, J. 2010. Chitinozoan dynamics and biostratigraphy in the Väo Formation (Darriwilian) of the Uuga Cliff, Pakri Peninsula, NW Estonia. Estonian Journal of Earth Sciences, 59, 25–36.
http://dx.doi.org/10.3176/earth.2010.1.02

Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J. J., Domeier, M., Gaina, G., Tohver, E., Meert, J. G., McCausland, P. J. A. & Cocks, L. R. M. 2012. Phanero­zoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114, 325–368.
http://dx.doi.org/10.1016/j.earscirev.2012.06.007

Vingisaar, P. & Taalmann, V. 1974. Survey of the dolo­mitization of the Lower Palaeozoic carbonate rocks of Estonia. Eesti NSV Teaduste Akadeemia Toimetised, Keemia, Geoloogia, 23, 237–243 [in Russian, with English summary].

Whalen, M. T. & Day, J. E. 2008. Magnetic susceptibility, biostratigraphy, and sequence stratigraphy: insights into Devonian carbonate platform development and basin infilling, Western Alberta. In Papers on Phanerozoic Reef Carbonates in Honor of Wolfgang Schlager (Lukasik, J. & Simo, J. A., eds), Society for Sedimentary Geology Special Publication, 89, 291–314.

Whalen, M. T. & Day, J. E. 2010. Cross-basin variations in magnetic susceptibility influenced by changing sea level, paleogeography, and paleoclimate: Upper Devonian, western Canada sedimentary basin. Journal of Sedi­mentary Research, 80, 1109–1127.


Back to Issue