ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Distribution of phosphorus in the Middle and Upper Ordovician Baltoscandian carbonate palaeobasin; pp. 247–255

Full article in PDF format | doi: 10.3176/earth.2010.4.01

Authors
Enli Kiipli, Tarmo Kiipli, Toivo Kallaste, Leho Ainsaar

Abstract
Baltoscandian Middle and Upper Ordovician carbonate rocks are relatively poor in phosphorus, with the P2O5 content of 0.05–0.5%, rarely exceeding 1%. Phosphorus distribution in the Ordovician carbonate succession shows spatial and temporal variations. In the Estonian Shelf P content is the highest in the Middle Ordovician, close to the Tremadocian P-rich siliciclastic sediments, decreasing towards younger carbonate rocks. In the basinal, i.e. deep shelf, sections two intervals of elevated P contents occur: the first is similar to the shallow shelf in the lowermost Darriwilian, the second is a moderate P increase in the upper Darriwilian–Sandbian interval. The Darriwilian–Sandbian interval of elevated P content in the deep shelf sections roughly corresponds to algal kukersite accumulations in the shallow shelf. Multiple processes determined phosphorus distribution in the studied sediments. Regional processes influencing P distribution include seawater circulation, e.g. P influx by coastal upwellings, and sedimentation rate. Global oceanic variation in bioproduction (δ13C trends) had no positive effect on P accumulation in the Baltoscandian epeiric sea.
References

Ainsaar, L., Kaljo, D., Martma, T., Meidla, T., Männik, P., Nõlvak, J. & Tinn, O. 2010. Middle and Upper Ordovician carbon isotope chemostratigraphy in Balto­scandia: a correlation standard and clues to environ­mental history. Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 189–201.
doi:10.1016/j.palaeo.2010.01.003

Andersson, A. 1971. Petrographic and chemical study of the Lower Ordovician uranium-bearing sedimentary unit at Tåsjö Lake. GFF, 93, 117–135.

Arsen¢ev, A. A. & Gorbunova, L. I. (eds). 1979. Fosfatonosnye otlozheniya ordovika pribaltiki [Phosphatic Sediments of the Peri-Baltic Ordovician]. Nedra, Moskva, 131 pp. [in Russian].

Bauert, H. 1993. The Baltic Oil Shale basin: an overview. In Proceedings, Eastern Oil Shale Symposium, Nov. 16–19, Kentucky, pp. 411–421. Institute of Mining and Mineral Research, University of Kentucky.

Bauert, H. & Kattai, V. 1997. Kukersite oil shale. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedu­mäe, A., eds), pp. 313–327. Estonian Academy Publishers, Tallinn.

Berry, W. B. N., Wilde, P. & Quinby-Hunt, M. S. 1989. Paleo­zoic (Cambrian through Devonian) anoxitropic biotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 74, 3–13.
doi:10.1016/0031-0182(89)90016-3

Brenchley, P. J., Marshall, J. D., Carden, G. A. F., Robertson, D. B. R., Long, D. G. F., Meidla, T., Hints, L. & Anderson, T. F. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology, 22, 295–298.
doi:10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2

Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane’s identity. Earth-Science Reviews, 72, 39–66.
doi:10.1016/j.earscirev.2005.04.001

Derenne, S., Largeau, C., Casadevall, E., Sinninghe Damsté, J. S., Tegelaar, E. W. & De Leeuw, J. W. 1990. Characteri­zation of Estonian kukersite by spectroscopy and pyrolysis: evidence for abundant alkyl phenolic moieties in an Ordo­vician, marine, type II/I kerogen. Organic Geo­chemistry, 16, 873–888.
doi:10.1016/0146-6380(90)90124-I

Föllmi, K. B., Weissert, H. & Lini, A. 1993. Nonlinearities in phosphogenesis and phosphorus–carbon coupling and their implications for global change. In NATO ASI Series Vol. 14 Series 1: Global Environmental Change, Vol. 4; Interactions of C, N, P and S Biogeochemical Cycles and Global Change (Wollast, P., Mckenzie, F. T. & Chou, L., eds), pp. 447–474. Springer–Verlag, Berlin.

Haq, B. U. & Schutter, S. R. 2008. A chronology of Paleozoic sea-level changes. Science, 322, 64–68.
doi:10.1126/science.1161648

Hints, O., Delabroye, A., Nõlvak, J., Servais, T., Uutela, A. & Wallin, Å. 2010. Biodiversity patterns of Ordovician marine microphytoplankton from Baltica: comparison with other fossil groups and sea-level changes. Palaeo­geography, Palaeoclimatology, Palaeoecology, 294, 161–173.
doi:10.1016/j.palaeo.2009.11.003

Kaljo, D., Martma, T. & Saadre, T. 2007. Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 138–155.
doi:10.1016/j.palaeo.2006.02.020

Kiipli, E., Kiipli, T. & Kallaste, T. 2004. Bioproductivity rise in the East Baltic epicontinental sea in the Aeronian (Early Silurian). Palaeogeography, Palaeoclimatology, Palaeoecology, 205, 255–272.
doi:10.1016/j.palaeo.2003.12.011

Kiipli, E., Kallaste, T. & Kiipli, T. 2008. Hydrodynamic control of sedimentation in the Ordovician (Arenig–Caradoc) Baltic Basin. Lethaia, 41, 127–137.
doi:10.1111/j.1502-3931.2008.00112.x

Kiipli, E., Kiipli, T. & Kallaste, T. 2009. Reconstruction of currents in the Mid-Ordovician–Early Silurian central Baltic Basin using geochemical and mineralogical indicators. Geology, 37, 271–274.
doi:10.1130/G25075A.1

Kiipli, T. 2005. Maavarade keemilise kvaliteedi andmekogu [Data repository of the chemical quality of mineral resources]. In Eesti Geoloogiakeskuse aastaraamat 2004 [Annual of the Geological Survey of Estonia 2004] (Kukk, M., ed.), pp. 34–35. Tallinn [in Estonian].

Kiipli, T., Kivisilla, J., Vingisaar, P. & Taalmann, V. 1984. Evolution of the chemical composition of Estonian Ordovician and Silurian limestones. Proceedings of the Estonian Academy of Sciences, Geology, 33, 120–127 [in Russian, with English summary].

Kolata, D. R., Huff, W. D. & Bergström, S. M. 2001. The Ordovician Sebree Trough: an oceanic passage to the Midcontinent United States. Geological Society of America Bulletin, 113, 1067–1078.
doi:10.1130/0016-7606(2001)113<1067:TOSTAO>2.0.CO;2

Kõrts, A. 1992. Ordovician oil shale of Estonia – origin and palaeoecological characteristics. In Global Perspectives on Ordovician Geology. Proceedings of the Sixth Inter­national Symposium on the Ordovician System, University of Sydney, Australia, 15–19 July 1991 (Webby, B. D. & Laurie, J. R., eds), pp. 445–454. A. A. Balkema, Rotterdam, Brookfield.

Männil, R. 1966. Istoriya razvitiya Baltiiskogo Basseina v ordovike [Evolution of the Baltic Basin During the Ordovician]. Valgus, Tallinn, 201 pp. [in Russian, with English summary].

Männil, R., Bauert, H. & Puura, V. 1986. Peculiarities of kukersite accumulation. In Geology of the Kukersite-Bearing Beds of the Baltic Oil Shale Basin (Puura, V., ed.), pp. 48–54. Valgus, Tallinn [in Russian, with English summary].

Mastalerz, M., Schimmelmann, A., Hower, J. C., Lis, G., Hatch, J. & Jacobson, S. R. 2003. Chemical and isotopic properties of kukersites from Iowa and Estonia. Organic Geochemistry, 34, 1419–1427.
doi:10.1016/S0146-6380(03)00138-4

Nestor, H. & Einasto, R. 1997. Ordovician and Silurian carbonate sedimentation basin. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 192–204. Estonian Academy Publishers, Tallinn.

Nordlund, U. 1989. Genesis of phosphatic hardgrounds in the Lower Ordovician of northern Öland, Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 111, 161–170.

Pets, L. I., Vaganov, P. A., Kütt, I., Haldna, Ü. L., Shvenke, G., Shnir, K. & Juga, R. J. 1985. Microelements in oil-shale ash of the Baltic Thermoelectric Power Plant. Oil Shale, 2, 379–390 [in Russian, with English summary].

Podhalańska, T. 2002. Microbial paleontology and cathod­luminescence – a tool for the investigation of the Ordovician phosphate-bearing sequence of the Baltic Basin. In The Fifth Baltic Stratigraphical Conference, Extended Abstracts (Satkunas, J. & Lazauskiene, J., eds), pp. 157–159. Vilnius.

Põldvere, A. 2003. Appendix 1. Description of the Ruhnu (500) core. Estonian Geological Sections, 5, 47–76.

Põldvere, A. 2005. Appendix 1. Description of the Mehikoorma (421) core. Estonian Geological Sections, 6, 46–67.

Põlma, L. 1982. Sravnitel¢naya litologiya karbonatnykh porod ordovika severnoj i srednej Pribaltiki [Comparative Lithology of the Ordovician Carbonate Rocks in the Northern and Middle East Baltic]. Valgus, Tallinn, 164 pp. [in Russian].

Puura, I. 1996. Lingulate Brachiopods and Biostratigraphy of the Cambrian–Ordovician Boundary Beds in Balto­scandia. PhD Thesis, Uppsala University, 19 pp.

Raudsep, R. 1997. Phosphorite. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 331–336. Estonian Academy Publishers, Tallinn.

Ruttenberg, K. C. 2007. The global phosphorus cycle. In Treatise on Geochemistry, Vol. 8. Biogeochemistry (Holland, H. D. & Turekian, K. K., eds), pp. 585–643. Elsevier, Amsterdam.

Saadre, T. 1993. Middle and Upper Ordovician discontinuity surfaces in northern Estonia (zonality based on their impregnation type). Bulletin of the Geological Survey of Estonia, 3, 33–39.

Saadre, T. 1995. Ooidide levikust Eesti keskordoviitsiumis [Distribution of ooids in the Middle Ordovician of Estonia]. In Liivimaa geoloogia [Geology of Livonia] (Meidla, T., Jõeleht, A., Kalm, V. & Kirs, J., eds), pp. 33–38. Tartu Ülikooli Kirjastus [in Estonian, with English summary].

Saltzman, M. R. 2005. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology, 33, 573–576.
doi:10.1130/G21535.1

Shogenova, A. 2003. Appendix 30. XRF and chemical analyses data of the Ruhnu (500) core. Estonian Geological Sections, 5 [on CD-ROM].

Shogenova, A. 2005. Appendix 14. Chemical analyses and XRF data of the Mehikoorma (421) core. Estonian Geological Sections, 6 [on CD-ROM].

Trela, W. 2005. Condensation and phosphatization of the Middle and Upper Ordovician limestones on the Malopolska Block (Poland): response to paleoceano­graphic conditions. Sedimentary Geology, 178, 219–236.
doi:10.1016/j.sedgeo.2005.05.005

Van Cappellen, P. & Ingall, E. D. 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 9, 677–692.
doi:10.1029/94PA01455

Viira, V., Löfgren, A. & Mens, K. 2004. Sedimentation, erosion and redeposition of sediment and conodont elements in the upper Tremadoc boundary beds of Cape Pakri, NW Estonia. In 8th Meeting of the WOGOGOB, Conference Materials (Hints, O. & Ainsaar, L., eds), p. 100. Tartu.

Webby, B. D., Cooper, R. A., Bergström, S. M. & Paris, F. 2004. Stratigraphic framework and time slices. In The Great Ordovician Biodiversification Event (Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G., eds), pp. 41–47. Columbia University Press, New York.

Wilde, P., Quinby-Hunt, M. S., Berry, W. B. N. & Orth, C. J. 1989. Palaeo-oceanography and biogeography in the Tremadoc (Ordovician) Iapetus Ocean and the origin of the chemostratigraphy of Dictyonema flabelliforme black shales. Geological Magazine, 126, 19–27.
doi:10.1017/S0016756800006117
Back to Issue