ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Tube ultrastructure of Pomatoceros americanus (Polychaeta, Serpulidae): implications for the tube formation of serpulids; pp. 148–152

Full article in PDF format | doi:10.3176/earth.2009.2.05

Authors
Harry A. ten Hove, Kalle Kirsimäe, Olev Vinn

Abstract
The inner tube layer of Pomatoceros americanus has a complex oriented ultrastructure, which cannot be explained by the standard granular secretion model, predicting a largely unoriented structure of the tube. In the lamello-fibrillar structure of the inner tube layer, the crystallization axis of crystals has a uniform orientation, which is not continuous through successive growth increments. The complex biomineral structures of Pamericanus suggest a matrix-controlled crystallization model rather than solidification of a slurry with calcareous granules deposited on the tube aperture.
References

Bubel, A. 1983. A fine structural study of the calcareous opercular plate and associated cells of a polychaete annelid. Tissue Cell, 15, 457–476.
doi:10.1016/0040-8166(83)90076-9

Carter, J. G., Bandel, K., de Buffrènil, V., Carlson, S. J., Castanet, J., Crenshaw, M. A., Dalingwater, J. E., Francillion-Vieillot, H., Géradie, J., Meunier, F. J., Mutvei, H., de Riqlès, A., Sire, J. Y., Smith, A. B., Wendt, J., Williams, A. & Zylberberg, L. 1990. Glossary of skeletal biomineralization. In Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Vol. I (Carter, J. G., ed.), pp. 609–671. Van Nostrand Reinhold, New York.

Day, J. H. 1973. New Polychaeta from Beaufort, with a key to all species recorded from North Carolina. National Oceanic and Atmospheric Administration Technical Report, National Marine Fisheries Service, Circular, 375, 1–140.

Fauvel, P. 1923. Un nouveau serpulien d’eau saumâtre Mercierella n. g. enigmatica n. sp. Bulletin de la Société zoologique de France, 47 (1922), 424–430.

Fischer, R., Pernet, B. & Reitner, J. 2000. Organominerali­zation of cirratulid annelid tubes – fossil and recent examples. Facies, 42, 35–50.
doi:10.1007/BF02562565

Hedley, R. H. 1956a. Studies on serpulid tube formation. I. The secretion of the calcareous and organic components of the tube by Pomatoceros triqueter. Quarterly Journal of Microscopic Science, 97, 411–427.

Hedley, R. H. 1956b. Studies on serpulid tube formation. II. The calcium-secreting glands in the peristomium of Spirorbis, Hydroides and Serpula. Quarterly Journal of Microscopic Science, 97, 421–427.

Hedley, R. H. 1958. Tube formation by Pomatoceros triqueter (Polychaeta). Journal of the Marine Biological Association of the United Kingdom, 37, 315–322.
doi:10.1017/S0025315400023717

Linnaeus, C. 1758. Systema Naturae, 10 ed. Vol. 1. L. Salvius, Holmiae 1758, 823 pp.

Neff, J. M. 1971a. Ultrastructural studies of the secretion of calcium carbonate by the serpulid polychaete worm, Pomatoceros caeruleus. Zeitschrift für Zellforschung, 120, 160–186.
doi:10.1007/BF00335534

Neff, J. M. 1971b. Ultrastructure of calcium phosphate-containing cells in the serpulid Pomatoceros caeruleus. Calcified Tissue Research, 7, 191–200.
doi:10.1007/BF02062606

Nott, J. A. & Parkes, K. R. 1975. Calcium accumulation and secretion in the serpulid polychaete Spirorbis spirorbis L. at settlement. Journal of the Marine Biological Association of the United Kingdom, 55, 911–923.
doi:10.1017/S0025315400017793

Pallas, P. S. 1766. Miscellanea Zoologica. Hagae Comitum, vii + 224 pp., 16 pls.

Schmarda, L. K. 1861. Neue wirbellose Thiere beobachtet und gesammelt auf einer Reise um die Erde 1853 bis 1857, I: Turbellarien, Rotatorien und Anneliden (2). Verlag von Wilhelm Engelmann, Leipzig, 164 pp.

Simkiss, K. & Wilbur, K. M. 1989. Biomineralization: Cell Biology and Mineral Deposition. Academic Press, New York, 337 pp.

Swan, E. F. 1950. The calcareous tube secreting glands of the serpulid polychaetes. Journal of Morphology, 86, 285–314.
doi:10.1002/jmor.1050860204

Vinn, O., Mutvei, H., ten Hove, H. A. & Kirsimäe, K. 2008a. Unique Mg-calcite skeletal ultrastructure in the tube of the serpulid polychaete Ditrupa. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 248, 79–89.
doi:10.1127/0077-7749/2008/0248-0079

Vinn, O., ten Hove, H. A., Mutvei, H. & Kirsimäe, K. 2008b. Ultrastructure and mineral composition of serpulid tubes (Polychaeta, Annelida). Zoological Journal of the Linnean Society, 154, 633–650.
doi:10.1111/j.1096-3642.2008.00421.x

Vinn, O., ten Hove, H. A. & Mutvei, H. 2008c. On the tube ultrastructure and origin of calcification in sabellids (Annelida, Polychaeta). Palaeontology, 51, 295–301.
doi:10.1111/j.1475-4983.2008.00763.x

Vovelle, J. 1956. Processus glandulaires impliqués dans la reconstitution du tube chez Pomatoceros triqueter (L.) Annelida Polychète (Serpulidae). Bulletin du Laboratoire maritime de Dinard, 42, 10–32.

Vovelle, J., Grasset, M. & Truchet, M. 1991. Sites of bio­mineralization in the Polychaete Pomatoceros triqueter (Serpulidae) with comments on some other species. Ophelia, Supplement, 5, 661–667.

Weedon, M. J. 1994. Tube microstructure of Recent and Jurassic serpulid polychaetes and the question of the Palaeozoic ‘spirorbids’. Acta Palaeontologica Polonica, 39, 1–15.


Back to Issue