ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Geophysical mapping of residual pollution at the remediated Inčukalns acid tar lagoon, Latvia; pp. 140–151

Full article in PDF format | 10.3176/earth.2021.10

Authors
Janis Karušs, Kristaps Lamsters, Dmitrijs Poršņovs, Viesturs Zandersons, Jurijs Ješkins

Abstract

Acid tar lagoons (ATLs) are a common environmental problem which is widespread in industrialized countries worldwide. Such lagoons have become significant and massive sources of environmental pollution affecting the soil, atmosphere and surface and ground waters. In this study, we characterize the distribution of the residual soil and groundwater pollution plume in the vicinity of the southern Inčukalns ATL (Latvia), using coupled ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) data. The obtained geophysical data provide information about the geological structure and the distribution of the acid tar contamination plume. We determined the location of the low-resistivity zone and related it to the distribution of the contamination. Our study demonstrates that the applied combination of GPR and ERT is an effective tool for analysing the geospatial distribution of ground and groundwater pollution plumes caused by ATLs in areas with complex geological cross-sections.


References

Aleksans, O., Levin, I., Anikejeva, R., Semjonov, I. & Gosk, E. 1993. Incukalns Waste Pools, Problem or Asset? Service Report. Copenhagen, DGU Geological Survey of Denmark, 32 pp.

Aleksans, O., Levin, I. & Gosk, E. 1994. Incukalns Investigation, Completion Report. Service Report Nr. 24. Copenhagen, DGU Geological Survey of Denmark, 55 pp.

Aydi, A., Mhimdi, A., Hamdi, I., Touaylia, S. & Sdiri, A. 2020. Application of electrical resistivity tomography and hydro-chemical analysis for an integrated environmental assessment. Environmental Nanotechnology, Monitoring & Management, 14, 100351.
https://doi.org/10.1016/j.enmm.2020.100351

Berzina, A. & Samushenkov, M. 1977. Otchet o geologo-gidrogeologicheskikh issledovaniyakh po vyyavleniyu vliyaniya svalki kislogo gudrona na podzemnye vody u naselennogo punkta Inchukalns [Report of Geological-Hydrogeological Research of the Environmental Impact of Acid Tar Damp near the Inchukalns Village]. Riga, Ministry of Geology of USSR, 86 pp. [in Russian].

Chambers, J., Ogilvy, R., Meldrum, P. & Nissen, J. 1999. 3D resistivity imaging of buried oil- and tar-contaminated waste deposits. European Journal of Environmental and Engineering Geophysics, 4, 3–15.

Družina, B. & Perc, A. 2010. Remediation of acid tar lagoon. In Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, Vol. 15, Article 17, pp. 195–209.

Friedmann, S. P. 2005. Soil properties influencing apparent electrical conductivity: a review. Computers and Electronics in Agriculture, 46, 45–70.
https://doi.org/10.1016/j.compag.2004.11.001

Gabarrón, M., Martínez-Pagán, P., Martínez-Segura, M. A., Bueso, M. C., Martínez-Martínez, S., Faz, Á. & Acosta, J. A. 2020. Electrical resistivity tomography as a support tool for physicochemical properties assessment of near-surface waste materials in a mining tailing pond (El Gorguel, SE Spain). Minerals, 10, 559–575.
https://doi.org/10.3390/min10060559

GeoTomo software. 2017. User Manual: Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method. 147 pp.

Grajczak, P. & McManus, R. W. 1995. Remediation of acid tar sludge at a superfund site. Superfund Proceedings, 1, 243–244.

Gruss, O. 2005. Saureharzaltlasten, Innovative Technologien zur Sanierung und energetischen Verwertung [Acid residues, innovative technologies for clean-up and energy recovery]. Terratech, 34, 15–18.

Hao, X. 2007. Acid Tar Lagoons: Assessment and Environmental Interaction. PhD Thesis, University of Sheffield, 222 pp. 
https://etheses.whiterose.ac.uk/12858/1/490318.pdf

Jiang, Y., Li, Y., Yang, G., Zhou, X., Wu, J. & Shi, X. 2013. The application of high-density resistivity method in organic pollution survey of groundwater and soil. Procedia Earth and Planetary Science, 7, 932–935.
https://doi.org/10.1016/j.proeps.2013.03.011

Karuša, S. & Demidko, J. 2018. Pārskats riska pazemes ūdens objekta A11 “Inčukalna sērskābā gudrona dīķi” robežu noteikšanas metodika un stāvokļa raksturojums [Overview of the Boundary Setting Methodology and Characterization of Environmental Impact in the Groundwater Risk Object № A11: Inčukalns’s Acid Tar Lagoons]. Latvian Environment, Geology and Meteorology Centre, Riga, 62 pp. [in Latvian].

Karušs, J. & Bērziņš, D. 2015. Ground-penetrating radar study of the Cenas tīrelis bog, Latvia: Linkage of reflections with peat moisture content. Bulletin of the Geological Society of Finland, 87, 87–98.
https://doi.org/10.17741/bgsf/87.2.004

Kolmakov, G. A., Zanozina, V. F., Karataev, E. N., Grishin, D. F. & Zorin, A. D. 2006. Thermal cracking of acid tars to asphalts as a process for utilisation of refinery wastes. Petroleum Chemistry, 46, 384–388.
https://doi.org/10.1134/S0965544106060028

Kruglik, S. I. 1990. Otchet o rezul´tatakh kompleksnykh issledovanij po izucheniyu masshtabov zagryazneniya gruntovykh vod v rajone raspolozheniya svalok sernokislogo gudrona v rajone nas. p. Inchukalns [Report of the Complex Research of Groundwater Pollution near the Acid Tar Lagoons in the Vicinity of Inchukalns Village]. Company Vodgeo, 80 pp. [in Russian].

Lamsters, K., Karušs, J., Stūrmane, A., Ješkins, J. & Džeriņš, P. 2020. Mapping of large-scale diapir structures at the paleo-ice tongue bed in western Latvia from geophysical investigations and borehole data. Quaternary International, DOI: 10.1016/j.quaint.2020.12.003.
https://doi.org/10.1016/j.quaint.2020.12.003

Leonard, S. A., Stegemann, J. A. & Roy, A. 2010. Characterisation of acid tars. Journal of Hazardous Materials, 175(1–3), 382–392. 
https://doi.org/10.1016/j.jhazmat.2009.10.015

Liu, S., Chen, L. & Han, L. 2008. Study on electrical resistivity related parameters of contaminated soils. In Geotechnical Engineering for Disaster Mitigation and Rehabilitation (Liu, H. & Chu, J., eds), pp. 695–701. Beijing. 
https://doi.org/10.1007/978-3-540-79846-0_88

Loke, M. H. 2004. Tutorial: 2-D and 3-D Electrical Imaging Surveys. Geotomo Software, Res2dinv 3.5 Software, 136 pp.

Loke, M. H. & Barker, R. D. 1996. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting,44, 131–152.
https://doi.org/10.1111/j.1365-2478.1996.tb00142.x

Milne, D. D., Clark, A. I. & Perry, R. 1986. Acid tars: their production, treatment and disposal in the UK. Waste Management & Research, 4, 407–418.
https://doi.org/10.1177/0734242X8600400159

Nancarrow, D. J., Slade, N. J. & Steeds, J. E. 2001. Land Contamination: Technical Guidance on Special Sites: Acid Tar Lagoons. R & D Technical Report P5-042/TR/04. Environment Agency, 62 pp.

Naudet, V., Gourry, J. C., Mathieu, F., Girard, J. F., Blondel, A. & Saada, A. 2011. 3D electrical resistivity tomography to locate DNAPL contamination in an urban environment. In Conference Proceedings, Near Surface 2011-17th EAGE European Meeting of Environmental and Engineering Geophysics. European Association of Geoscientists & Engineers, cp-253-00021.
https://doi.org/10.3997/2214-4609.20144385

Naudet, V., Gourry, J. C., Girard, F., Mathieu, F. & Saada, A. 2014. 3D electrical resistivity tomography to locate DNAPL contamination around a housing estate. Near Surface Geophysics, 12, 351–360.
https://doi.org/10.3997/1873-0604.2012059

Neal, A. 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Science Reviews, 66, 261–330. 
https://doi.org/10.1016/j.earscirev.2004.01.004

Ņelajevs, A. 2019. Vides monitorings objektā “Vēsturiski piesārņota vieta “Inčukalna sērskābā gudrona dīķi””. 2019. gada I pusgads (Monitoringa darbu programmas III cikls). Atskaites ziņojums [Environmental Monitoring at the Object “Historically Polluted Place “Inčukalns Acid Tar Lagoon””. First Half of 2019 (Monitoring Work Program cycle III) Report]. Azurits Ltd, 154 pp. [in Latvian].

Pensaert, S. 2005. The remediation of the acid tar lagoons, Rieme, Belgium. In Stabilisation/Solidification Treatment and Remediation: Proceedings of the International Conference on Stabilisation/Solidification Treatment and Remediation, 12–13 April 2005, Cambridge, UK, pp. 255–259. CRC Press.
https://doi.org/10.1201/9781439833933.ch32

Power, C., Gerhard, J. I., Tsourlos, P., Soupios, P., Simyrdanis, K. & Karaoulis, M. 2015. Improved time-lapse electrical resistivity tomography monitoring of dense non-aqueous phase liquids with surface-to-horizontal borehole arrays. Journal of Applied Geophysics, 112, 1–13.
https://doi.org/10.1016/j.jappgeo.2014.10.022

Reynolds, J. M. 1997. An Introduction to Applied and Environ­mental Geophysics. Wiley, New York, 806 pp.

Reynolds, J. M. 2002. The role of environmental geophysics in the investigation of an acid tar lagoon, Llwyneinion, North Wales, UK. First Break, 20, 630–636.

Smith, C., Hao, X., Talbot, S. & Lawson, N. 2008. Acid Tar Lagoons. 
https://www.claire.co.uk/component/phocadownload/file/34-Other-CLAIRE-Documents?Itemid=230 [accessed 20 February 2021].

State Environmental Agency. 2020. Valsts vides dienests iepazīstina Inčukalna novada iedzīvotājus ar aktualitātēm sērskābā gudrona dīķu sanācijā [State Environmental Agency Communicates Current Events Related to the Clean-Up of Inchukalns’s Acid Tar Lagoons with Local Inhabitants]. 
http://www.vvd.gov.lv/jaunumi/2020/07/valsts-vides-dienests-iepazistina-incukalna-novada-iedzivotajus-ar-akt?id=1196 [in Latvian; accessed 20 February 2021].


Back to Issue