eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Fire frequency during the Holocene in central Latvia, northeastern Europe; pp. 127–139

Full article in PDF format | 10.3176/earth.2021.09

Dace Steinberga, Normunds Stivrins


Fire is today a pan-European issue and is expected to be more salient because of climate and land use changes. Even though natural and anthropogenic fires have shaped forest composition and landscape characteristics since the last glacial retreat from northeastern Europe, fire frequency is an understudied topic. To address this issue, we analysed macroscopic charcoal (>160 μm) from two sediment sequences located in the central and littoral parts of Lake Bricu (central Latvia) revealing the fire frequency during the Holocene. The chronology of the analysed sediment sequences is based on spheroidal fly-ash carbonaceous particles and accelerator mass spectrometry radiocarbon dating. Macroscopic charcoal results were examined in detail using the CharAnalysis approach. The mean fire return interval for the entire Holocene was 372 years (261–494 years). Fire reconstructions revealed higher fire frequency during the early and late Holocene (cool climate), but lower frequency during the middle Holocene (warm climate). Although our study underlines that natural fire frequency might decrease during warmer climate, the anthropogenic fire use already has surpassed the baseline of natural fire frequency.


Aakala, T., Pasanen, L., Helama, S., Vakkari, V., Drobyshev, I., Seppä, H., Kuuluvainen, T., Stivrins, N., Wallenius H., Vasander, H. & Holmström, L. 2018. Multiscale variation in drought controlled historical forest fire activity in the boreal forests of eastern Fennoscandia. Ecological Monographs, 88, 74–91.

Adolf, C., Wunderle, S., Colombaroli, D., Weber, H., Gobet, E., Heiri, O., van Leeuwen, J. F. N., Bigler, C., Connor, S. E., Gałka, M., La Mantia, T., Makhortykh, S., Svitavská-Svobodová, H., Vannière, B. & Tinner, W. 2018. The sedimentary and remote-sensing reflection of biomass burning in Europe. Global Ecology and Biogeography, 27, 199–212.

Apals, J. 2012. Jānis Apals: Āraišu ezerpils. Rakstu izlase un draugu atmiņas [Jānis Apals: Araisi Lake Dwelling Site. Selection of Articles and Friend Memories]. Latvijas vēstures institūta apgāds, Rīga, 639 pp. [in Latvian].

Ascoli, D., Vacchiano, G., Maringer, J., Bovio, G. & Conedera, M. 2015. The synchronicity of masting and intermediate severity fire effects favors beech recruitment. Forest Ecology and Management, 353, 126–135.

Blaauw, M. 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology, 5, 512–518.

Clear, J. L., Molinari, C. & Bradshaw, R. H. W. 2014. Holocene fire in Fennoscandia and Denmark. International Journal of Wildland Fire, 23, 781–789.

Coles, B. & Coles, J. 1989. People of the Wetlands. Thames and Hudson, London, 215 pp.

Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F. & Krebs, P. 2009. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews, 28, 435–456.

Courtney-Mustaphi, C. J. & Pisaric, M. F. J. 2014. A classifi­cation for macroscopic charcoal morphologies found in Holocene lacustrine sediments. Progress in Physical Geography, 38, 734–754.

Courtney-Mustaphi, C. J., Davis, E. L., Perreault, J. T. & Pisaric, M. F. J. 2015. Spatial variability of recent macroscopic charcoal deposition in a small montane lake and implications for reconstruction of watershed-scale fire regimes. Journal of Paleolimnology, 54, 71–86.

Davis, M. B. & Ford, M. S. J. 1982. Sediment focusing in Mirror Lake, New Hampshire. Limnology and Oceanography, 27, 137–150.

Deane, P. J., Wilkinson, S. L., Moore, P. A. & Waddington, J. M. 2020. Seismic lines in treed boreal peatlands as analogs for wildfire fuel modification treatments. Fire, 3, 21.

Dietze, E., Theuerkauf, M., Bloom, K., Brauer, A., Dörfler, W., Feeser, I., Feurdean, A., Gedminienė, L., Giesecke, T., Jahns, S., Karpińska-Kołaczek, M., Kołaczek, P., Lamentowicz, M., Latałowa, M., Marcisz, K., Obremska, M., Pędziszewska, A., Poska, A., Rehfeld, K., Stančikaitė, M., Stivrins, N., Święta-Musznicka, J., Szal, M., Vassiljev, J., Veski, S., Wacnik, A., Weisbrodt, D., Wiethold, J., Vannière, B. & Słowiński, M. 2018. Holocene fire activity during low-natural flammability periods reveals scale-dependent cultural human-fire relationships in Europe. Quaternary Science Reviews, 201, 44–56.

Donis, J., Kitenberga, M., Šņepsts, G., Matisons, R., Zariņš, J., Jansons, Ā. 2017. The forest fire regime in Latvia during 1922–2014. Silva Fennica, 51, 7746.

Drobyshev, I., Bergeron, Y., de Vernal, A., Moberg, A., Ali, A. A. & Niklasson, M. 2016. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia. Scientific Reports, 6, 1–13.

Feurdean, A., Veski, S., Florescu, G., Vannière, B., Pfeiffer, M., O’Hara, R. B., Stivrins, N., Amon, L., Heinsalu, A., Vassiljev, J. & Hickler, T. 2017. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe). Quaternary Science Reviews, 169, 378–390.

Gavin, D. G., Hu, F. S., Lertzman, K. & Corbett, P. 2006. Weak climatic control of stand-scale fire history during the late Holocene. Ecology, 87, 1722–1732.[1722:WCCOSF]2.0.CO;2

Graudonis, J. 2001. Agro metālu periods [Early Metal Period]. In Latvijas senākā vēsture 9. g.t. pr. Kr. – 1200. g. [Latvian Oldest History 9 ka BC–1200 AD] (Mugurēvičs, Ē. & Vasks, A., eds), pp. 116–185. Latvijas vēstures institūta apgāds, Rīga [in Latvian].

Hedges, J. I., Eglinton, G., Hatcher, P. G., Kirchman, D. L., Arnosti, C., Derenne, S., Evershed, R. P., Kögel-Knabner, I., de Leeuw, J. W., Littke, R. & Rullkötter, J. 2000. The molecularly-uncharacterized component of non-living organic matter in natural environments. Organic Geo­chemistry, 31, 945–958.

Heinsalu, A. & Alliksaar, T. 2009. Palaeolimnological assessment of environmental change over the last two centuries in oligotrophic Lake Nohipalu Valgjärv, southern Estonia. Estonian Journal of Earth Sciences, 58, 124–132.

Higuera, P. E. 2009. CharAnalysis 0.9: Diagnostic and Analytical Tools for Sediment-Charcoal Analysis (User’s Guide). Urbana, Montana State University, University of Illinois at Urbana-Champaign, 27 pp.

Kalnina, L., Stivrins, N., Kuske, E., Ozola, I., Pujate, A., Zeimule, S., Grudzinska, I. & Ratniece, V. 2015. Peat stratigraphy and changes in peat formation during the Holocene in Latvia. Quaternary International, 383, 186–195.

Kangur, M., Koff, T., Punning, J.-M., Vainu, M. & Vandel, E. 2009. Lithology and biostratigraphy of the Holocene succession of Lake Ķūži, Vidzeme Heights (Central Latvia). Geological Quarterly, 53, 199–208.

Kasischke, E. S., Christensen, N. L. & Stocks, B. J. 1995. Fire, global warming, and the carbon balance of boreal forests. Ecological Applications, 5, 437–451.

Kelly, R. F., Higuera, P. E., Barrett, C. M. & Hu, F. S. 2011. A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records. Quaternary Research, 75, 11–17.

Khabarov, N., Kraskovskii, A. & Obersteiner, M. 2016. Forest fires and adaptation options in Europe. Regional Environmental Change, 16, 21–30.

Kitenberga, M., Drobyshev, I., Elferts, D., Matisons, R., Adamovics, A., Katrevics, J., Niklasson, M. & Jansons, A. 2019. A mixture of human and climatic effects shapes the 250-year long fire history of a semi-natural pine dominated landscape of Northern Latvia. Forest Ecology and Management, 441, 192–201.

Kuosmanen, N., Seppä, H., Alenius, T., Bradshaw, R. H. W., Clear, J. L., Filimonova, L., Heikkilä, M., Renssen, H., Tallavaara, M. & Reitalu, T. 2016. Importance of climate, forest fires and human population size in the Holocene boreal forest composition change in northern Europe. Boreas, 45, 688–702.

Kuuluvainen, T., Hofgaard, A., Aakala, T. & Jonsson, B. G. 2017. North Fennoscandian mountain forests: History, composition, disturbance dynamics and the unpredictable future. Forest Ecology and Management, 385, 140–149.

Magne, G., Brossier, B., Gandouin, E., Paradis, L., Drobyshev, I., Kryshen, A., Hély, C., Alleaume, S. & Ali, A. A. 2020. Lacustrine charcoal peaks provide an accurate record of surface wildfires in a North European boreal forest. The Holocene, 30, 380–388.

Maringer, J., Conedera, M., Ascoli, D., Schmatz, D. R. & Wohlgemuth, T. 2016. Resilience of European beech forests (Fagus sylvatica L.) after fire in a global change context. International Journal of Wildland Fire, 25, 699–710.

Marozas, V., Racinskas, J. & Bartkevicius, E. 2007. Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. Forest Ecology and Management, 250, 47–55.

Masiello, C. A. 2004. New directions in black carbon organic geochemistry. Marine Chemistry, 92, 201–213.

Menotti, F. 2003. Cultural response to environmental change in the Alpine lacustrine regions. Oxford Journal of Archaeology, 22, 375–396.

Menotti, F. 2004. Living on the Lake in Prehistoric Europe. Routledge, London, 304 pp.

Menotti, F., Baubonis, Z., Brazaitis, D., Higham, T., Kvedaravicius, M., Lewis, H., Motuzaite, G. & Pranckenaite, E. 2005. The first lake-dwellers of Lithuania: Late Bronze. Oxford Journal of Archaeology, 24, 381–403.

Mitchell, D., James, R., Forster, P. M., Betts, R. A., Shiogama, H. & Allen, M. 2016. Realizing the impacts of a 1.5 °C warmer world. Nature Climate Change, 6, 735–737.

Molinari, C., Carcaillet, C., Bradshaw, R. H. W., Hannon, G. E. & Lehsten, V. 2020. Fire-vegetation interactions during the last 11,000 years in boreal and cold temperate forests of Fennoscandia. Quaternary Science Reviews, 241, 106408.

Peters, M. E. & Higuera, P. E. 2007. Quantifying the source area of macroscopic charcoal with a particle dispersal model. Quaternary Research, 67, 304–310.

R Core Team. 2018. R: A Language and Environment for Statistical Computing. R Foundation, Vienna. 

Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, E. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A. & Talamo, S. 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon, 62, 725–757.

Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. 2015. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geosciences, 8, 228–234.

Rogjel, J., Fricko, O., Meinshausen, M., Krey, V., Zilliacus, J. J. J. & Riahi, K. 2017. Understanding the origin of Paris Agreement emission uncertainties. Nature Communications, 8, 15748.

Rose, N. 1990. A method for the selective removal of inorganic ash particles from lake sediments. Journal of Paleo­limnology, 4, 61–68.

Schimmel, J. & Granström, A. 1997. Fuel succession and fire behavior in the Swedish boreal forest. Canadian Journal of Forest Research, 27, 1207–1216.

Seidl, R., Honkaniemi, J., Aakala, T., Aleinikov, A., Angelstam, P., Bouchard, M., Boulanger, Y., Burton, P. J., De Grandpré, L., Gauthier, S., Hansen, W. D., Jepsen, J. U., Jõgiste, K., Kneeshaw, D. D., Kuuluvainen, T., Lisitsyna, O., Makoto, K., Mori, A. S., Pureswaran, D. S., Shorohova, E., Shubnitsina, E., Taylor, A. R., Vladimirova, N., Vodde, F. & Senf, C. 2020. Globally consistent climate sensitivity of natural disturb­ances across boreal and temperate forest ecosystems. Ecography, 43, 967–978.

Stivrins, N., Kołaczek, P., Reitalu, T., Seppä, H. & Veski, S. 2015a. Phytoplankton response to the environmental and climatic variability in a temperate lake over the last 14,500 years in eastern Latvia. Journal of Paleolimnology, 54, 103–119.

Stivrins, N., Brown, A., Reitalu, T., Veski, S., Heinsalu, A., Banerjea, R. Y. & Elmi, K. 2015b. Landscape change in central Latvia since the Iron Age: multi-proxy analysis of the vegetation impact of conflict, colonization and economic expansion during the last 2,000 years. Vegetation History and Archaeobotany, 24, 377–391.

Stivrins, N., Brown, A., Veski, S., Ratniece, V., Heinsalu, A., Austin, J., Liiv, M. & Ceriņa, A. 2016a. Palaeo­environmental evidence for the impact of the crusades on the local and regional environment of medieval (13th–16th century) northern Latvia, eastern Baltic. The Holocene, 26, 61–69.

Stivrins, N., Wulf, S., Wastegård, S., Lind, E. M., Alliksaar, T., Gałka, M., Andersen, T. J., Heinsalu, A., Seppä, H. & Veski, S. 2016b. Detection of the Askja AD 1875 cryptotephra in Latvia, Eastern Europe. Journal of Quaternary Science, 31, 437–441.

Stivrins, N., Aakala, T., Ilvonen, L., Pasanen, L., Kuuluvainen, T., Vasander, H., Gałka, M., Disbrey, H. R., Liepins, J., Holmström, L. & Seppä, H. 2019a. Integrating fire-scar, charcoal and fungal spore data to study fire events in the boreal forest of northern Europe. The Holocene, 29, 1480–1490.

Stivrins, N., Cerina, A., Gałka, M., Heinsalu, A., Lõugas, L. & Veski, S. 2019b. Large herbivore population and vegetation dynamics 14,600–8300 years ago in central Latvia, north­eastern Europe. Review of Palaeobotany and Palynology, 266, 42–51.

Tinner, W., Hofstetter, S., Zeugin, F., Conedera, M., Wohlgemuth, T., Zimmermann, L. & Zweifel, R. 2006. Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps – implications for fire history reconstruction. The Holocene, 16, 287–292.

Toropina, G. 1990. Izrakumi Ezerbricu senkapos un Ģeistu viduslaiku kapsētā [Excavation in Ezerbricu emetery and Geistu medieval cemetery]. In Zinātniskās atskaites sesijas materiāli par arheologu un etnogrāfu 1988. un 1989. gada pētījumu rezultātiem [Scientific Report Material About the Archaeological and Ethnographical Research in 1988 and 1999] (Apala, Z., Jefimova, N., Mugurēvičs, Ē. & Ronis, I., eds), pp. 147–149. Zinātne, Rīga [in Latvian].

Trofimova, A. 2019. Ezeru nogulumu netiešā datēšana, izmantojot sfērisko daļiņu identificēšanas metodi [Indirect Lake Sediment Dating by Applying Spheroidal Carbonaceous Fly Ash Particles]. Bachelor thesis, University of Latvia, Rīga, 40 pp. [in Latvian].

Umbanhowar, E. C. & McGrath, M. J. J. 1998. Experimental production and analysis of microscopic charcoal from wood, leaves and grasses. The Holocene, 8, 341–346.

Vasks, A., Kalnina, L. & Ritums, R. 1999. The introduction and Pre-Christian history of farming in Latvia. PACT, 57, 291–304.

Veski, S., Amon, L., Heinsalu, T., Reitalu, T., Saarse, L., Stivrins, N. & Vassiljev, J. 2012. Lateglacial vegetation dynamics in the eastern Baltic region between 14,500 and 11,400 cal yr BP: A complete record since the Bølling (GI-1e) to the Holocene. Quaternary Science Reviews, 40, 39–53.

Whitlock, C. & Larsen, C. 2001. Charcoal as a fire proxy. In Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators (Smol, J. P., Birks, H. J. B. & Last, W. M., eds), pp. 75–98. Kluwer Academic Publishers, Dordrecht.

Back to Issue