ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
More about the Ordovician–Silurian transition beds at Mirny Creek, Omulev Mountains, NE Russia: carbon isotopes and conodonts; pp. 277–294
PDF | doi: 10.3176/earth.2012.4.07

Authors
Dimitri Kaljo, Peep Männik, Tõnu Martma, Jaak Nõlvak
Abstract

Profound environmental and biodiversity changes take place in the Ordovician–Silurian boundary interval. The Mirny Creek and Neznakomka River bank sections discussed in this paper expose the upper Katian–lower Rhuddanian part of the boundary beds. The succession consists of carbonate rocks, partly with bioherms, alternating with argillaceous and siltstone packages that are well dated by graptolites. Microfossils are rare, especially in the Hirnantian, but conodonts provide some useful markers just below and above the Hirnantian stage boundaries. The Hirnantian δ13C trend in the Mirny Creek section is the stratigraphically longest described so far and it has a highly specific shape. The trend commenced at the first appearance datum of Normalograptus extraordinarius or slightly below this level. The main peak occurs near the middle of the N. persculptus Biozone. Samples from the Neznakomka River suggest a somewhat wider peak interval than at Mirny Creek. Detailed comparison of the Mirny and Stirnas (Latvia) δ13C curves shows a general similarity despite great specific features of both trends. Correlation of the δ13C trends from China, Baltica and North America with that at Mirny Creek reveals a great variety of shapes of the carbon isotope curve. However, its rising limb commenced, if represented, everywhere close to the beginning of the N. extraordinarius Biozone or in terms of the Baltic succession, at the bottom of the Porkuni Regional Stage. Most likely a general shape of the HICE trend is pyramidal, which is peaking in the early N. persculptus Biochrone. Differences in the values and shape of an actual curve at different localities depend on local environmental conditions, sometimes modifying the global signal rather strongly.

References

Achab, A., Asselin, E., Desrochers, A., Riva, J. & Farley, C. 2011. Chitinozoan biostratigraphy of a new Upper Ordovician stratigraphic framework for Anticosti Island, Canada. Geological Society of America, Bulletin, 123, 186–205.
http://dx.doi.org/10.1130/B30131.1

Ainsaar, L., Kaljo, D., Martma, T., Meidla, T., Männik, P., Nõlvak, J. & Tinn, O. 2010. Middle and Upper Ordo­vician carbon isotope chemostratigraphy in Baltoscandia: a correlation standard and clues to environmental history. Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 189–201.
http://dx.doi.org/10.1016/j.palaeo.2010.01.003

Bergström, S. M., Saltzman, M. M. & Schmitz, B. 2006. First record of the Hirnantian (Upper Ordovician) δ13C excursion in the North American Midcontinent and its regional implications. Geological Magazine, 143, 657–678.
http://dx.doi.org/10.1017/S0016756806002469

Bergström, S. M., Lehnert, O., Calner, M. & Joachimski, M. M. 2012. A new upper Middle Ordovician–Lower Silurian drillcore standard succession from Borenshult in Östergötland, southern Sweden: 2. Significance of δ13C chemostratigraphy. GFF, 134, 39–63.
http://dx.doi.org/10.1080/11035897.2012.657231

Brenchley, P. J., Marshall, J. D., Hints, L. & Nõlvak, J. 1997. New isotopic data solving an old biostratigraphic problem: the age of the upper Ordovician brachiopod Holorhynchus giganteus. Journal of the Geological Society, London, 154, 335–342.
http://dx.doi.org/10.1144/gsjgs.154.2.0335

Brenchley, P. J., Carden, G. A., Hints, L., Kaljo, D., Marshall, J. D., Martma, T., Meidla, T. & Nõlvak, J. 2003. High resolution isotope stratigraphy of Late Ordovician sequences: constraints on the timing of bio-events and environmental changes associated with mass extinction and glaciation. Geological Society of America, Bulletin, 115, 89–104.
http://dx.doi.org/10.1130/0016-7606(2003)115<0089:HRSISO>2.0.CO;2

Chen, X., Rong, J. Y., Fan, J. X., Zhan, R. B., Mitchell, C. E., Harper, D. A. T., Melchin, M. J., Peng, P., Finney, S. C. & Wang, X. F. 2006. The global boundary stratotype section and point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System). Episodes, 29, 183–196.

Cocks, L. R. M. & Torsvik, T. 2004. Major terranes in the Ordovician. In The Great Ordovician Biodiversification Event (Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G., eds), pp. 61–67. Columbia University Press, New York.

Fan, J., Peng, P. & Melchin, M. J. 2009. Carbon isotopes and event stratigraphy near the Ordovician–Silurian boundary, Yichang, South China. Palaeogeography, Palaeo­climatology, Palaeoecology, 276, 160–169.
http://dx.doi.org/10.1016/j.palaeo.2009.03.007

Finney, S. C., Berry, W. B. N., Cooper, J. D., Ripperdan, R. L., Sweet, W. C., Jacobson, S. R., Soufiane, A., Achab, A. & Noble, P. 1999. Late Ordovician mass extinction: a new perspective from stratigraphic sections in central Nevada. Geology, 27, 215–218.
http://dx.doi.org/10.1130/0091-7613(1999)027<0215:LOMEAN>2.3.CO;2

Gorjan, P., Kaiho, K., Fike, D. A. & Chen, X. 2012. Carbon- and sulfur-isotope geochemistry of the Hirnantian (Late Ordovician) Wangjiawan (Riverside) section, South China: global correlation and environmental event interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 337–338, 14–22.
http://dx.doi.org/10.1016/j.palaeo.2012.03.021

Hints, L., Hints, O., Kaljo, D., Kiipli, T., Männik, P., Nõlvak, J. & Pärnaste, H. 2010. Hirnantian (latest Ordovician) bio- and chemostratigraphy of the Stirnas-18 core, western Latvia. Estonian Journal of Earth Sciences, 59, 1–24.
http://dx.doi.org/10.3176/earth.2010.1.01

Jones, D. S., Fike, D. A., Finnegan, S., Fischer, W. W., Schrag, D. P. & McCay, D. 2011. Terminal Ordovician carbon isotope stratigraphy and glacioeustatic sea-level change across Anticosti Island (Quebec, Canada). Geological Society of America, Bulletin, 123, 1645–1664.
http://dx.doi.org/10.1130/B30323.1

Kaljo, D. & Martma, T. 2011. Carbon isotope trend in the Mirny Creek Area, NE Russia, its specific features and possible implications of the Uppermost Ordovician stratigraphy. In Ordovician of the World (Gutierrez-Marco, J. C., Rabano, I. & Garcia-Bellido, D., eds), Cuadernos del Museo Geominero, 14, 267–273.

Kaljo, D., Kiipli, T. & Martma, T. 1997. Carbon isotope event markers through the Wenlock–Pridoli sequence in Ohesaare (Estonia) and Priekule (Latvia). Palaeo­geography, Palaeoclimatology, Palaeoecology, 132, 211–224.
http://dx.doi.org/10.1016/S0031-0182(97)00065-5

Kaljo, D., Kiipli, T. & Martma, T. 1998. Correlation of carbon isotope events and environmental cyclicity in the East Baltic Silurian. In Silurian Cycles – Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic and Tectonic Changes (Landing, E. & Johnson, M. E., eds), New York State Museum, Bulletin, 491, 297–312.

Kaljo, D., Hints, L., Martma, T., Nõlvak, J. & Oraspõld, A. 2001. Carbon isotope stratigraphy in the latest Ordovician of Estonia. Chemical Geology, 175, 49–59.
http://dx.doi.org/10.1016/S0009-2541(00)00363-6

Kaljo, D., Martma, T. & Saadre, T. 2007. Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 138–155.
http://dx.doi.org/10.1016/j.palaeo.2006.02.020

Kaljo, D., Hints, L., Männik, P. & Nõlvak, J. 2008. The succession of Hirnantian events based on data from Baltica: brachiopods, chitinozoans, conodonts, and carbon isotopes. Estonian Journal of Earth Sciences, 57, 197–218.
http://dx.doi.org/10.3176/earth.2008.4.01

Koren¢, T. N. & Sobolevskaya, R. F. 2008. The regional stratotype section and point for the base of the Hirnantian Stage (the uppermost Ordovician) at Mirny Creek, Omulev Mountains, Northeast Russia. Estonian Journal of Earth Sciences, 57, 1–10.

Koren¢, T. N., Oradovskaya, M. M., Pylma, L. J., Sobolevskaya, R. F. & Chugaeva, M. N. 1983. Granitsa ordovika i silura na severo-vostoke SSSR [The Ordovician and Silurian Boundary in the Northeast of the USSR] (Sokolov, B. S., Koren¢, T. N. & Nikitin, I. F., eds). Nauka, Leningrad, 205 pp. [in Russian].

Kump, L. R., Arthur, M. A., Patzkowsky, M. E., Gibbs, M. T., Pinkus, D. S. & Sheehan, P. M. 1999. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeography, Palaeo­climatology, Palaeoecology, 152, 173–187.
http://dx.doi.org/10.1016/S0031-0182(99)00046-2

LaPorte, D. F., Holmden, C., Patterson, W. P., Loxton, J. D., Melchin, M. J., Mitchell, C. E., Finney, S. C. & Sheets, H. D. 2009. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeo­geography, Palaeoclimatology, Palaeoecology, 276, 182–195.
http://dx.doi.org/10.1016/j.palaeo.2009.03.009

Long, D. G. F. 1993. Oxygen and carbon isotopes and event stratigraphy near the Ordovician–Silurian boundary, Anticosti Island, Quebec. Palaeogeography, Palaeo­climatology, Palaeoecology, 104, 49–59.
http://dx.doi.org/10.1016/0031-0182(93)90119-4

Loydell, D. K., Nestor, V. & Männik, P. 2010. Integrated biostratigraphy of the lower Silurian of the Kolka-54 core, Latvia. Geological Magazine, 147, 253–280.
http://dx.doi.org/10.1017/S0016756809990574

Männik, P. 2003. Distribution of Ordovician and Silurian conodonts. In Ruhnu (500) Drill Core (Põldvere, A., ed.), Estonian Geological Sections, 5, 17–23.

Männik, P. 2010. Distribution of Upper Ordovician, Llandovery and Wenlock conodonts. In Viki Drill Core (Põldvere, A., ed.), Estonian Geological Sections, 10, 21–24.

Martma, T., Brazauskas, A., Kaljo, D., Kaminskas, D. & Musteikis, P. 2005. The Wenlock–Ludlow carbon isotope trend in the Vidukle core, Lithuania, and its relations with oceanic events. Geological Quarterly, 49, 223–234.

Melchin, M. J. & Holmden, C. 2006. Carbon isotope chemostratigraphy in Arctic Canada; sea-level forcing of carbon platform weathering and implications for Hirnantian global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 234, 186–200.
http://dx.doi.org/10.1016/j.palaeo.2005.10.009

Melchin, M. J., Holmden, C. & Williams, S. H. 2003. Correlation of graptolite biozones, chitinozoan biozones, and carbon isotope curves through the Hirnantian. In Ordovician from Andes (Albanesi, G. L., Beresi, M. S. & Peralta, S. H., eds), INSUGEO, Serie Correlación Geológica, 17, 101–104.

Mitchell, C. E., Štorch, P., Holmden, C, Melchin, M. J. & Gutiérrez-Marco, J. C. 2011. New stable isotope data and fossils from the Hirnantian Stage in Bohemia and Spain: implications for correlation and paleoclimate. In Ordovician of the World (Gutiérrez-Marco, J. C., Rábano, I. & Garcia-Bellido, D., eds), Cuadernos del Museo Geominero, 14, 371–378.

Munnecke, A., Samtleben, C. & Bickert, T. 2003. The Ireviken Event in the lower Silurian of Gotland, Sweden – relation to similar Palaeozoic and Protero­zoic events. Palaeogeography, Palaeoclimatology, Palaeo­ecology, 195, 99–124.
http://dx.doi.org/10.1016/S0031-0182(03)00304-3

Munnecke, A., Calner, M., Harper, D. A. T. & Servais, T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: a synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 389–413.
http://dx.doi.org/10.1016/j.palaeo.2010.08.001

Nowlan, G. S. & Barnes, C. R. 1987. Application of conodont colour alteration indices to regional and economic geology. In Conodonts: Investigative Techniques and Applications (Austin, R. L., ed.), pp. 188–202. Ellis Howood Ltd., Chichester.

Oradovskaya, M. M. & Sobolevskaya, R. F. 1979. Guidebook to Field Excursion to the Omulev Mountains. XIV Pacific Science Congress, Khabarovsk. Magadan Publishing House, 103 pp.

Rong, J.-Y. & Harper, D. A. T. 1988. A global synthesis of the latest Ordovician Hirnantian faunas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 79, 383–402.
http://dx.doi.org/10.1017/S026359330001436X

Saltzman, M. R. & Young, S. A. 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology, 33, 109–112.
http://dx.doi.org/10.1130/G21219.1

Schmitz, B. & Bergström, S. 2007. Chemostratigraphy in the Swedish Upper Ordovician: regional significance of the Hirnantian δ13C excursion (HICE) in the Boda Limestone of the Siljan region. GFF, 129, 133–140.
http://dx.doi.org/10.1080/11035890701292133

Underwood, C. J., Crowley, S. F., Marshall, J. D. & Brenchley, P. J. 1997. High-resolution carbon isotope stratigraphy of the basal Silurian Stratotype (Dob’s Linn, Scotland) and its global correlation. Journal of the Geological Society, 154, 709–718.
http://dx.doi.org/10.1144/gsjgs.154.4.0709

Webby, B. D., Cooper, R. A., Bergström, S. M. & Paris, F. 2004. Stratigraphic framework and time slices. In The Great Ordovician Biodiversification Event (Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G., eds), pp. 41–47. Columbia University Press, New York.

Zhamoida, A. I. (Editor-in-chief). 1992. Stratigraphic Code. Second edition. Interdepartmental stratigraphic committee. St. Petersburg, 120 pp.

Zhang, S. & Barnes, C. R. 2007. Late Ordovician to Early Silurian conodont faunas from the Kolyma terrane, Omulev Mountains, Northeast Russia, and their paleo­biogeographic affinity. Journal of Paleontology, 81, 490–512.
http://dx.doi.org/10.1666/05077.1

Zhang, T. G., Shen, Y. N., Zhan, R. B., Shen, S. Z. & Chen, X. 2009. Large perturbations of the carbon and sulfur cycle associated with the Late Ordovician mass extinction in South China. Geology, 37, 299–302.
http://dx.doi.org/10.1130/G25477A.1

Back to Issue