
INTRODUCTION 
 
Copper is an essential biometal whose chemical and redox 
properties are exploited for promoting a variety of bio ­
logical functions. In the majority of cases, copper is func ­
tioning as a crucial cofactor of the key enzymes involved 
in cellular energy production (cytochrome c oxidase 
(CCO)), antioxidative defense (Cu,Zn­superoxide dis ­
mutase (Cu,Zn­SOD)), cross­linking of elastin, collagen 
(lysyl oxidase) and keratin (sulfhydryl oxidase), melanin 
production (tyrosinase), and metabolism of iron (ceru ­
loplasmin (CE)). In the brain, some copper proteins play 
specific roles in the synthesis of noradrenaline and neu ­
ropeptides (dopamine β­hydroxylase and peptidylglycine 
α­amidating monooxygenase) [1]. Copper is also involved 
in myelination, in the regulation of circadian rhythms, 
blood coagulation and angiogenesis [2]. In some cases, 
the “free” copper ions have a biological function. It has 
been established that in a certain type of brain neurons, 
copper ions are packed into secretory vesicles, which are 

upon stimulation released into the synaptic cleft, where 
copper ions play a neuromodulatory role [3]. 

Besides being an essential trace element, copper is also 
a potentially toxic element. Namely, “free” or weakly com ­
plexed copper ions can generate reactive oxygen species 
(ROS), including highly reactive hydroxyl radicals by 
interacting with oxygen metabolites such as hydrogen 
peroxide [4]. Hydroxyl radicals are able to react indis ­
criminately with proteins, nucleic acids, or lipids by caus ­
ing irreversible damage. This bifacial nature of copper 
ions dictates the requirement for their tight control in 
biological systems, which is granted by the combined 
action of copper transporters, intracellular copper chap ­
erones, metallothioneins, and extracellular copper­buffer ­
ing proteins like serum albumin (HSA) [5,6]. Defects in 
the functioning of these proteins cause copper dysregu ­
lation, such as deficiency, misdistribution, or excessive 
accumulation leading to various diseases [7]. Traditional 
examples of excessive accumulation and deficiency of 
copper are Wilson’s disease (WD) and Menkes disease 
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Abstract. Copper is an indispensable biometal participating as a redox catalyst in many important biochemical processes. However, 
if uncontrolled, copper ions induce the formation of reactive oxygen species and become toxic. For this reason, cellular copper 
metabolism is tightly regulated and specific proteins – copper chaperones – participate in the metalation of cellular copper transporters 
and enzymes. The thermodynamic background for cellular copper distribution is known, and copper is driven to cellular destinations 
according to shallow affinity gradients. Copper metabolism is disturbed in the case of Wilson’s, Menkes, and Alzheimer’s disease 
(AD), characterized by copper overload, deficiency, and misdistribution, respectively. Wilson’s and Menkes disease could be treated 
by copper chelators and supplements, respectively; however, with AD, a search for effective molecular tools for the correction of 
copper metabolism is ongoing. One natural copper­binding ligand – α­lipoic acid – has shown positive results in cellular and fruit 
fly models of AD and serves as a promising candidate for the regulation of copper metabolism in the case of AD. 
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(MD), respectively. Copper misdistribution is character ­
istic for Alzheimer’s disease (AD). 
 
 
CELLULAR  COPPER  METABOLISM  
 
Copper enters the eukaryotic cell in the form of Cu(I) ions 
mainly through high­affinity plasma membrane copper 
transporters Ctr1/2 [8]. Although there are only two 
principal copper enzymes CCO and Cu,Zn­SOD inside 
the cells, cellular copper metabolism is very complex 
(Fig. 1). Copper influx and efflux systems are highly 
regulated and, moreover, within the cell, copper ions are 
delivered to the sites of utilization by special proteins 
called copper chaperones [9]. Copper chaperones bind and 
transport Cu(I) ions to either intracellular copper enzymes 
or to membrane copper transporters that transfer Cu(I) 
ions into the trans­Golgi network (TGN) for incorporation 
into secretory copper enzymes such as Cu,Zn­SOD3, CP 
and others. The cytoplasmatic copper chaperones HAH1 
and CCS deliver copper to their partners, namely the 
soluble cytosolic domains of a Cu(I)­ATPases – ATP7A 
(Menkes protein) or ATP7B (Wilson’s protein) located in 
the TGN membrane and the Cu,Zn­SOD1, respectively 
[10]. Cox17 shuttles between the cytoplasm and mito ­

chondrial lumen, delivering Cu(I) ions to Sco1, Sco2, and 
Cox11, located in the inner mitochondrial membrane. 
Sco1/2 pass Cu(I) ions to the copper A (CuA) site and 
Cox11  acts as a copper donor to the copper B (CuB) site 
of CCO [10,11]. Besides copper chaperones, cellular 
cytosol is rich in ubiquitous cysteine­rich proteins – 
metallothioneins [12] – and contains millimolar concen ­
trations of glutathione (GSH) [13], which both bind Cu(I) 
ions and are also important regulators of copper me ­
tabolism.  

The distribution of copper ions within cells is deter ­
mined by both thermodynamic and kinetic factors. By 
using a unified ESI­MS­based approach, the Cu(I)­
binding constants for a representative set of key cellular 
copper proteins and small Cu(I)­ligands have been deter ­
mined [14,15]. According to the results of these studies, 
Cu(I)­binding affinities (log KD values) of cellular copper 
proteins lie in the range of 17–20, and copper ions are 
directed toward target proteins by affinity gradients, which 
are quite shallow. The difference between the affinities of 
copper chaperones and their partner proteins is approxi ­
mately 10­fold [14]. Metallothioneins have high Cu(I)­
binding affinity, and they participate in the binding of 
excessive copper ions into redox­silenced complexes [16]. 
Through binding into high­affinity protein complexes, the 
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Fig. 1. Cellular copper metabolism. Abbreviations: Ctr1/2 – copper transporter 1 and 2; MT – metallothionein; CCS – copper 
chaperone for Cu,Zn­superoxide dismutase (Cu,Zn­SOD); HAH1 – copper chaperone for ATP7A (Menkes protein) or ATP7B 
(Wilson’s protein); D1–D6 – copper­binding domains of ATP7A/B; Cox11, Cox17, Sco1 and Sco2 – copper chaperones for 
cytochrome c oxidase (CCO); GSH – glutathione; SecPr – secretory copper proteins. 



intracellular concentration of “free” or non­protein­bound 
Cu(I) ions is extremely low under normal conditions and 
lower than one copper atom per cell [17]. Apparently, this 
situation protects cells from the uncontrolled copper­
catalyzed generation of reactive oxygen radicals; however, 
it necessitates the delivery of copper ions to the target 
proteins through specific protein–protein interactions, 
which is the primary role of copper chaperones.  
 
 
COPPER  IN  THE  EXTRACELLULAR  SPACE 
 
The extracellular copper pool exists mainly in the blood, 
which is the central medium for copper transport and 
distribution in the body. In the blood, copper ions are 
assumingly distributed mainly between three proteins: CP 
(appr. 70%), HSA (appr. 15%), and alpha­2­macro glo ­
bulin (α2M) (appr. 5–10%) [18,19]. The remaining 5% of 
copper is found in Cu,Zn­SOD3, clotting factors V and 
VIII, amine and diamine oxidases, ferroxidase II, and 
some other enzymes [19].  

In a recent study, it was attempted to determine the 
Cu(II)­binding affinities of CP, HSA, and α2M by using 
a unified approach, which is prerequisite for under stand ­
ing the distribution of copper in the blood [20]. Deter ­
mination of Cu(II)­binding affinities for HSA, CP, and 
α2M were attempted through their competition with a 
set of low­molecular­weight Cu(II)­binding compounds 
(DTPA, EDTA, NTA, His) by using a LC­ICP MS­based 
approach [20]. By using NTA, which forms 1:1 complex 
with Cu(II) ions and shows slow demetalation of Cu•HSA, 
a KD value equal to 0.90 pM was determined. However, 
titration with His, which forms 2:1 complex and shows 
fast demetalation of Cu•HSA, yielded KD equal to 34.7 fM 
[20]. The difference in KD value, determined from the 
competition with NTA and His, might be explained by the 
fact that the formation of a putative ternary complex 
between HSA, Cu(II) ion, and His was omitted in the 
binding scheme. Thus, the KD value determined with NTA 
should be considered a more accurate estimate. 

It was found that CP binds Cu(II) ions at pH 7.4 ex ­
tremely tightly and can be demetalated by high milli ­
molar EDTA only at non­physiologically high pH values 
(pH 11) [20]. The inertness of the Cu•CP complex at 
pH 7.4 is granted most probably due to the entrapment of 
metal ions in the protein interior, which hinders their 
dissociation. This conclusion is supported by structural 
data indicating that in Cu•CP, the copper ions are located 
in three mononuclear and one trinuclear binding sites, 
which are not exposed to the solvent [21]. Kinetical 
inertness of the Cu•CP complex does not allow the deter ­
mination of Cu(II)­binding affinity of CP, which confirms 
earlier conclusions that CP­bound copper ions are prac­
tically nonexchangeable at physiological pH values [19].  

Experiments with α2M demonstrated that in vitro α2M 
does not bind Cu(II) ions [20]. The obtained thermo ­
dynamic and kinetic data are important for understanding 
copper distribution in human blood as well as in other 
extracellular media, e.g., cerebrospinal fluid (CSF). 
 
 
COPPER  METABOLISM  IN  WILSON’S  DISEASE  
 
The prevalence of WD is around 1/30 000 live births [22]. 
WD is characterized by loss­of­function mutations in a 
P­type copper ATPase, ATP7B, which is expressed mostly 
in the liver [23,24]. The WD protein has a dual role – at 
normal copper levels, it is located in TGN membranes and 
transports copper into the TGN for incorporation into the 
plasma copper proteins, including CP [25,26]. At ex ces ­
sive copper levels, ATP7B firstly translocates to lyso somal 
membranes and transports copper into their lumen and, 
secondly, activates lysosomal exocytosis and stimu lates 
the release of copper into bile [27]. Defective ATP7B 
functioning causes reduced incorporation of copper into 
CP and copper accumulation primarily in the liver and 
then in the brain, where copper concentrations are 
typically increased by a factor of 5–20 and 10–15, re ­
spectively [22]. Copper accumulation leads to liver dis ­
orders (liver cirrhosis and cancer) and/or neuropsychiatric 
symptoms like movement disorders (tremors, involuntary 
movements), seizures, etc. [28,29]. The symptoms usually 
begin between the ages of 5 and 35 years and, if untreated, 
tend to become progressively worse and are eventually 
fatal due to the liver, kidney, or hematological com pli ­
cations. Cytotoxicity arises from oxidative damage in ­
duced by the excess of copper, but may additionally result 
in the disruption of Zn­related metabolic systems, which 
is ultimately cytotoxic [30]. 

CP in blood serum is decreased in the case of WD,  and 
the activity of CP is decreased even more as a con sider ­
able fraction  of CP is not metalated [22,31]. Under nor ­
mal conditions, serum CP levels are very low in neonates 
and elevate to a maximum 300–500 mg/L concentration 
between 2–3 years of age and then gradually decrease to 
the adult range (> 200 mg/L) until the teenage period [32]. 
The concentration of serum non­CP bound copper is ele ­
v ated above 250 μg/L in most untreated WD patients (nor ­
mal level < 150 μg/L), and it has also been proposed as a 
diag nostic marker for WD [22,28,33].  
 
 
COPPER  METABOLISM  IN  MENKES  DISEASE  
 
MD is a relatively rare disease with incidence ranging 
from 1/50 000 to 1/360 000 live births, depending on the 
population studied [2]. MD is caused by loss­of­function 
mutations in ATP7A [24]. Under normal physiological 
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copper concentrations, ATP7A is localized to TGN 
membranes, transporting copper into the lumen for 
inclusion into the copper­dependent enzymes [34]. Under 
increased copper concentrations, ATP7A is translocated 
to the vesicles in a mouse model [35] or to the plasma 
membrane in CHO cells [36]. In the case of MD, transport 
of copper from intestine enterocytes to the blood is 
defective and leads to organismal copper deficiency 
affecting mainly the liver and the brain [2]. Copper 
deficiency leads to reduced activities of copper­dependent 
enzymes, such as CCO, Cu,Zn­SOD, lysyl oxidase, 
tyrosinase and dopamine β­hydroxylase, which are 
associated with most of the clinical features of MD [2]. 
MD is a progressive disorder leading usually to death 
before the third year of life; only some patients survive 
above 5 years of age [2]. 

Serum copper and CP levels are typically low in MD, 
in the range of 0–55 µg/dL (normal level 70–150 µg/dL) 
and 10–160 mg/dL (normal level 200–450 mg/dL), re ­
spectively. These levels are typically low in less than six 
months old babies [2,37]. 
 
 
COPPER  METABOLISM  IN  ALZHEIMER’S 
DISEASE  
 
AD is the most common neuro degenerative disease, 
comprising around 75% of dementia cases in the elderly 
[38]. In the USA, there are currently 6.7 million people 
living with AD, which is 2% of the population [39]. The 
disease is characterized by the extracellular deposition 
of β­amyloid (Aβ) peptides in the form of senile plaques 
and the intracellular deposition of hyperphosphorylated 
tau protein, oxidative damage, and neuronal death in the 
brain [40]. The progressive loss of neurons throughout the 
brain during the disease slowly destroys memory and 
cognitive skills and leads eventually to death. According 
to the amyloid cascade hypothesis, the Aβ peptide 
aggregation and formation of amyloid plaques is the key 
event, which in turn causes neuro fibrillary tangles and cell 
death [41,42]. 

Copper metabolism in AD is characterized by copper 
misdistribution. Quantitative meta­analyses of numerous 
independent studies show that in the case of AD, copper 
levels in  blood serum are substantially elevated [43,44] 
and, simultaneously, copper levels in brain tissue are de ­
creased [45]. A later study confirmed that in AD, brain 
copper levels are substantially (53–70%) decreased in the 
seven studied brain regions, resembling MD, which is also 
characterized by neurodegeneration [46]. The results of a 
recent meta­analysis also show that Cu decreases in AD 
brain samples, whereas Cu and non­CP Cu are increased 
in serum/plasma samples, and that CP does not change 
[47]. 

COPPER  LEVELS  IN  BLOOD  AFFECTED  BY  
AGING  AND  ITS  RELATION  WITH  
ALZHEIMER’S  DISEASE  
 
It has been known for a long time that in the normal 
population, copper levels increase with age in serum [48] 
and decrease in brain tissue [49].  Moreover, in the same 
age groups, there are significant interindividual differ ­
ences in copper levels both in serum [48] as well as in the 
brain [49]. The age­related tendencies in copper levels in 
serum and in the brain are similar to the changes observed 
in AD, whereas in the latter case, the changes are more 
pronounced. Therefore, it is reasonable to hypothesize that 
an individual increase of copper level in serum and a 
concomitant decrease in the brain is a normal age­
dependent process, but after the crossing of a certain 
level, copper dysregulation might lead to AD pathology. 
According to such a scenario, dysregulation of copper me ­
tabolism is an early event in AD pathology and its nor ­
malization might be an effective strategy for the pre ­
vention of AD.  

There have been attempts to find the genetic back ­
ground behind elevated non­CP bound copper in the 
serum of AD patients, which have been, however, limited 
to the analysis of  ATP7B [50]. Some positive correlation 
between certain variants of ATP7B and elevated copper 
levels has been found [50]; however, the situation could 
be much more difficult as systemic copper levels are 
regulated by multiple copper transporters, including 
ATP7A, Ctr1/2, and others, as well as by cellular and 
extracellular copper proteins and ligands.  

Analysis of ATP7A and ATP7B copper transporter 
genes supports the complexity of organismal copper regu ­
lation and its connections with the genetic background. It 
is impressive that in WD, which is an autosomal recessive 
disease, there are currently 685 mutations found in ATP7B 
(The Human Gene Mutation Database), which lead to an 
enormous variability of the disease phenotype from mild 
to severe. At the same time, there are also heterozygotic 
carriers of these mutations, where systemic copper 
metabolism should be affected. MD is an X­linked 
recessive disease where 70% of cases are inherited and 
30% arise due to new mutations in copper transporter 
ATP7A. There are currently 174 mutations found in 
ATP7A (The Human Gene Mutation Database). MD 
affects mainly men, but there are both male and female 
carriers where systemic copper metabolism should be 
affected. There is also substantial polymorphism in these 
major copper regulating genes, which brings us to the 
conclusion that copper metabolism is highly individual. 
This conclusion is also supported by the facts that the 
levels of serum copper determined by different authors are 
very heterogeneous [51] and variable at the individual 
level [48]. 
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TREATMENT  OF  WILSON’S  AND  MENKES  
DISEASE 
 
Unlike many other genetic disorders, WD and MD can be 
treated by correcting the abnormal copper metabolism [52,53].  

WD is treatable, primarily by copper­chelation therapy, 
which promotes copper excretion. Several de­coppering 
drugs have been used for the treatment of Wilson’s dis ­
ease, two of which have also been approved by the FDA. 
D­penicillamine, the first orally administered copper­che ­
lating agent available, was approved for therapeutic use 
in 1956 [54]. D­penicillamine induces copper excre tion 
into urine [55]; however, its usage causes many ad verse 
side effects [28]. The second oral copper­chelating drug, 
trientine, was approved in 1982. Trientine also acts through 
enhancing the urinary excretion of copper, whereas it is 
better tolerated than D­penicillamine [56]. The third de­
coppering drug is tetrathiomolybdate, which was intro ­
duced in 1984 and was used in a limited number of WD 
patients [57]. Initial studies with ammonium tetrathio ­
molybdate [57] and a completed phase II clinical study 
with bis­choline tetrathiomolybdate [58] demonstrated 
that the drug acts rapidly and improves copper control by 
stabilizing liver function. It also improved neurologic symp ­
 toms and showed a favorable safety profile [59]. In addi ­
tion to these three major approved drugs, two other copper­
chelating compounds have been used for the treatment of 
WD in the past: an injectable drug, British anti­Lewisite 
or dimercap topropanol was used in the UK in 1951 [60], and 
dimer captosuccinate has been admin istred to hundreds of 
pa tients in China [61,62]. In Western medicine, British anti­
Lewisite and dimercaptosuccinate are used primarily for the 
treatment of arsenic, mercury, and lead poisoning [63,64].  

The treatment of MD in major cases is mainly symp ­
tomatic; however, clinical reports suggest that careful medi ­
cal care and early copper supplementation may substan ­
tially modify disease progression and extend the life span 
up to 13 years or even more [2]. The purpose of a specific 
treatment for MD is to provide copper to copper­dependent 
enzymes. Copper should be supplemented parenterally or 
subcutaneously because orally administrated copper is 
trapped in the intestines and is ineffective. Among the 
available copper compounds, copper–His complex has 
been proven to be the most effective [65,66]. The positive 
outcome of copper–His supplementation is dependent on 
early initiation and the presence of at least partially 
functional ATP7A [2]. 
 
 
TREATMENT  OF  ALZHEIMER’S  DISEASE  BY  
MODIFYING  COPPER  METABOLISM 
 
The role of altered metal homeostasis as a pathogenic 
factor in AD has been intensively studied; moreover, the 

assumption about the causative role of metal ions in AD 
has laid the basis for the elaboration of metal chelation 
therapeutic approach in AD [67]. The final aim of this 
approach is finding therapeutic agents, which modulate 
metal distribution in the brain and have the potential to 
ameliorate the dysfunctional copper metabolism char ­
acteristic of AD.  

Several attempts have been made to treat AD by mod ­
ifying copper metabolism, and three different strategies – 
copper supplementation, chelation, and redistribution – 
have all been tested in laboratory experiments as well as 
in clinical trials. Copper supplementation was tested with 
copper orotate [68,69], chelation with D­penicillamine 
[70], and copper redistribution with copper ionophores 
clioquinol (CQ, 5­Chloro­8­hydroxy­7­iodoquinoline) and 
its derivative PBT2 (5,7­dichloro­8­hydroxy­2­[(dimethyl ­
amino) methyl]quinoline) [71,72]. In clinical trials, copper 
supplementation showed no effect on the progression of 
AD phenotype after a 12­month treatment period [69]. 
D­penicillamine promoted decoppering of the organism 
and reduced oxidative stress but did not affect the clinical 
progression of the disease in a 6­month trial [70]. CQ was 
tested in phase II clinical trial with 36 patients [73], which 
did not show any statistically significant difference in 
cognition between the treatment and placebo groups after 
36 weeks of treatment [73,74]. CQ, however, has been 
withdrawn from development due to safety concerns as it 
did not succeed in reducing a mutagenic ingredient “di­
iodo” CQ to an acceptable level [74]. PBT2, an improved 
version of CQ, was tested in two clinical trials [75]. In one 
of them, PBT2 showed a favorable safety profile [73] and 
did reduce Aβ42 concentration in CSF, compared with the 
patients treated with a placebo [76]. Initially, it was con ­
cluded that PBT2 does not improve the cognitive function 
of AD patients [76]; however, a later analysis of the results 
detected some improvement of cognition [75,77]. The 
second trial of PBT2 was more thoroughly conducted and 
showed that, after 12 weeks of treatment, this compound 
was safe and well tolerated in people with mild AD; how ­
ever, it was concluded that larger and longer trials are 
required for a reliable demonstration of cognitive efficacy 
[73]. In addition to clinically tested compounds, numerous 
other synthetic Cu(II)­binding ligands [78–84], including 
Trientine [85], an FDA­approved WD drug, as well as 
zinc treatment [86], have been proposed for the treatment 
of AD. Trientine and all other drugs of this type as well as 
zinc treatment result in the decoppering of the organism 
[87,88], which may undesirably further decrease copper 
levels in the brain. These and earlier attempts are largely 
trial and error attempts, which are not based on a com ­
prehensive understanding of the organismal copper me ­
tab olism, in general, and copper­binding properties of the 
ligands in comparison with organismal copper­binding 
proteins, in particular. 
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In a recent study, we proposed molecular tools to 
normalize copper metabolism in AD, based on systematic 
knowledge about the metal­binding properties of AD drug 
candidates, which have the potential to normalize dys ­
regulated copper metabolism in AD. Thus far, copper 
chelators with preferential binding of Cu(II) ions have 
been proposed for AD treatment [78,79]. These chelators 
are active in extracellular space such as blood, interstitial 
fluid, and CSF. In the case of AD, such drugs might 
decrease the elevated copper levels in the extracellular 
space; however, an undesirable decrease in the intra ­
cellular copper levels in the brain cells might also occur. 
Therefore, such ligands are not suitable for the trans ­
location of extracellular excessive copper to intracellular 
space necessary for the normalization of copper levels in 
the case of AD. Alternatively, we proposed to normalize 
copper metabolism in AD by using Cu(I) ligands, binding 
copper ions only in intracellular space and having the 
potential to shift the equilibrium of copper distribution 
from extracellular to intracellular location. Cu(I)­binding 
properties of Cu(I)­binding ligands should, however, be 
moderate to avoid the demetalation of cellular copper 
proteins. Cu(I)­binding properties of the cellular copper 
proteome were known from our earlier study [14], and 
Cu(I)­binding affinities of a set of copper chelators, in ­
cluding WD drugs and the reduced form of a natural 
compound α­lipoic acid (LA), were also determined [15]. 
It turned out that dihydro­LA (DLA) has substantial Cu(I)­
binding affinity, which is higher than that of GSH but 
lower than those of intracellular copper chaperones and 
enzymes [14,15]. Thiol groups of LA are reduced inside 
the cell and oxidized to a disulfide bond in the extra ­
cellular en vironment. These properties make LA a suitable 
candidate for translocating copper to the intracellular 
space without disturbing the function of intracellular 
copper proteins. 

We have performed two types of experiments, testing 
the involvement of LA in the regulation of cellular copper 
metabolism and suitability for the treatment of AD. We 
first performed experiments with SHSY­5Y cell lines and 
demonstrated that supplementation with LA significantly 
increases the intracellular copper level in a dose­depen ­
dent manner. Next, by using transgenic AD fruit fly 
models, we showed that LA can alleviate the phenotype 
of these mutant flies in a negative geotaxis experiment. 
The ob tained results support the new copper­regulating 
mech anism of LA cellular action and its applicability for 
the prevention or treatment of AD [89]. 

LA is a natural ligand, synthesized enzymatically in 
the mitochondrion from octanoic acid [90]. LA is pri ­
marily functioning as a covalently linked cofactor of mito ­
chondrial α­ketoacid dehydrogenases [91]. In addi tion, LA 
is absorbed from food and has a number of biochemical 
activities in the unbound form [90]. Cur rently, the bio ­

logical effects of LA are explained with its antioxidant 
action; however, its potential in detoxification of heavy 
metals like Hg has also been recognized [92]. In con ­
nection with AD and aging, it is worth mentioning that LA 
improves the memory of aged nontransgenic (NMRI) 
mice [93] as well as transgenic AD (Tg2576) mice [94]. 
Importantly, LA has also been tested in clinical trials and 
has therapeutic value in the treatment of diabetic poly ­
neuropathy [95]. In AD clinical trials, a daily dose of 
600 mg showed a positive effect by slowing the pro ­
gression of cognitive impairment in patients with mild AD 
(43 patients, trial duration 48 months) [96,97] and in 
patients with mild to moderate AD with and without in ­
sulin resistance (126 patients, duration of trial 16 months) 
[98]. Despite these promising results, clinical trials with 
LA have not been taken forward. The therapeutic effect 
of LA in these trials has mainly been attributed to its anti ­
oxidative effect, but its metalloregulatory properties have 
not been considered and studied.  

There are many benefits of LA over other synthetic 
compounds in drug development as well as in further 
therapeutic use. LA has been approved for the treatment 
of diabetic polyneuropathy [95] and could be repurposed 
for therapeutic application in the case of AD [99]. Known 
toxicology and pharmacodynamic profiles of repurposed 
drugs significantly accelerate the drug development pro ­
cess, decrease the related costs, and increase the pro ­
bability of success. LA is extremely well­tolerated and 
causes no adverse effects at doses up to 2400 mg/day in 
human clinical trials [100]. LA is water­soluble, moder ­
ately lipophilic and has a molecular mass less than 500 Da, 
which match the characteristics of a successful oral drug 
[101]. Moreover, LA is a natural compound, ap proved as 
a food supplement in many countries and is freely and 
cheaply available in pharmacies. 
  
 
PARTICIPATION  OF  LIPOYLATED  PROTEINS  
IN  COPPER�INDUCED  CELL  DEATH  –  
CUPROPTOSIS 
 
Recently, a new copper­dependent mechanism of regu ­
lated cell death – cuproptosis – has been discovered, and 
was demonstrated to be distinct from all  known mechan ­
isms of regulated cell death, including apoptosis, fer ­
roptosis, pyroptosis, and necroptosis [102]. Cuproptosis 
is dependent on mitochondrial respiration and is triggered 
by direct binding of excessive Cu(I) ions to lipoylated 
proteins functioning in the tricarboxylic acid (TCA) cycle. 
The affected proteins include four enzymes: dihydroli ­
poamide branched chain transacylase E2, glycine cleavage 
system protein H, dihydrolipoamide S­succinyltrans ­
ferase, and dihydrolipoamide S­acetyltransferase, an es ­
sential component of the pyruvate dehydrogenase com ­
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plex [91]. Lipoylation of these proteins is required for 
enzymatic function; however, Cu(I) binding results in the 
oligomerization and aggregation of the lipoylated pro ­
teins. This leads to subsequent iron­sulfur cluster protein 
loss, induction of HSP70, indicative for acute proteotoxic 
stress, and ultimately cell death [102].  

Cuproptosis was induced by ionophores such as eles ­
clo mol, disulfiram, 8­hydroxy quinoline and others, in ­
ducing a 5­ to 10­fold increase in the levels of intra cellular 
copper [102]. This result shows that synthetic copper 
iono  phores may cause a substantial increase of cellular 
copper content, reaching to toxic levels, which explains 
why their application for regulation of copper metabolism 
in AD and other diseases should be taken with caution. 
Depletion of the endogenous intracellular copper chelator 
GSH by buthionine sulfoximine sensitized cells to cu ­
proptosis [102], which shows that cuproptosis is depend ­
ent on cellular oxidative stress.  

The term “cuproptosis” was widely accepted among 
copper scientists, and, already in 2022, there were 269 
research papers mentioning this term in PubMed.  
 
 
CONCLUSION 
 
Organismal copper metabolism is highly regulated, and 
its misregulation occurs in the case of various diseases 
such as Wilson’s disease, Menkes disease, and Alzheimer’s 
disease. Wilson’s and Menkes diseases can be treated by 
using copper chelators or copper complexes, respectively. 
Alzheimer’s disease is in search of a therapeutic ligand 
able to reduce extracellular copper levels and simulta ­
neously increase intracellular levels. Many synthetic iono ­

phores including clioquinol and PBT2 have been used for 
such a purpose. However, the usage of synthetic copper 
ionophores should be taken with care as they can sub ­
stantially increase intracellular copper content and induce 
regulated cell death called “cuproptosis”. One promising 
ligand for the normalization of copper metabolism in the 
case of Alzheimer’s disease is the natural compound 
α­lipoic acid, which has been proven to be effective in 
cellular and fruit fly experiments. 
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Vase  metabolism  ja  selle  reguleerimise  võimalused 
 

Peep Palumaa 
 
Vask on asendamatu biometall, mis osaleb redoksKkatalüsaatorina paljudes olulistes biokeemilistes protsessides. Sama K
aegselt kutsuvad kontrollimatud ehk nn vabad vaskioonid esile reaktiivsete hapnikuühendite moodustumist ja muutuvad 
toksiliseks. Sel põhjusel on raku vase metabolism rangelt reguleeritud ja spetsiifilised valgud – vaskšaperoonid – osaK
levad raku vase transporterite ja ensüümide metaleerimisel. Rakulise vase jaotumise termodünaamiline taust on teada 
ja vaskioonid juhitakse raku sihtkohtadesse vastavalt lamedatele afiinsusgradientidele. Vase ainevahetus on häiritud 
Wilsoni, Menkesi ja Alzheimeri tõve (AD) puhul, mida iseloomustab vastavalt vase ülekoormus, defitsiit ja vale jaotuK
mine. Wilsoni ja Menkesi tõbe saab ravida vastavalt vase kelaatorite ja toidulisanditega, kuid AD puhul otsitakse tõhusaid 
molekulaarseid vahendeid vase metabolismi korrigeerimiseks. Üks looduslik vaske siduv ligand – �Klipoehape – on 
näidanud positiivseid tulemusi AD puuviljakärbseK ja rakumudelites ning on paljutõotav kandidaat vase metabolismi 
reguleerimiseks AD korral. 
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