
1. INTRODUCTION 
 
Nowadays, the main paradigm in manufacturing is based 
on the reconfigurable manufacturing and Industry 5.0 
(mov  ing towards Industry 6.0), in alignment with the 
goals of the EU Green Deal and the digital and green twin 
transition. Reconfigurable manufacturing systems (RMS) 
is an approach in manufacturing, which is designed for a 
rapid adjustment of production capacity and functionality, 
in response to new market conditions. Flexible manufac ­
turing systems with integrated autonomous mobile robots 
(AMR) make it possible to produce a variety of products 

on the same system. The objective is to provide the 
required functionality and capacity precisely when it is 
needed. 

The AMR have been introduced in various fields of 
modern industry to increase efficiency, productivity, and 
safe transport of goods and materials, and they perform 
various predetermined transport tasks without direct op ­
erator intervention [1]. Usually, the manufacturers of such 
AMR systems also have control software, which enables 
various transport missions to be performed in automatic 
mode and via a human­machine interface (HMI) accord ­
ing to predetermined routes [2]. The constant increase of 
the use of AMR systems will create various problems such 
as deadlocks and conflicts between system components, 

Proceedings of the Estonian Academy of Sciences,  
2024, 73, 2, 134–141 

https://doi.org/10.3176/proc.2024.2.06 
Available online at www.eap.ee/proceedings 

 
 
 
 
 
 
 

Autonomous  mobile  robots  for  production  logistics:   
a  process  optimization  model  modification 

 
Tõnis Raamets*, Jüri Majak, Kristo Karjust, Kashif Mahmood and Aigar Hermaste  

 
Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia 
 
Received 7 February 2024, accepted 8 March 2024, available online 2 April 2024 
 
© 2024 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 
International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0). 
 
Abstract. Digital solutions have become increasingly important for manufacturing companies to increase their productivity, 
effectiveness, and competitiveness in a global market, which demands low prices, high quality, and fast delivery times. In order to 
improve production efficiency, it is also necessary to optimize transportation activities in the production floor via digitization and 
automation of those processes. Many companies have already used or are planning to use autonomous mobile robots (AMR) to 
manage production logistics more effectively. The rapid development of the Internet of Things (IoT) and the advanced hardware and 
software of AMR allow them to perform autonomous tasks in dynamic environments, where they can communicate and independently 
coordinate with other resources, such as machines and systems, and thus decentralize the decision­making steps of manufacturing 
processes. Decentralized decision making allows the manufacturing system to dynamically adapt to changes in the system state and 
environment. Such developments have affected traditional planning and control methods and decision­making processes, but they 
also require the software and embedded artificial intelligence (AI) algorithms to be more capable of executing these decisions. In 
this study, we describe how to use a 3D virtual factory concept to integrate an AMR system with AI functionality into the production 
logistics of the food industry. The paper presents an approach to analyze the performance of AMR in the transportation of goods on 
the manufacturing plant floor, based on the creation and simulation of the 3D layout, the monitoring of key performance indicators 
(KPI), and the use of AI for proactive decision making in production planning. A case study of the food industry demonstrates the 
relevance and feasibility of the proposed approach. 
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which cause a decrease in the efficiency of these systems [3]. 
The complexity of managing and controlling these AMR 
systems is an important factor, which limits their imple ­
mentation in a small or medium­sized company and in ­
hibits their effectiveness in fulfilling transport tasks. In 
addition, most previous studies related to the introduction 
of automated production logistics have focused on various 
robots’ central control and optimization; however, accord ­
ing to our understanding, no sufficiently researched methods 
exist for each robot to plan its activities independently. 
Only in recent years, more research has begun on de ­
centralized control systems, where each robot is assigned 
a different task in order to optimize the percentage of on­
time assembly and delivery of goods in various social situ ­
ations [4]. To analyze the feasibility and efficiency of such 
AMR systems, a case study and advanced simulation 
model based on 3D visualization, simulation, the use of 
IoT sensors, and experimental research should be used in 
advance [5] to monitor the existing key performance in ­
dicators (KPI) in the real work conditions [6,7]. It is a 
holistic method that allows for a more accurate assessment 
of the AMR solution design and its impact (KPI) before 
implementing it in the company’s production logistics. 
Automation of manufacturing processes using robots helps 
to reduce Lean waste [8] and thus increase productivity 
through Lean methods [9], supporting the adoption of 
AMR in the factory. Recently, smart artificial intelligence 
(AI) based algorithms, such as ant colony optimization 
[10], genetic algorithm [11], A* algorithm [12], simulated 
annealing [13], etc., have been proven to be effective tools 
for mobile robot trajectory planning. Global optimization 
of factory­ and warehouse­based AMR is too computa ­
tionally complex and time consuming to account for dy ­
namically changing obstacles in transportation tasks. In a 
dynamic environment, global trajectory planning can result 
in potential collisions with other objects because the algo ­
rithm does not adapt to changes in the environment [14] 
or the AMR must make a sudden stop. However, the prob ­
lem with local trajectory planning methods, such as the 
artificial potential field method, is that they get stuck in a 
local minimum and cause irregularities [15] that increase 
energy consumption. 

Combinatorial and AI­based algorithms are investi ­
gated in this work, based on the long­term experience of 
the authors’ working group in the use of AI tools and 
methods in various engineering fields [16,17]. The case 
study and the advanced simulation model of production 
logistics gives us a good visual overview and a precise 
understanding of how to optimize and make the manage ­
ment of AMR systems more efficient and to interface them 
with the company’s various IT systems and fleet of devices. 
This paper focuses on the development of con figurable 
automated logistics solutions, including the use of AI 
functions and 3D simulation software to virtualize and 

simulate manufacturing logistics. Derived from AI­based 
tools, various algorithms are proposed for easy recon ­
figuration and planning of tasks and movement paths of 
mobile robots. 
  
 
2. APPROACH  FOR  AMR  PROCESS  ANALYSIS 
    AND  MODIFICATION 
 
The process for the transportation of goods by AMR on 
the production floor is analyzed and implemented through 
the approach as anticipated in our previous study [18] and 
illustrated in Fig. 1. Apart from the 3D simulation and 
experimentation of AMR, the proposed approach consists 
of an AI model and its testing, which facilitates proactive 
decision making besides simulation analysis. This ap ­
proach intends to be adopted for the automation of pro ­
duction logistic processes using AMR. It is based on 
the digital mockup of a production floor and immersive 
3D simulation analysis to validate the case study and ad ­
vanced simulation model; moreover, the verification can 
be performed by implementing the case study and the 
advanced simulation model as an experimental testing in 
a physical factory environment. 

There are three main phases in this approach. The first 
one involves conceptualization for the automation of a 
particular process and task, for example, generating sev ­
eral ideas via brainstorming activity to automate the 
transportation task on a production floor. The outcome of 
the conceptualization phase unfolds an automation sce ­
nario for the transportation process. The second phase is 
to create a digital mockup of that transportation process 
on a factory floor and conduct simulation analysis through 
KPI in the virtual environment. As a result of the second 
phase, valuable knowledge is captured and used for the 
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Fig. 1. Proposed approach to analyze the process of AMR for 
production logistics [18]. 



implementation of AMR in the real (physical) environ ­
ment, while an AI model can also be formulated based on 
the simulation model. The third phase involves testing the 
simulation model and implementing AMR in the real 
environment, which serves as an experimental use case. 
The data about the movement of AMR, the location, and 
distance traveled can be collected via IoT sensors. 
Furthermore, the KPI can be calculated by the captured 
data, and they visualize the performance of AMR by 
integrating the data to a monitoring dashboard.  

This study emphasized the construction of a process 
layout, simulating the AMR transportation on a production 
floor by using a 3D virtual environment and executing 
performance analysis. An AI model was also created for 
the route planning and optimal pathfinding of AMR. In 
order to realize the feasibility of the proposed approach, 
the case study research method was practiced. 
  
2.1. Digital  and  simulation  model  development  for 
       the  food  industry  use  case   
 
The 3D layout and simulation of AMR routings were 
constructed in the Visual Components software [19]. 
Dif ferent paths and movements of AMR were comprised 
as follows: AMR transported ten red plastic boxes with 
each running on different paths, which are displayed in 
Fig. 2.  

AMR path setup and routing: 
● Paths 1–2 and 1–3: Transportation of washed empty 

boxes with AMR to specific production processes 

(picking up red plastic boxes from buffer 1, placing 
them in buffer 2 and buffer 3); 

● Path 2–4: Transportation of filled boxes (partially 
finished goods or finished goods) with AMR to the 
warehouse (picking up red plastic boxes from buffer 2 
and placing them in buffer 4); 

● Path 4–5: Transportation of dirty empty boxes with 
AMR to the washing area (picking up red plastic boxes 
from buffer 4 and placing them in buffer 5); 

● Path 6–9: Transportation of packaging materials to 
intermediate warehouses (picking up cardboard boxes 
from warehouse 6 and placing them in intermediate 
warehouses 7, 8, and 9). 
The paths contain various buffers, including the empty 

boxes area (buffer W), filled boxes area (buffer F), dirty 
boxes area (buffer D), and production processes buffers 
area for picking up and placing the goods (boxes) with 
AMR. A unified view of buffers for loading and unload ­
ing places with AMR is displayed in Fig. 3. The number 
of optimized loading and unloading places for buffers 
depends on the production volume and product capacity. 
Consequently, some buffers have one place for loading 
and one place for unloading, but some have two places for 
loading and unloading. Moreover, the buffer location 
numbers in Fig. 2 correspond to the loading and unload ­
ing places in Fig. 3. These two figures are associated 
with each other in the way that Fig. 2 shows the paths of 
AMR with buffer locations, while Fig. 3 represents the 
loading and unloading of boxes by AMR at these loca ­
tions. 
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Fig. 2. AMR routing map and buffers for picking up and placing the boxes in the manufacturing area. 



2.2. AMR  process  simulation  results  
 
The KPI analyzed in the transportation process of AMR 
in the food industry use case are the number of trans ­
portation boxes, transportation time, and utilization. These 
KPI are important because they measure the efficiency 
and effectiveness of the AMR transportation process in 
the food industry. The number of transport boxes indicates 
how many boxes AMR can transport in a given time. Transit 
time measures how long it takes for AMR to deliver boxes 
from one point to another. Utilization shows how much 

of AMR’s capacity is used for transport. These specifically 
selected KPI help to optimize the transport process, re ­
duce costs, improve customer satisfaction, and increase 
productivity. These KPI are also used in the further 
opti mization of AMR movement in the factory area. 
During the analy sis, two scenarios were tested based on 
the pro duc tion cycle, production capacity, and the number 
of shifts. The first tested scenario was with AMR speed 
of 1 m/s and the second one with AMR speed of 0.5 m/s. 
The simu lation results of the two scenarios are displayed 
in Table 1. 
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Fig. 3. AMR loading and unloading stations on the production floor. 
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Table 1. Summary of AMR simulation analysis 



3. AI­BASED  DECISION­MAKING  SYSTEMS  
    FOR  MOBILE  ROBOTS   
 
 The decision­making system proposed for the AMR is 
focused on the optimal path planning and safety visual ­
ization for mobile robots via introducing additional depth 
sensors to the work area of robots, calibrating the infor ­
mation feed and projections around AMR approaching the 
human. On the other hand, the decision­making systems 
are linked with the production scheduling via online in ­
formation gathering from the manufacturing processes 
and positioning of AMR. The information flow between 
the mobile robot control system, the company­based en ­
ter prise resource planning (ERP) system, and the mobile 
robot monitoring system is displayed in Fig. 4. It is very 
important to integrate with the existing systems also the 
system efficiency control system, which helps us to 
optimize the existing systems and track the possible faults 
and less efficient components/parts.  
 
3.1. Directed  graph  definition 
 
Below, a directed graph with its nodes and edges is 
introduced. The term “node” is utilized for the starting 
point, loading and unloading points, and the maintenance 
point(s). A sensor system is set up so that information is 
acquired from all nodes. The same general design is 
applied for all nodes, but some nodes may have extra 
specific information (maintenance data, etc.). In Fig. 5, 
the directed graph is depicted showing all nodes and edges 

but also distances between the nodes and available 
moving directions. It should be noted that Fig. 5 represents 
a schematic graph, i.e., distances are not proportional.  

The general structure of the node is the following: 
Error! Reference source not found., node No., loading 
(1 – available, 0 – not available), unloading (1 – available, 
0 – not available), priority. 

Currently, the priority value is calculated based on the 
remaining time until preservation, but there are additional 
considerations to take into account. The problem is solved 
by using object­oriented programming, considering each 
node as an instance of the node class. Nodes provide valu ­

Proceedings of the Estonian Academy of Sciences, 2024, 73, 2, 134–141138

 
 

Fig. 4. General framework of the AMR data exchange. 
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Fig. 5. AMR motion model. 
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able information for decision making and, additionally, 
some general information, such as all available moves 
between nodes together with distances, etc. The latter 
information is stored in a table, including node numbers 
and the corresponding distances. The distances can be 
replaced with travel times if such information is available 
from statistics for the current application.  
 
3.2. Optimal  path  optimization 
 
The optimization approach proposed in the current study 
is based on the decomposition method and has a hier ­
archical structure. Using the information acquired from 
the nodes and all other information available in the upper­
level design, the loading and unloading points to be visited 
during the next route are determined. This process can be 
called a “mission”. In the lower­level design, it is decided 
how to execute the mission, i.e., how to determine the 
optimal path from the start point, through the selected 
loading and unloading nodes, and back. The latter tasks 
are again divided into subtasks. The optimal paths are 
determined separately from the start to the loading node(s), 
from the loading node(s) to the unloading node(s), and 
from the unloading node(s) back to the starting point. 
Such an approach ensures the passage of all nodes of the 
mis sion. The information required for the lower­level 
design is the location of the nodes, the distances between 
nodes and the available moving direc tions. One can con ­
clude that in the upper level, the nodes to be passed during 
the next mission are determined, while the path used is 
deter mined in the lower level. 

In the case of the considered small application, several 
shortest­path algorithms, such as genetic algorithms, par ­
ticle swarm algorithms, and ant colony algorithms, are 

applicable due to a limited dataset (both the loading and 
unloading node arrays include two nodes). Combinatoric 
algorithms such as Dijkstra and Bellmann–Ford are less 
time consuming, based on their time complexity estimates 
O(E+log(N)*N) and O(N*E), respectively. As expected, 
the numerical tests performed in the current case study 
show that the population­based algorithms are signifi ­
cantly slower. The optimal path indicated by the red line 
in Fig. 6 corresponds to the route 1­2­5­6­1 and has the 
length of the path equal to 175 units. The most suitable 
optimal path algorithm (fast and simple to implement) de ­
pends on the particular problem or class of problems con ­
sidered. For the problem considered, the Dijkstra algo ­
rithm was the best. 
 
 
4. CONCLUSIONS 
 
The aim of this study was to investigate how mobile 
robots in the food industry, which are autonomous and 
adaptable to different use cases, can be combined with AI 
functions, which control their movements and transport 
tasks, and with the company’s existing resource planning 
system, which helps to optimize their work processes. To 
address  this task, a virtual factory (VF) was created using 
a 2D drawing of the company’s floor plan, which repre ­
sented as accurate a 3D model as possible of what actually 
happens in the food industry. The VF simulation used the 
company’s real production data to evaluate the suitability 
and usefulness of AMR in a given environment and their 
integration with  existing processes. The proposed holistic 
approach using digital solutions is a quick and easy way 
to find a solution to a specific problem and analyze and 
evaluate the results based on that. 

The case study and the advanced simulation model 
proposed in the paper create a cyber­physical environment 
with an integrated ERP system, a mobile robot control 
system as well as a VF with workstations and AI functions 
to help solve the problems of planning transport orders 
for robots. This makes it possible to test various digital 
solutions in advance in a VF and choose the most ef ­
fective, simple, and cost­effective of them when using AI. 

Applying the principles of the decentralized control 
system, in cooperation with the VF concept, we can create 
simple and understandable AI optimization models for 
generating AMR transport missions, which are easier for 
system operators to set up and manage according to the 
specifics of the company and the existing production plan. 
This innovative approach allows AMR systems to be 
simulated, optimized, and improved in advance to ensure 
easier and faster creation of these transport tasks and 
efficient and flexible transport of goods on the factory 
floor. 
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Fig. 6. The optimal path for AMR movement (mission passing 
loading node 2 and unloading node 5). 
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Autonoomsed  mobiilsed  robotid  tootmislogistikas:   
protsessi  optimeerimismudeli  muutmine 

 
Tõnis Raamets, Jüri Majak, Kristo Karjust, Kashif Mahmood ja Aigar Hermaste 

 
Digitaalsed lahendused on muutunud tootmisettevõtetele üha olulisemaks, suurendades tootlikkust, tõhusust ja konku2
rentsivõimet globaalsel turul, mis nõuab madalaid hindu, kõrget kvaliteeti ja kiiret tarneaega. Tootmise efektiivsuse pa2
randamiseks tuleb optimeerida ka tootmispõrandal toimuvaid transporditegevusi protsesse digiteerides ja auto 2 
matiseerides.  

Paljud ettevõtted juba kasutavad või plaanivad kasutada autonoomseid mobiilseid roboteid (AMR), et hallata toot2
mislogistikat efektiivsemalt. Asjade interneti (IoT) ja AMRide riist2 ja tarkvara kiire areng võimaldab neil sooritada au2
tonoomseid ülesandeid dünaamilistes keskkondades, kus nad saavad suhelda ja tegevusi iseseisvalt koordineerida teiste 
ressurssidega, nagu masinad ja süsteemid. See võimaldab detsentraliseerida tootmisega seotud otsustusprotsessi. De2
tsentraliseeritud otsustamine omakorda võimaldab tootmissüsteemil dünaamiliselt kohaneda süsteemi oleku ja keskkonna 
muutustega. Need arengusuundumused on mõjutanud traditsioonilisi planeerimis2 ja kontrollimeetodeid ning otsus2
tusprotsesse, eeldades tarkvara ja sisseehitatud tehisintellekti (AI) algoritme, mis oleksid võimelised neid otsuseid 
täitma.  

Selles uuringus kirjeldame, kuidas kasutada virtuaalse 3D2tehase kontseptsiooni, et integreerida AI2funktsionaalsu2
sega AMR2süsteem toiduainetööstuse tootmislogistikasse. Artiklis esitatakse lähenemisviis AMRi jõudluse analüüsiks 
tootmistehase põrandal kaupade transportimisel, mis põhineb 3D2paigutuse loomisel ja simuleerimisel, peamiste tule2
musnäitajate jälgimisel ning tehisintellekti kasutamisel proaktiivseks otsustamiseks tootmisplaneerimises. Toiduaine2
tööstuse juhtumiuuring näitab väljapakutud lähenemisviisi asjakohasust ja teostatavust. 
 
 
 
 


