
 269

Proc. Estonian Acad. Sci. Eng., 2001, 7, 4, 269–288

APPLICATION OF STRUCTURALLY SYNTHESIZED
BINARY DECISION DIAGRAMS FOR TIMING

SIMULATION OF DIGITAL CIRCUITS

Artur JUTMAN and Raimund UBAR

Computer Engineering Department, Tallinn Technical University, Raja 15, 12618 Tallinn, Estonia;
{artur, raiub}@pld.ttu.ee

Received 2 May 2001, in revised form 18 June 2001

Abstract. Meeting the timing requirements is an important constraint imposed on highly integrated
circuits, and the verification of timing of a circuit before manufacturing is one of the critical tasks
to be solved by CAD tools. In this paper, we present a novel technique to speed up gate-level
timing simulation that is based on Structurally Synthesized Binary Decision Diagrams (SSBDD),
which have already found application as an efficient mathematical model to represent digital
circuits. The new approach uses path delays instead of gate delays for tree-like subcircuits
(macros). Therefore timing waveforms are calculated not for all internal nodes of the gate-level
circuit, but only for outputs of macros. The macros are represented by SSBDDs, which enable a
fast computation of delays for macros. We show that the speed-up of timing simulation is directly
proportional to the average size of macros in the circuit. The new approach to speed up the timing
simulation is supported by encouraging experimental results.

Key words: timing simulation, binary decision diagrams, delay modelling.

1. INTRODUCTION

The transition from the traditional ASIC (Application-Specific Integrated

Circuits) to SoC (System-on-Chip) has led to new challenges in design methods,
manufacturing, verification, and test. Timing simulation is a widely used method
to verify the timing behaviour of a digital design. In a synchronous digital
system, the timing property that is needed to be verified is that for each input
vector transition the combinational logic settles to a stable state within a given
clock period. One approach to ensure this is to use timing simulation.

There are different methods to model the delays in digital circuits, including
the zero-delay, unit-delay and multiple-delay models [1]. While the zero-delay

 270

models can be used to analyse combinational circuits without memories, and
unit-delay models can be used to verify the logical behaviour of synchronous
sequential circuits, they are inadequate for analysing the timing behaviour of
digital circuits. For the timing behaviour, a multiple-delay model should be used.
In such a model, each circuit element is assigned a delay which is an integer
multiple of a time unit. Usually separate rise and fall delays are specified. If the
gate delays are not functions of the direction of the output change, we can use a
transition-independent delay model. In the following we use a nominal-delay
model [2] with the assumption that the gate delays are known.

In the classical gate-level delay simulation [2], all the gates should be
evaluated once per cycle which leads to a great amount of simulation with
circuits of high complexity. The first approach to cope with the complexity was
the event-driven method, when a gate is simulated only if a transition occurs at
its input [3–9]. This approach has found broad application due to its flexibility and
capability of handling different delay models and complex signal states. How-
ever, its major drawback is the useless processing of a great amount of events
that do not change the output of any gate. It is also possible that exponentially
long sequences of transitions can result from a single input change. Finally, most
of the event-driven approaches are interpretive and cannot use the model
compilation technique, which can substantially reduce the run time of the
algorithm [10–12].

To suppress the useless events and evaluations, the demand-driven
algorithm [13] and event-suppression approach [14] were proposed. Clock-
suppression methods [15–19] were proposed for synchronous circuits in order to
avoid evaluation of cyclic signals (synchronizers). For this class of circuits,
cycle-based simulators [20–23] were also elaborated. They assume that only the
final values at the output pins are reported. This means that intermediate simula-
tions can be performed very fast using simple logic values (0 and 1) and the zero-
delay model. Some of the event-driven approaches [24,25] use the extended Petri
net model (timed Petri nets) to incorporate parallel and distributed simulation
techniques. Multi-level timing simulation [26–28] as an addition to event-driven
concept is one more attempt to reduce the complexity of the proposed model.

Another big cluster of timing simulation methods is symbolic approach [29–34].
These methods use signal algebra to represent different transitions and signal
states in a circuit. Usually, this technique is not accurate enough unless a
sophisticated algebra is used. For instance, in [32] a 9-valued algebra and in [34] a
13-valued signal algebra is proposed.

Our approach is based on SSBDDs which have already found application as
an efficient mathematical model to represent digital circuits. They were
introduced in [35,36] as structural alternative graphs, and generalized for the
multiple-valued decision diagrams in [37]. SSBDD model has several critical
features making it very attractive compared to other commonly used
mathematical models, such as, for example, Ordered Binary Decision Diagrams

 271

(OBDD) or a simple gate-level representation. First of all, the SSBDD model is
generated from a circuit’s netlist within linear time (for OBDD it can be
exponential) compared to the circuit size. Secondly, the size of the SSBDD
model is linear relative to the circuit size (again, OBDD can be of exponential
size). Thirdly, SSBDD model preserves structural information about the circuit
while other BDD models do not. And finally, it even reduces the model
complexity compared to the gate-level representation, because instead of
considering each gate separately, it deals with macros – tree-like subcircuits (i.e.
subcircuits with no reconvergent fanouts), which usually consist of several gates.

In [38] SSBDDs were suggested for multivalued simulation of digital circuits
for different purposes like hazards investigation [39], delay fault analysis [40], and
fault cover analysis in dynamic testing [41]. Efficient algorithms for logic and
fault simulation were described in [42] and [43], respectively. A fast deterministic
test pattern generator based on SSBDDs was proposed in [44], and in [45] an
efficient design error localization technique was introduced, which also utilizes
the advantages brought by the SSBDD representation.

The use of SSBDDs in timing simulation allows modelling path delays in
macros and calculation of timing waveforms at macros’ outputs instead of
providing such calculations at the output of each gate. To each path in a macro
we assign a delay (or two delays in the case of transition-dependent delay
model). For simplicity, in this paper, without loosing the generality, we consider
the one-delay case for each path. The paths are considered only inside macros.
For this reason, we avoid the exponential explosion of the number of paths
processed. For example, assume that the subcircuit in Fig. 1 is represented by a
macro. This macro is characterized by 6 paths and 6 delays, calculated on the
basis of gate delays. When representing complex gates by macros, the number of
macros is equal to the number of tree-like subcircuits in the complex gate. For
example, a one-bit multiplexer is represented by a single macro.

In this paper we present a novel method for delay simulation based on
Boolean derivatives and SSBDD representation. Section 2 describes equivalent
parenthesis forms (EPF) for a given digital circuit. In Section 3 the main

1

2

5

6

4

3

7

y

g

h

k

m

c

d

e

a

b

 272

Fig. 1. Digital subcircuit.

considerations about timing simulation based on Boolean derivatives are given
and in Section 4 an efficient implementation of this approach on SSBDDs is
described. Our algorithms are explained in detail in Section 5. In Section 6
experimental results are given and, finally, Section 7 brings concluding remarks.

2. EQUIVALENT PARENTHESIS FORMS

Let us represent a digital circuit by an EPF synthesized by a superposition

procedure directly from the gate-level description of a circuit. For synthesizing
the EPF of a given circuit, numbers are assigned to the gates and letters to the
nets. Then, starting at an output and working back toward the primary inputs,
EPF replaces individual literals by products or sums of literals.

When an AND gate is encountered during backtracing, a product term is
created in which the literals are the names of nets connected to the inputs of the
AND gate. Encountering an OR gate causes a sum of literals to be formed, while
encountering an inverter causes a literal to be complemented.

As an example, the procedure is illustrated by transforming the circuit in
Fig. 1 to its EPF:

∧+=++==)())((1251251241241313121211 kfhgemdcbay

).)(()(13613125125712412413613 kmkhhgkm ¬+¬+=¬+∧

When creating an equation by the superposition procedure described above,
the identity of every signal path from the inputs to the outputs of the given circuit
will be retained. Each literal in an EPF consists of a subscripted input variable or
its complement, which identifies a path from the variable to the output. From the
manner in which the EPF is constructed, it can be seen that there will be at least
one subscripted literal for every path from each input variable to the output. It is
also easy to see that the complemented literals correspond to paths, which
contain an odd number of inversions.

3. EQUIVALENT PARENTHESIS FORMS AND TIMING
SIMULATION

Let us have an EPF)...,,...,,,(21 ni xxxxPy = where Xxi ∈ are literals

(inverted or not), which describe the behaviour of a digital circuit. Denote by
),...,,()(21 iniii gggxL = the signal path through the gates inii ggg ,...,, 21 from

the output y up to the input .ix Denote the delay of the gate ijg by).(ijgd For
simplicity, here we use the same delay for all the gate inputs for both raising and
falling transitions. However, this does not affect the generality of the approach.

 273

Let us call ixy ∂∂ partial Boolean derivative. The theory of Boolean
differential calculus tells that if ,1=∂∂ ixy then a transition of the signal at input

ix leads to a transition of the signal at output .y To take into consideration the
timing aspect, we introduce a function ,)()(1 xy txty ∂∂ where 1)()(=∂∂ xiy txty
means that the transition of ix at the moment xt causes the transition of y at the
moment .yt

Theorem 1. Given a single transition at the moment xt on the input ix with a
single output of a circuit represented by EPF)...,,...,,,(21 ni xxxxPy = with a
single path),...,,()(21 iniii gggxL = from ix to ,y the transition propagates up
to y with the delay

),(...)()()(21 iniii gdgdgdyxd +++=→ (1)

iff ,1)()(=∂∂ xiy txty where).(yxdtt ixy →+=

Proof. Along the definition of partial Boolean derivatives, from 1=∂∂ ixy (here
and afterwards yt and xt for y and x are dropped for better readability) it
follows that the value of y depends on the value of ,ix hence the transition at ix
propagates up to .y Since the path),,...,,()(21 iniii gggxL = along which the
transition propagates, is not a branch, and it also has no fanouts, no other
reconverging paths can exist along which the same transition at ix could
influence the value of .y Hence, the delay of the transition at y may be
produced only by the sum of the delays of the gates along the path),(ixL and the
relationship (1) is valid.

In the general case, if transitions occur on several inputs, or a transition
propagates along several reconverging paths, then the derivative ixy ∂∂ may
depend on the influence of other transitions which may result in a glitch at .y In
other words, the value of the function)...,,...,,...,,,(11–21 niii xxxxxfxy +=∂∂
depends in this case on the literals where values are undetermined (unknown),
and the calculation of ixy ∂∂ is impossible.

Now, let us introduce the set },,,1,0{5 UhS ε= for 5-valued simulation,
where)(hε represents a waveform having a step-up transition from 0 to a final
value of 1 (step-down transition from 1 to a final value of 0), and U represents
undetermined or don’t care waveform. These values ,, hε and U are called
dynamic values.

In Table 1 we give also the algebra introduced for the dynamic values
},,{ Uhε in [38]:

Let us have a network with EPF)...,,...,,,(21 ni xxxxfy = and a multi-valued
pattern)...,,...,,,(21

t
n

t
i

ttt xxxxx = at time ,xt where .5Sxt
i ∈ Denote a subset of

literals with dynamic values at xt by }}.,,{{ Uhxxx t
iiD ε∈=

 274

Table 1. Calculation of dynamic values

∨ ε h U ∧ ε h U

ε ε U U ε ε U U
h U h U h U h U
U U U U U U U U

Definition 1. We say 1}max{ =∂∂ ixy iff there is at least one combination of
values 0 or 1 for nonspecified x’s which produce .1=∂∂ ixy Otherwise,

.0}max{ =∂∂ ixy

Lemma 1. The value of EPF)...,...,,(21 ni xxxxPy = for a given network in the
multi-valued alphabet 5S is:

},1}max{{, =∂∂∩∈∨=∧= iiDiii xyxxxxxy (2)

iff .}1}max{{ ∅≠=∂∂∩ iiD xyxx

Proof. If 1}max{ =∂∂ ixy is valid for a single ,Di xx ∈ then according to the
definition of Boolean derivatives, .ixy = In this case the same value of ix
occurs on the output (or inverted value if ix is inverted). Suppose now that there
are more than one literal Di xx ∈ satisfying the condition .1}max{ =∂∂ ixy In
other words, there are more than one converging path in the network which
propagate transitions towards the output. If two paths are converging, either
AND or OR of multiple values from },,{ Uhε is possible. From the equivalence
of operations AND and OR on the set },,,{ Uhε it follows that the value of y
can be calculated as a function of AND (or OR) of values

}.1}max{{ =∂∂∩∈ iiDi xyxxx

Consider, for example, a transition pattern ,1=== mkg ε=h at the input of

the circuit in Fig. 1. By calculating Boolean derivatives, we find:
,1257124 hhy =∂∂ and .1241257 hhy ¬=∂∂ Since 124h and 1257h have dynamic

values ,1257124 ε=== hhh the calculation of the Boolean derivative is
impossible. On the other hand, since ,1}max{}max{ 1257124 =∂∂=∂∂ hyhy and
since },,{}1}max{{ 1257124 hhxyxx iiD ¬==∂∂∩ we have =¬∧= 1257124 hhy

.U=¬∧ εε The value U on the output of the subcircuit in Fig. 1 means the
possibility of a glitch at the given transition pattern.

Theorem 2. Given 1>Dx at input pattern)...,,...,,,(21

t
n

t
i

ttt xxxxx = where
,5Sxt

i ∈ and a subset DD xx ∈* where

),)((&)1}(max{:*
iiiDi yxdxyxx ∆=→=∂∂∈∀ (3)

 275

there appears a transition on the output of a circuit)...,,...,,,(21 ni xxxxPy =
with the value

,ixy ∧= (4)

at time ixt ∆+ where i∆ is calculated by formula (1).

Proof. Suppose there exist at least two inputs *, D
t
j

t
i xxx ∈ with corresponding

paths)...,,,()(21 iniii gggxL = and)...,,,()(21 jmjjj gggxL = through the
circuit. Suppose they have a joint path)...,,,()(1–,21, kiiiki ggggL = starting from
the output of a gate ,jkik gg ≡ ,0>k with the transition delay

).(...)()(1–,21 kiii gdgdgd +++=τ From (3) it follows that the transitions
evoked at the inputs t

j
t
i xx , reach the inputs of the gate ikg at the same moment

)).((1 ikixk gdtt −−∆+=+ τ On the other hand, from the condition
}1}max{{, =∂∂∩∈ iiD

t
j

t
i xyxxxx and Lemma 1, it follows that the value of the

signal at time τ−∆+= ixk tt on the output of the gate ikg belongs to the set
},,,{ Uhε which means a transition (where U is a possible glitch). Since the

path)(,kigL is also activated due to (3), the transition propagates to the output
and shows itself at time =++−−∆+=+++ τττ)())(()(1 ikikixikk gdgdtgdt

.ixt ∆+

Corollary. From Theorems 1 and 2 the following algorithm can be derived for
timing simulation based on calculating Boolean derivatives of equivalent
parenthesis forms.

Algorithm 1.
1. Calculate ixy ∂∂ for Di xx ∈ for the given transition .tx
2. Take the lowest value of).(yxd ii →=∆ If 1=∂∂ ixy , fix the new value

of y for time .ixt ∆+ Use formula (2) to check if a glitch is present. Remove ix
from .Dx

3. If ,∅=Dx stop, else repeat step 2.

4. TIMING SIMULATION ON SSBDDs

A structurally synthesized BDD),,(X+MGy = with a set of nodes M and

a mapping + from M to M is a BDD which represents an equivalent
parenthesis form)(xPy = of a gate-level network. The set of nodes consists of a
subset of nonterminal nodes NM and of a subset of terminal nodes ;TM

.TN MMM ∪= There are one initial node NMm ∈0 and two terminal nodes
,, TeT Mm ∈ },1,0{∈e in .M A one-to-one correspondence exists between

nonterminal nodes NMm ∈ and the literals .Xxi ∈ The nodes NMm ∈ are

 276

labelled by subscripted input variables (or the inverted variables) which identify
a path from the input to the output of the network. The terminal nodes

TeT Mm ∈, are labelled by constants }.1,0{∈e The literal ,Xxi ∈ which is
associated with the node m , is denoted by).(mx The mapping + defines the set
of edges between the nodes of M whereas Mm+ ⊂)(is a set of successors of

,m and)(m+me ∈ is the successor of m for the value .)(emx = A pattern tx
defines a set of activated edges in .yG The edge between m and em is activated
when emx =)(in the pattern .tx Activated edges which connect nodes im and

jm make up an activated path).,(ji mml The path),(ji mml consists of nodes
.),(MmmM ji ⊆ An activated path),(,

0
eTmml is called a full activated path.

Definition 2. A SSBDD),,(X+MGy = represents an equivalent parenthesis
form)(XPy = of a gate-level network, iff for each pattern tx a full path

),(,
0

eTmml in yG will be activated where .ey =

Two-valued test pattern simulation on SSBDDs is equivalent to path tracing
procedure on graphs according to the values of variables at a given test pattern.
At a given pattern ,tx in a SSBDD ,yG a full path),(0

Tmml will be activated
which determines the value of).(Tmxy = The simulation procedure will consist
of tracing the path),(0

Tmml and finding the value of)(Tmx at the terminal
node .Tm

For multi-valued simulation, a procedure based on calculation of Boolean
derivatives on SSBDDs will now be described. Denote ,1),(=ji mml if there
exists an activated path between the nodes im and jm at the given pattern ,tx
otherwise .0),(=ji mml

Theorem 3. Given)(xPy = and ,Xxi ∈ the condition 1=∂∂ ixy for SSBDD

),,,(X+MGy = where ,)(ixmx ≡ is equivalent to the following equation:

.1),(),(),(0,01,1
0 =∧∧ TT mmlmmlmml (5)

The proof of the Theorem 3 can be found in [38].

Note that Theorem 3 can be used for calculating Boolean derivatives ixy ∂∂
only in the case when pattern tx is two-valued, because only in this case all the
paths),(ji mml are activated uniquely. In the general case, when tx is a multi-
valued pattern, to check the existence of a glitch, we have to generalize Eq. (5).
The generalized case, based on maximums of Boolean derivatives, is considered
in [38].

Using SSBDDs, it is possible to considerably speed up the calculations
described in Algorithm 1, because it is not needed to trace all paths in Eq. (5) for
each .Di xx ∈

 277

Fig. 2. SSBDD for the circuit in Fig. 1.

Table 2. Signal paths and delays of the example

Node Path Delay Pattern

g g, 4, 2, 1, y 3 h (10)
h1 h, 4, 2, 1, y 3 ε (01)

¬h2 h, 7, 5, 2, 1, y 4 h (10)
k1 k, 5, 2, 1, y 3 0
m h, 3, 1, y 2 1

¬k2 k, 6, 3, 1, y 3 ε (01)

Example. An example of SSBDD for the circuit in Fig. 1 is presented in Fig. 2.
The nodes of the graph, the corresponding paths in the circuit, and the path
delays, calculated by Eq. (1), are depicted in Table 2 (here we assume that all the
gates have a unit delay).

Consider a transition pattern given in Table 2. The bold arrows in Fig. 2 mark
the activated path in the graph before the transition. The shaded nodes are those
involved in the transition, i.e. where the direction of the activated path changes.
For the nodes g and 1h we have 1}max{}max{ 1 =∂∂=∂∂ hygy [37]. Using the
formula (2), we find that Uhhg =∧=∧ ε1 which means that at time 3=t we
may have a glitch on the output of the circuit.

5. THE TIMING SIMULATION ALGORITHMS

Using the SSBDD model gives us the possibility to minimize the number of

macro inputs to be processed as well as the possibility to use some SSBDD
features in order to increase the timing simulation efficiency.

h1 m

k2
h2 k1

y g

3 3

4

1

0

 278

In this section we describe several implementations of the Algorithm 1 on the
SSBDD model. First, the general algorithm is given. Then we describe the single
and double stack based approaches.

Given is a set of multivalued input patterns tx at the input of a macro SSBDD
),,,(X+MGy = and a set of delays }}.,{,)({ heMmmd ii

e ε∈∈=∆ Certain
values for both raise)(imd ε and fall)(i

h md delays are specified for each node.
We denote a variable in the node im as).(imx The output of the algorithm is a
single waveform for the output of each macro. The waveforms show all the
transitions taking place there.

The general idea is as follows. Let the current time moment be xt and the
current pattern applied .tx We are traversing the activated (before the transition)
path),(0

Tmml in the graph from the initial node 0m to one of the terminal
nodes Tm and checking if Di xmx ∈)(in order to find the node with transition
that has minimum delay .mind The transition in this node is the first transition
that may influence the macro’s output. It will happen at the moment

mindtt xy += iff .1}))((max{ =∂∂ imxy When the node is found, the current
time xt is changed to .mindtx +

Our task now is to find the next .mind We go back to the initial node and
traverse the path from the beginning taking into account that one of the values
has already been changed. However, as we are probably traversing a new path,
we can find a node with delay that is smaller or equal to the previous .mind This
means that the transition in that node has also taken place and it is not interesting
any more. In general, we are not interested in all delays .)(xi

e tmd < Suppose,
we are in node ,im ,)(Di xmx ∈ somewhere in the middle of the path. The delay
here is)(i

e md and somewhere before (along the path)),(0 imml we have
already found the next minimum delay .mind Then we will update the mind with

)(i
e md iff .)(mindmdt i

e
x <<

After we have reached a terminal node again, we check if it is different from
the previously reached terminal node. If it is, we put the new transition to the
output waveform labelling it with the current time moment. We continue the
graph traversal procedure until no xtd >min is found. This means that all the
transitions (which have influence on the macro output) in the macro have already
taken place and the next vector should be taken. When all the vectors have been
simulated for the given macro, a new macro is taken. The whole process stops
when the whole circuit has been finished.

The above was the description of the general SSBDD-based timing simulation
algorithm, which uses no stack. Note that in some cases we do not need to
check all the nodes in the graph because those nodes will never lie on an
activated path. To make the procedure even more efficient, we use a stack
to store every encountered node along the path, with the delay which was
taken as .mind Using the stack, we have no need to begin path traversal from the
initial node every time. We can return to the last node sm taken from the stack

 279

and take the)(s
e md as the next mind and update it further as we start moving

forward.
In the following, we give the description of a single-stack-based algorithm

step by step.

Algorithm 2.
1. Initialization: ,0=t ,0min =d ,0=i ,0=ptr ,0).(=nodeptrstack

,0).(=timeptrstack macro output is undefined.
2. If)(i

e mdt < go to 3. Otherwise take i as the index of 0m if
}0,{)(hmx i = or as the index of 1m if }1,{)(ε=imx , go to 7.

3. If Di xmx ∈)(go to 4. Otherwise take i as the index of 0m if }0,{)(ε=imx
or as the index of 1m if },1,{)(hmx i = go to 7.

4. If 0=ptr or timeptrstackmd i
e).()(< , go to 5. If not, go to 6.

5. ,1+= ptrptr),().(i
e mdtimeptrstack = .).(inodeptrstack =

6. Take i as the index of 0m if ε=)(imx or as the index of 1m if .)(hmx i =
7. If im is not one of the terminal nodes, go to 2. If not, go to 8.
8. If macro output is different from the value of the terminal node we have

come to, update macro output with the new transition and label it with time .t
9. If 0=ptr stop, otherwise go to 10.
10. ,).(timeptrstackt = ,).(nodeptrstacki = ,1−= ptrptr =mind

,).(timeptrstack go to 2.

Example. In Fig. 3 an example to illustrate the algorithm is given for the SSBDD
in Fig. 2. The input pattern and the delays are the same as in Table 2. We start
from the node g and go to the node .1h As the stack was empty and g had a
transition at the given moment of time, we put g and its delay into the stack. The
node 1h has a transition but the delay in it is not smaller than that in .g So we
continue moving forward without updating the stack. The nodes 2h and 1k have
no transitions this time. We just pass them by. Finally, we reach the terminal
node .0,Tm Thus the initial value at the output y will be 0.

Fig. 3. Single-stack-based timing simulation for the SSBDD in Fig. 2.

h2

h1 k1 y g h2 y = 0

k1 y = 0

y = 0

 280

We get back to the node taken from the stack (it is)g and go to another
direction (the value in g has been changed). The current moment of time is 3

now. The node 2h has a transition and the transition time is greater than the

current moment of time. As the stack is empty again, we put 2h and the delay
into the stack and move forward. Finally, again we reach the same terminal node.
Thus the output is stable. Again we get back to the node 2h taken from the stack
and reach the same terminal node, what means no change of the value on the
output. Since the stack is empty now, the calculation terminates.

Note that despite the node 2k has a transition, we did not examine this macro
input at all. That is, we have to check all of the macro inputs and calculate
derivatives for all Di xmx ∈)(only in the worst case.

In Algorithm 2 and the example above we use a stack to return each time not
to the very beginning of the graph but exactly to the node with the next transition.
However, not every transition along the activated path can influence the output of
the macro. In the following we give an idea how to improve the Algorithm 2 by
using this feature.

Given an input pattern that activates a full path),,(,
0

eTmml which consists of
the nodes).,(,

0
eTmmM We designate ,{),(,

0
NeTe MmmmmM ∈=

),,(,
0

eTmmMm ∈ ,)(emx = }}1,0{∈e the set of all nonterminal nodes along
the path which hold the value .e Similarly, the set of all the nodes along the path
which hold the value e¬ are designated ,{),(,

0
NeTe MmmmmM ∈=¬

),,(,
0

eTmmMm ∈ ,)(emx ¬= }}.1,0{∈e In other words, we divide all the
nodes along the activated path into two subsets. The first one

),(,
0

0 eTmmM contains all the nodes which hold the current value 0 and the other
one),(,

0
1 eTmmM contains all the nodes which hold the value 1. Terminal node

eTm , does not belong to any of the two subsets. If the currently reached terminal
node is 0,Tm then it is known that transitions in all the nodes),(0,

0
1 TmmMm ∈

do not affect the output value (taking a new path, we will still reach the node
),0,Tm and vise versa, for the node 1,Tm no transitions in nodes

),(1,
0

0 TmmMm ∈ can affect the output.
The above statement shows clearly that, standing in the terminal node eTm , ,

we should consider only the nodes),(,
0

eTe mmMm ∈ as the potential sources of
influence on the macro output. Therefore, we introduce a minor change to the
Algorithm 2 using two different stacks for the nodes of),(,

0
0 eTmmM and

),(,
0

1 eTmmM . Standing each time at the terminal node, we check only the
dedicated stack for the next transition to simulate it. If there are some transitions
in another stack, they will be left not simulated because they cannot affect the
macro output. That is, we have to simulate all the nodes with transitions on the
current active path only in the worst case.

However, certain operations and comparison of data between two stacks
should be added to make the algorithm work well. This generates some overhead
and in the worst case the double-stack-based algorithm may work slower than the

 281

single-stack-based one. This gave us an idea to try to use the two-stack approach
only for finding the next moment of time but starting the traversal procedure
from the initial node .0m This helps us to avoid the time-consuming procedure
of stack update. This means that we can win the time needed for stack update, but
we lose the time needed for the path traversal from the beginning.

For different circuits all the three algorithms should give different results. It is
logical to suppose that the simpler algorithms should work faster for smaller
macros, but for bigger ones sophisticated stack-based algorithms can give better
results. In the next section we will illustrate this statement by experimental data,
but now let us give an example to illustrate the two-stacks-based algorithm.

Example. Consider the same SSBDD, the same input pattern, and the same
delays as in the last example. Similarly, we begin with the node g and traverse
the activated path until the end, but, differently from the single stack case, we
store the node g in one stack and the node 1h in another. We do not put nodes

2h and 1k into the stacks similarly to the previous example. Finally we reach the
terminal node .0,Tm Thus the initial value at the output y is 0.

In this case, only nodes with transitions 0 to 1 can affect the macro output.
Thus we have to check the corresponding stack. We find the node 1h in this stack
and go back to this node. However, at this point we cannot continue the graph
traversal before we have checked another stack to see if it has a node which
stands closer to the initial node and has a delay smaller than or equal to the delay
in the node .1h If there is such a node in another stack we have to go further to
this node. This is the point where the overhead of the processing of stacks is
added.

In another stack we find node g with the delay equal to the delay in ,1h so
we move further to node g and start the traversal of newly activated path from
that point. Both stacks are empty again. As the node 2h has a transition and the
delay is greater than the current moment of time, we put it into one of the stacks.
Node 1k does not have a transition, so we pass it by and come to the same
terminal node (again).0=y

Fig. 4. Double-stack-based timing simulation for the SSBDD in Fig. 2.

h2

h1 k1 y g h2 y = 0

k1 y = 0

 282

We look at the stack, which corresponds to the situation where 0=y , and
find it to be empty. This means that the simulation is over. In Fig. 4 an
illustration of the algorithm is given. Compared to the single-stack-based
algorithm (Fig. 3) it has one step less.

6. EXPERIMENTAL DATA

Experiments were carried out using two different types of benchmarks. The

ISCAS’85 circuits were chosen since they are widely adopted benchmarks.
However, the efficiency of simulation is highly dependent on the number of
levels and on the number of gates in tree-like subcircuits (i.e., on the size of a
macro) represented by graphs. Therefore we have also used 5 tree-like circuits
with numbers of levels from 2 to 10 (numbers of gates from 3 to 1023). And we
used two different input pattern generation modes: with single (S) or multiple
(M) bit transitions allowed on inputs at the same time. In order to evaluate our
approach, we used a gate-level event-driven timing simulation algorithm as a
reference. Experimental results presented below clearly show a noticeable speed-
up of this approach.

The results for tree-like circuits are illustrated for the case of single transitions
in Fig. 5 and for the case of multiple transitions in Fig. 6. Simulation time is
given in seconds for 30 000 random patterns. In our work we measured
simulation time on both macro and gate levels. Note that the simulation time
grows exponentially with the number of levels at the gate level (Fig. 5). The
simulation time at the macro level (our approach) grows much slower (Fig. 5),
but also not linearly. In Fig. 5 (right) all the four macro-level algorithms are
shown. However, there is no noticeable difference in simulation time between
them.

Fig. 5. Comparison of simulation times of different algorithms (single-bit transition mode).

 283

For the multiple-bit change input pattern generation mode there is a noticeable
difference in speed for the macro-level timing simulation algorithms (Fig. 6). The
double-stack-based algorithm (lower thin line) is the fastest for this case and the
algorithm with no stack (upper bold line) is the slowest. The timing simulation at
the gate level needs time (dashed line) that grows again much faster than the time
our approach requires.

Experimental results on ISCAS’85 benchmarks are given in Table 3. The best
simulation times and speed-ups are shown in bold.

Note that the double-stack-based and no-stack-based algorithms give the best
results. However, there is no big difference between the four algorithms but there
is still a great speed-up compared to the gate-level algorithm. The speed of
simulation based on the proposed method increases up to 3.54 times for patterns
with single transition and up to 2.91 times for patterns with multiple transitions.
For the case of ISCAS’85 benchmarks, no relationship between the circuit size
and the simulation speed-up can be noticed.

However, Fig. 7 presents an interesting observation that the speed gain of
timing simulation is directly proportional to the average size of a macro. The
results are shown for the case of ISCAS’85 benchmarks and the double-stack

Fig. 6. Comparison of simulation times of different algorithms (multiple-bit transition mode).

Average macro size

Fig. 7. Simulation speed-up compared to the average size (number of gates) of a macro.

Table 3. Experimental results for the ISCAS’85 circuits

 Name of the circuit and number of gates

Type of the
algorithm

c432
232

c499
618

c880
357

c1355
514

c1908
718

c2670
997

c3540
1446

c5315
1994

c6288
2416

c7552
2978

 Pattern generation mode

 S M S M S M S M S M S M S M S M S M S M

Simulation time for 10 000 patterns, s
No stack 0.77 1.49 1.71 3.38 1.34 2.52 2.81 5.17 2.32 4.49 3.80 7.85 3.63 8.69 6.18 15.2 30.8 139 8.88 24.4
Single-stack 0.86 1.47 1.93 3.73 1.53 2.56 3.41 5.76 2.69 4.71 4.64 8.21 4.26 8.71 7.36 15.4 32.3 133 10.7 24.5
Double-
stack

0.80 1.37 1.79 3.77 1.33 2.40 2.94 5.20 2.36 4.50 4.02 7.66 3.78 8.42 6.55 15.1 31.6 141 9.22 23.7

Double-
stack,
no update

0.79 1.46 1.80 3.53 1.38 2.58 2.94 5.44 2.34 4.59 4.01 8.00 3.78 8.81 6.43 15.6 33.0 152 9.26 24.7

Gate level 2.16 3.32 5.30 9.83 3.26 5.19 4.86 8.38 6.98 11.5 9.24 15.9 12.9 23.6 20.1 37.7 58.7 272 28.0 57.1

G/M ratio
No stack 2.81 2.23 3.10 2.91 2.43 2.06 1.73 1.62 3.01 2.57 2.43 2.03 3.54 2.72 3.26 2.47 1.90 1.95 3.15 2.34
Single-stack 2.51 2.26 2.75 2.64 2.13 2.03 1.43 1.45 2.59 2.45 1.99 1.94 3.02 2.71 2.73 2.44 1.82 2.04 2.60 2.32
Double-
stack

2.70 2.42 2.96 2.61 2.45 2.16 1.65 1.61 2.96 2.56 2.30 2.08 3.40 2.81 3.07 2.50 1.86 1.92 3.03 2.41

Double-
stack,
no update

2.73 2.27 2.94 2.78 2.36 2.01 1.65 1.54 2.98 2.51 2.30 1.99 3.40 2.68 3.13 2.42 1.78 1.78 3.02 2.31

284

 285

simulation algorithm. The observed relationship gives us a new criterion for
arranging hardly arranged before ISCAS’85 benchmarks.

For all the experiments we used a Sun Ultra 10 workstation with 440 MHz
UltraSparc – IIi processor, 256 MB RAM, and SunOS 5.7.

7. CONCLUSIONS

A new approach to speed up gate-level timing simulation is proposed where,

instead of gate delays, path delays for tree-like subcircuits (macros) represented
by SSBDDs are used. SSBDDs capture the structure of a circuit whereas
conventional BDDs do not allow that. At the same time, using SSBDDs for
representing macros avoids exponential explosion of the model complexity. The
number of paths in the circuit, processed by delay calculation, is a linear function
of the number of gates.

Experiments were carried out on the ISCAS’85 benchmarks with the number
of gates up to about 3000. The linear feature of the model complexity enables
efficient simulation of complex realistic combinational circuits.

Four algorithms for this approach were implemented and their efficiencies
compared. The timing simulation speed at the macro-level is up to 3.54 (2.43 on
average) times faster compared to the gate-level simulation for the investigated
set of ISCAS’85 benchmark circuits. The best among the macro-level algorithms
is the double-stack-based one.

The high speed of simulation is achieved at the cost of some loss of
simulation data. Instead of all waveforms for all nodes of the gate-level network,
only the waveforms for the outputs of macros are calculated. This simplification
is nevertheless acceptable for most industrial applications of timing simulation.

ACKNOWLEDGEMENTS

This work has been supported partially by the Royal Swedish Academy of

Sciences, Estonian Science Foundation (grant No. 4300), and the European
Community (Copernicus JEP 9624 VILAB).

REFERENCES

 1. Cheng, K. T. and Agrawal, V. D. Unified Methods for VLSI Simulation and Test Generation.
Kluwer, Boston, 1989.

 2. Abramovici, M., Breuer, M. A., and Friedman, A. D. Digital Systems Testing and Testable
Design. IEEE Press, New York, 1999.

 286

 3. McWilliams, T. M. Verification of timing constraints on large digital systems. In Proc. 17th
ACM/IEEE Design Automation Conference. Minneapolis, 1980, 139–147.

 4. Bowden, K. Design goals and implementation techniques for time-based digital simulation and
hazard detection. In Proc. International Test Conference. Philadelphia, 1982, 147–152.

 5. Ishiura, N., Takahashi, M., and Yajima, S. Time symbolic simulation for accurate timing
verification of asynchronous behavior of logic circuits. In Proc. 26th ACM/IEEE Design
Automation Conference. Las Vegas, 1989, 497–502.

 6. Doukas, D. and LaPaugh, A. S. Clover: A timing constraints verification system. In Proc. 28th
ACM/IEEE Design Automation Conference. San Francisco, 1991, 662–667.

 7. Martello, A., Levitan, S., and Chiarulli, D. Timing verification using hdtv. In Proc. 27th
ACM/IEEE Design Automation Conference. Orlando, 1990, 118–173.

 8. Linderman, M. H. Simulation of Digital Circuits in the Presence of Uncertainty. PhD thesis,
Cornell University, Ithaca, 1994.

 9. Devadas, S., Keutzer, K., Malik, S., and Wang, A. Verification of asynchronous interface
circuits with bounded wire delays. IEEE J. VLSI Signal Process., 1994, 7, 161–182.

10. Maurer, P. and Lee, Y. S. Gateways: A technique for adding event-driven behavior to compiled
simulations. IEEE Trans. Comput.-Aided Des., 1994, 13, 338–352.

11. Lewis, D. A hierarchical compiled code event-driven logic simulator. IEEE Trans. Comput.-
Aided Des., 1991, 10, 726–737.

12. Wang, Z. and Maurer, P. LECSIM: A levelized event-driven compiled logic simulator. In Proc.
27th ACM/IEEE Design Automation Conference. Orlando, 1990, 491–496.

13. Smith, S., Mercer, M. & Brock, B. Demand driven simulation: BACKSIM. In Proc. 24th
ACM/IEEE Design Automation Conference. Miami Beach, 1987, 181–187.

14. Devadas, S et al. Event suppression: Improving the efficiency of timing simulation for
synchronous digital circuits. IEEE Trans. Comput.-Aided Des., 1994, 13, 814–822.

15. Ulrich, E. A design verification methodology based on concurrent simulation and clock
suppression. Proc. 20th ACM/IEEE Design Automation Conference. Miami Beach, 1983,
709–712.

16. Takamine, Y. et al. Clock event suppression algorithm of VELVET and its application to S-820
development. In Proc. 25th ACM/IEEE Design Automation Conference. Anaheim, 1988,
716–719.

17. Weber, T. and Somenzi, F. Periodic signal suppression in a concurrent fault simulator. In Proc.
European Conference on Design Automation. Amsterdam, 1991, 565–569.

18. Gai, S. and Montessoro, P. Creator: New advanced concepts in concurrent simulation. IEEE
Trans. Comput.-Aided Des., 1994, 13, 786–795.

19. Razdan, R., Bischoff, G., and Ulrich, E. Clock suppression techniques for synchronous circuits.
IEEE Trans. Comput.-Aided Des., 1993, 12, 1547–1556.

20. Barzilai, Z. et al. HSS – a high-speed simulator. IEEE Trans. Comput.-Aided Des., 1987, 6,
601–617.

21. Chiang, M. and Palkovic, R. LCC simulators speed development of synchronous hardware.
Comput. Des., 1986, 25, 87–92.

22. Wang, L.-T. et al. SSIM: A software levelized compiled-code simulator. In Proc. 24th
ACM/IEEE Design Automation Conference. Miami Beach, 1987, 2–8.

23. Khoo, K.-Y. and Willson, A. N. Cycle-based timing simulations using event-streams. In Proc.
International Conference on Computer Design. Austin, 1996, 460–465.

24. Kumar, D., Kohli, A., and Narayanswamy, V. Faster simulation of timed Petri nets via
distributed simulation. In Proc. 21st International Computer Software and Applications
Conference. Washington, D.C., 1997, 149–152.

25. Zuberek, W. M. Event-driven simulation of timed Petri net models. In Proc. 33rd Annual
Simulation Symposium. Washington, D.C., 2000, 91–98.

26. Benkoski, J. Statistical Timing Verification and Delay Fault Detection by Formal Signal
Interaction Modeling in a Multi-level Timing Simulator. PhD thesis, Carnegie Mellon
University, Pittsburgh, 1989.

 287

27. Ghosh, S. Dynamic multi-level simulation of digital hardware design. Simulation, 1987, 48,
247–252.

28. Chew, M. P. and Strojwas, A. J. Utilizing logic information in multi-level timing simulation. In
Proc. 28th ACM/IEEE Design Automation Conference. San Francisco, 1991, 215–218.

29. Eichelberger, E. B. Hazard detection in combinational and sequential switching circuits. IBM J.
Res. Dev., 1965, 9, 90–99.

30. Breuer, M. A. and Harrison, L. Procedures for eliminating static and dynamic hazards in test
generation. IEEE Trans. Comput., 1974, 23, 1069–1078.

31. Fantauzzi, G. An algebraic model for the analysis of logical circuits. IEEE Trans. Comput.,
1974, 23, 576–581.

32. Kung, D. S. Hazard-non-increasing gate-level optimization algorithms. In Proc. IEEE/ACM
International Conference on Computer Aided Design. Santa Clara, 1992, 631–634.

33. Chakraborty, T. J., Agrawal, V. D., and Bushnell, M. L. Delay fault models and test generation
for random logic sequential circuits. In Proc. 29th ACM/IEEE Design Automation
Conference. Anaheim, 1992, 165–172.

34. Chakraborty, S. and Dill, D. L. More accurate polynomial-time min-max timing simulation. In
Proc. 3rd International Symposium on Advanced Research in Asynchronous Circuits and
Systems. Eindhoven, 1997, 112–123.

35. Ubar, R. Test generation for digital circuits using alternative graphs. Proc. Tallinn
Polytechnical Institute. 1976, No. 409, 75–81 (in Russian).

36. Ubar, R. Beschreibung digitaler Einrichtungen mit alternativen Graphen für die Fehlerdiagnose.
Nachr. tech. Elektron., 1980, 30, 96–102.

37. Ubar, R. Test synthesis with alternative graphs. IEEE Des. Test Comput., 1996, 13, 48–59.
38. Ubar, R. Multi-valued simulation of digital circuits with structurally synthesized binary

decision diagrams. In Multiple Valued Logic. Gordon and Breach Publishers, 1998, 4, 141–
157.

39. Andrew, R. An algorithm for 8-valued simulation and hazard detection in gate networks. In
16th International Symposium on Multiple Valued Logic. Blacksburg, 1986, 273–280.

40. Mao, W. and Ciletti, M. D. A variable observation method for testing delay faults. In Proc. 27th
ACM/IEEE Design Automation Conference. Orlando, 1990, 728–731.

41. Si, S. Dynamic testing of redundant logic networks. IEEE Trans. Comput., 1978, 27, 828–832.
42. Jervan, G., Markus, A., Raik, J., and Ubar, R. Automatic test generation system for VLSI. In

Proc. 1st Electronic Circuits and Systems Conference. Bratislava, 1997, 255–258.
43. Ubar, R. Parallel critical path tracing fault simulation. In Proc. 39. Int. Wiss. Kolloquium.

Ilmenau, 1994, 1, 399–404.
44. Raik, J. and Ubar, R. Feasibility of structurally synthesized BDD models for test generation. In

Proc. European Test Workshop. Barcelona, 1998, 145–146.
45. Jutman, A. and Ubar, R. Design error diagnosis in digital circuits with stuck-at fault model. J.

Microelectron. Reliability, 2000, 40, 307–320.

STRUKTUURSETE BINAARSETE OTSUSTUSDIAGRAMMIDE
RAKENDAMINE DIGITAALSKEEMIDE ASÜNKROONSEKS

SIMULEERIMISEKS

Artur JUTMAN ja Raimund UBAR

Nüüdisaegsete digitaalskeemide üha kasvav töösagedus sunnib tähelepanu

pöörama viidete modelleerimisele (asünkroonsele simuleerimisele). Laialt tuntud
meetodeid skeemi käitumise kontrollimiseks ajas on asünkroonne simuleerimine.

 288

Töös on esitatud uus ventiilitaseme asünkroonse simuleerimise kiirendamise
meetod, mis baseerub struktuursetel binaarsetel otsustusdiagrammidel (SSBDD).
SSBDD-d on juba leidnud rakendust digitaalskeemide esitamise efektiivse mate-
maatilise mudelina. Uus lähenemisviis kasutab ventiilide viidete asemel puukuju-
liste alamskeemide (makrode) teede viiteid. Seetõttu ei arvutata ajadiagramme
mitte iga ventiili väljundis, vaid ainult makrode väljundites. Iga makro on esita-
tud SSBDD-ga, mis võimaldab kiiret viidete arvutamist. On näidatud, et kiiruse
kasv asünkroonsel simuleerimisel on proportsionaalne skeemi makrode keskmise
suurusega. Uut asünkroonse simuleerimise kiirendamise meetodit on kontrollitud
eksperimentaalselt.

