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Abstract. Meeting the timing requirements is an important constraint imposed on highly integrated 
circuits, and the verification of timing of a circuit before manufacturing is one of the critical tasks 
to be solved by CAD tools. In this paper, we present a novel technique to speed up gate-level 
timing simulation that is based on Structurally Synthesized Binary Decision Diagrams (SSBDD), 
which have already found application as an efficient mathematical model to represent digital 
circuits. The new approach uses path delays instead of gate delays for tree-like subcircuits 
(macros). Therefore timing waveforms are calculated not for all internal nodes of the gate-level 
circuit, but only for outputs of macros. The macros are represented by SSBDDs, which enable a 
fast computation of delays for macros. We show that the speed-up of timing simulation is directly 
proportional to the average size of macros in the circuit. The new approach to speed up the timing 
simulation is supported by encouraging experimental results. 
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1. INTRODUCTION 
 
The transition from the traditional ASIC (Application-Specific Integrated 

Circuits) to SoC (System-on-Chip) has led to new challenges in design methods, 
manufacturing, verification, and test. Timing simulation is a widely used method 
to verify the timing behaviour of a digital design. In a synchronous digital 
system, the timing property that is needed to be verified is that for each input 
vector transition the combinational logic settles to a stable state within a given 
clock period. One approach to ensure this is to use timing simulation. 

There are different methods to model the delays in digital circuits, including 
the zero-delay, unit-delay and multiple-delay models [1]. While the zero-delay 
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models can be used to analyse combinational circuits without memories, and 
unit-delay models can be used to verify the logical behaviour of synchronous 
sequential circuits, they are inadequate for analysing the timing behaviour of 
digital circuits. For the timing behaviour, a multiple-delay model should be used. 
In such a model, each circuit element is assigned a delay which is an integer 
multiple of a time unit. Usually separate rise and fall delays are specified. If the 
gate delays are not functions of the direction of the output change, we can use a 
transition-independent delay model. In the following we use a nominal-delay 
model [2] with the assumption that the gate delays are known. 

In the classical gate-level delay simulation [2], all the gates should be 
evaluated once per cycle which leads to a great amount of simulation with 
circuits of high complexity. The first approach to cope with the complexity was 
the event-driven method, when a gate is simulated only if a transition occurs at 
its input [3–9]. This approach has found broad application due to its flexibility and 
capability of handling different delay models and complex signal states. How-
ever, its major drawback is the useless processing of a great amount of events 
that do not change the output of any gate. It is also possible that exponentially 
long sequences of transitions can result from a single input change. Finally, most 
of the event-driven approaches are interpretive and cannot use the model 
compilation technique, which can substantially reduce the run time of the 
algorithm [10–12]. 

To suppress the useless events and evaluations, the demand-driven 
algorithm [13] and event-suppression approach [14] were proposed. Clock-
suppression methods [15–19] were proposed for synchronous circuits in order to 
avoid evaluation of cyclic signals (synchronizers). For this class of circuits, 
cycle-based simulators [20–23] were also elaborated. They assume that only the 
final values at the output pins are reported. This means that intermediate simula-
tions can be performed very fast using simple logic values (0 and 1) and the zero-
delay model. Some of the event-driven approaches [24,25] use the extended Petri 
net model (timed Petri nets) to incorporate parallel and distributed simulation 
techniques. Multi-level timing simulation [26–28] as an addition to event-driven 
concept is one more attempt to reduce the complexity of the proposed model. 

Another big cluster of timing simulation methods is symbolic approach [29–34]. 
These methods use signal algebra to represent different transitions and signal 
states in a circuit. Usually, this technique is not accurate enough unless a 
sophisticated algebra is used. For instance, in [32] a 9-valued algebra and in [34] a 
13-valued signal algebra is proposed. 

Our approach is based on SSBDDs which have already found application as 
an efficient mathematical model to represent digital circuits. They were 
introduced in [35,36] as structural alternative graphs, and generalized for the 
multiple-valued decision diagrams in [37]. SSBDD model has several critical 
features making it very attractive compared to other commonly used 
mathematical models, such as, for example, Ordered Binary Decision Diagrams 
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(OBDD) or a simple gate-level representation. First of all, the SSBDD model is 
generated from a circuit’s netlist within linear time (for OBDD it can be 
exponential) compared to the circuit size. Secondly, the size of the SSBDD 
model is linear relative to the circuit size (again, OBDD can be of exponential 
size). Thirdly, SSBDD model preserves structural information about the circuit 
while other BDD models do not. And finally, it even reduces the model 
complexity compared to the gate-level representation, because instead of 
considering each gate separately, it deals with macros – tree-like subcircuits (i.e. 
subcircuits with no reconvergent fanouts), which usually consist of several gates. 

In [38] SSBDDs were suggested for multivalued simulation of digital circuits 
for different purposes like hazards investigation [39], delay fault analysis [40], and 
fault cover analysis in dynamic testing [41]. Efficient algorithms for logic and 
fault simulation were described in [42] and [43], respectively. A fast deterministic 
test pattern generator based on SSBDDs was proposed in [44], and in [45] an 
efficient design error localization technique was introduced, which also utilizes 
the advantages brought by the SSBDD representation. 

The use of SSBDDs in timing simulation allows modelling path delays in 
macros and calculation of timing waveforms at macros’ outputs instead of 
providing such calculations at the output of each gate. To each path in a macro 
we assign a delay (or two delays in the case of transition-dependent delay 
model). For simplicity, in this paper, without loosing the generality, we consider 
the one-delay case for each path. The paths are considered only inside macros. 
For this reason, we avoid the exponential explosion of the number of paths 
processed. For example, assume that the subcircuit in Fig. 1 is represented by a 
macro. This macro is characterized by 6 paths and 6 delays, calculated on the 
basis of gate delays. When representing complex gates by macros, the number of 
macros is equal to the number of tree-like subcircuits in the complex gate. For 
example, a one-bit multiplexer is represented by a single macro. 

In this paper we present a novel method for delay simulation based on 
Boolean derivatives and SSBDD representation. Section 2 describes equivalent 
parenthesis  forms  (EPF)  for  a  given   digital  circuit.   In  Section  3  the  main  
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Fig. 1. Digital subcircuit. 
 

considerations about timing simulation based on Boolean derivatives are given 
and in  Section 4 an efficient implementation of this approach on  SSBDDs is 
described. Our algorithms are explained in detail in Section 5. In Section 6 
experimental results are given and, finally, Section 7 brings concluding remarks. 

 
 

2. EQUIVALENT  PARENTHESIS  FORMS 
 
Let us represent a digital circuit by an EPF synthesized by a superposition 

procedure directly from the gate-level description of a circuit. For synthesizing 
the EPF of a given circuit, numbers are assigned to the gates and letters to the 
nets. Then, starting at an output and working back toward the primary inputs, 
EPF replaces individual literals by products or sums of literals. 

When an AND gate is encountered during backtracing, a product term is 
created in which the literals are the names of nets connected to the inputs of the 
AND gate. Encountering an OR gate causes a sum of literals to be formed, while 
encountering an inverter causes a literal to be complemented. 

As an example, the procedure is illustrated by transforming the circuit in 
Fig. 1 to its EPF: 
 

∧+=++== )())(( 1251251241241313121211 kfhgemdcbay           
 

).)(()( 13613125125712412413613 kmkhhgkm ¬+¬+=¬+∧  
 

When creating an equation by the superposition procedure described above, 
the identity of every signal path from the inputs to the outputs of the given circuit 
will be retained. Each literal in an EPF consists of a subscripted input variable or 
its complement, which identifies a path from the variable to the output. From the 
manner in which the EPF is constructed, it can be seen that there will be at least 
one subscripted literal for every path from each input variable to the output. It is 
also easy to see that the complemented literals correspond to paths, which 
contain an odd number of inversions. 

 
 

3. EQUIVALENT  PARENTHESIS  FORMS  AND  TIMING  
SIMULATION 

 
Let us have an EPF )...,,...,,,( 21 ni xxxxPy =  where Xxi ∈  are literals 

(inverted or not), which describe the behaviour of a digital circuit. Denote by 
),...,,()( 21 iniii gggxL =  the signal path through the gates inii ggg ,...,, 21  from 

the output y  up to the input .ix  Denote the delay of the gate ijg  by ).( ijgd  For 
simplicity, here we use the same delay for all the gate inputs for both raising and 
falling transitions. However, this does not affect the generality of the approach. 
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Let us call ixy ∂∂  partial Boolean derivative. The theory of Boolean 
differential calculus tells that if ,1=∂∂ ixy  then a transition of the signal at input 

ix  leads to a transition of the signal at output .y  To take into consideration the 
timing aspect, we introduce a function ,)()( 1 xy txty ∂∂  where 1)()( =∂∂ xiy txty  
means that the transition of ix  at the moment xt  causes the transition of y  at the 
moment .yt  
 
Theorem 1. Given a single transition at the moment xt  on the input ix  with a 
single output of a circuit represented by EPF )...,,...,,,( 21 ni xxxxPy =  with a 
single path ),...,,()( 21 iniii gggxL =  from ix  to ,y  the transition propagates up 
to y  with the delay 
 

),(...)()()( 21 iniii gdgdgdyxd +++=→                         (1) 
 
iff ,1)()( =∂∂ xiy txty  where ).( yxdtt ixy →+=  

 
Proof. Along the definition of partial Boolean derivatives, from 1=∂∂ ixy  (here 
and afterwards yt  and xt  for y  and x  are dropped for better readability) it 
follows that the value of y  depends on the value of ,ix  hence the transition at ix  
propagates up to .y  Since the path ),,...,,()( 21 iniii gggxL =  along which the 
transition propagates, is not a branch, and it also has no fanouts, no other 
reconverging paths can exist along which the same transition at ix  could 
influence the value of .y  Hence, the delay of the transition at y  may be 
produced only by the sum of the delays of the gates along the path ),( ixL  and the 
relationship (1) is valid.                                                                                         
 

In the general case, if transitions occur on several inputs, or a transition 
propagates along several reconverging paths, then the derivative ixy ∂∂  may 
depend on the influence of other transitions which may result in a glitch at .y  In 
other words, the value of the function )...,,...,,...,,,( 11–21 niii xxxxxfxy +=∂∂  
depends in this case on the literals where values are undetermined (unknown), 
and the calculation of ixy ∂∂  is impossible. 

Now, let us introduce the set },,,1,0{5 UhS ε=  for 5-valued simulation, 
where )(hε  represents a waveform having a step-up transition from 0 to a final 
value of 1 (step-down transition from 1 to a final value of 0), and U  represents 
undetermined or don’t care waveform. These values ,, hε  and U  are called 
dynamic values. 

In Table 1 we give also the algebra introduced for the dynamic values 
},,{ Uhε  in [38]: 

Let us have a network with EPF )...,,...,,,( 21 ni xxxxfy =  and a multi-valued 
pattern )...,,...,,,( 21

t
n

t
i

ttt xxxxx =  at time ,xt  where .5Sxt
i ∈  Denote a subset of 

literals with dynamic values at xt  by }}.,,{{ Uhxxx t
iiD ε∈=  

 
 



 274 

 
Table 1. Calculation of dynamic values 

 

∨  ε h U ∧  ε h U 

ε ε U U ε ε U U 
h U h U h U h U 
U U U U U U U U 

 
 
Definition 1. We say 1}max{ =∂∂ ixy  iff there is at least one combination of 
values 0 or 1 for nonspecified x’s which produce .1=∂∂ ixy  Otherwise, 

.0}max{ =∂∂ ixy  
 

Lemma 1. The value of EPF )...,...,,( 21 ni xxxxPy =  for a given network in the 
multi-valued alphabet 5S  is: 
 

},1}max{{, =∂∂∩∈∨=∧= iiDiii xyxxxxxy                    (2) 
 
iff .}1}max{{ ∅≠=∂∂∩ iiD xyxx  

 
Proof. If 1}max{ =∂∂ ixy  is valid for a single ,Di xx ∈  then according to the 
definition of Boolean derivatives, .ixy =  In this case the same value of ix  
occurs on the output (or inverted value if ix  is inverted). Suppose now that there 
are more than one literal Di xx ∈  satisfying the condition .1}max{ =∂∂ ixy  In 
other words, there are more than one converging path in the network which 
propagate transitions towards the output. If two paths are converging, either 
AND or OR of multiple values from },,{ Uhε  is possible. From the equivalence 
of operations AND and OR on the set },,,{ Uhε  it follows that the value of y  
can be calculated as a function of AND (or OR) of values 

}.1}max{{ =∂∂∩∈ iiDi xyxxx  
 
Consider, for example, a transition pattern ,1=== mkg  ε=h  at the input of 

the circuit in Fig. 1. By calculating Boolean derivatives, we find: 
,1257124 hhy =∂∂  and .1241257 hhy ¬=∂∂  Since 124h  and 1257h  have dynamic 

values ,1257124 ε=== hhh  the calculation of the Boolean derivative is 
impossible. On the other hand, since ,1}max{}max{ 1257124 =∂∂=∂∂ hyhy and 
since },,{}1}max{{ 1257124 hhxyxx iiD ¬==∂∂∩ we have =¬∧= 1257124 hhy  

.U=¬∧ εε  The value U  on the output of the subcircuit in Fig. 1 means the 
possibility of a glitch at the given transition pattern. 
 
Theorem 2. Given 1>Dx  at input pattern )...,,...,,,( 21

t
n

t
i

ttt xxxxx =  where 
,5Sxt

i ∈  and a subset DD xx ∈*  where 
 

),)((&)1}(max{:*
iiiDi yxdxyxx ∆=→=∂∂∈∀                       (3) 
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there appears a transition on the output of a circuit )...,,...,,,( 21 ni xxxxPy =  
with the value 
 

,ixy ∧=                                                    (4) 
 

at time ixt ∆+  where i∆  is calculated by formula (1). 
 
 

Proof. Suppose there exist at least two inputs *, D
t
j

t
i xxx ∈  with corresponding 

paths )...,,,()( 21 iniii gggxL =  and )...,,,()( 21 jmjjj gggxL =  through the 
circuit. Suppose they have a joint path )...,,,()( 1–,21, kiiiki ggggL =  starting from 
the output of a gate ,jkik gg ≡  ,0>k  with the transition delay 

).(...)()( 1–,21 kiii gdgdgd +++=τ  From (3) it follows that the transitions 
evoked at the inputs t

j
t
i xx ,  reach the inputs of the gate ikg  at the same moment 

)).((1 ikixk gdtt −−∆+=+ τ  On the other hand, from the condition 
}1}max{{, =∂∂∩∈ iiD

t
j

t
i xyxxxx  and Lemma 1, it follows that the value of the 

signal at time τ−∆+= ixk tt on the output of the gate ikg  belongs to the set 
},,,{ Uhε  which means a transition (where U  is a possible glitch). Since the 

path )( ,kigL  is also activated due to (3), the transition propagates to the output 
and shows itself at time =++−−∆+=+++ τττ )())(()(1 ikikixikk gdgdtgdt  

.ixt ∆+  
 

Corollary. From Theorems 1 and 2 the following algorithm can be derived for 
timing simulation based on calculating Boolean derivatives of equivalent 
parenthesis forms. 

 
 

Algorithm 1. 
1. Calculate ixy ∂∂  for Di xx ∈  for the given transition .tx  
2. Take the lowest value of ).( yxd ii →=∆  If 1=∂∂ ixy , fix the new value 

of y  for time .ixt ∆+ Use formula (2) to check if a glitch is present. Remove ix  
from .Dx  

3. If ,∅=Dx  stop, else repeat step 2. 
 
 

4. TIMING  SIMULATION  ON  SSBDDs 
 
A structurally synthesized BDD ),,( X+MGy =  with a set of nodes M  and 

a mapping +  from M  to M  is a BDD which represents an equivalent 
parenthesis form )(xPy = of a gate-level network. The set of nodes consists of a 
subset of nonterminal nodes NM  and of a subset of terminal nodes ;TM  

.TN MMM ∪=   There are one initial node NMm ∈0  and two terminal nodes 
,, TeT Mm ∈ },1,0{∈e  in .M  A one-to-one correspondence exists between 

nonterminal nodes NMm ∈  and the literals .Xxi ∈  The nodes NMm ∈  are 
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labelled by subscripted input variables (or the inverted variables) which identify 
a path from the input to the output of the network. The terminal nodes 

TeT Mm ∈,  are labelled by constants }.1,0{∈e  The literal ,Xxi ∈  which is 
associated with the node m , is denoted by ).(mx  The mapping +  defines the set 
of edges between the nodes of M  whereas Mm+ ⊂)( is a set of successors of 

,m  and )(m+me ∈ is the successor of m  for the value .)( emx =  A pattern tx  
defines a set of activated edges in .yG The edge between m  and em  is activated 
when emx =)(  in the pattern .tx  Activated edges which connect nodes im  and 

jm  make up an activated path ).,( ji mml  The path ),( ji mml  consists of nodes 
.),( MmmM ji ⊆  An activated path ),( ,

0
eTmml  is called a full activated path. 

 
Definition 2. A SSBDD ),,( X+MGy =  represents an equivalent parenthesis 
form )(XPy =  of a gate-level network, iff for each pattern tx  a full path 

),( ,
0

eTmml  in yG  will be activated where .ey =  
 

Two-valued test pattern simulation on SSBDDs is equivalent to path tracing 
procedure on graphs according to the values of variables at a given test pattern. 
At a given pattern ,tx  in a SSBDD ,yG  a full path ),( 0

Tmml  will be activated 
which determines the value of ).( Tmxy =  The simulation procedure will consist 
of tracing the path ),( 0

Tmml  and finding the value of )( Tmx at the terminal 
node .Tm  

For multi-valued simulation, a procedure based on calculation of Boolean 
derivatives on SSBDDs will now be described. Denote ,1),( =ji mml  if there 
exists an activated path between the nodes im  and jm  at the given pattern ,tx  
otherwise .0),( =ji mml  

 
Theorem 3. Given )(xPy =  and ,Xxi ∈  the condition 1=∂∂ ixy  for SSBDD 

),,,( X+MGy =  where ,)( ixmx ≡  is equivalent to the following equation: 
 

.1),(),(),( 0,01,1
0 =∧∧ TT mmlmmlmml                           (5) 

 
 
The proof of the Theorem 3 can be found in [38]. 

Note that Theorem 3 can be used for calculating Boolean derivatives ixy ∂∂  
only in the case when pattern tx  is two-valued, because only in this case all the 
paths ),( ji mml  are activated uniquely. In the general case, when tx  is a multi-
valued pattern, to check the existence of a glitch, we have to generalize Eq. (5). 
The generalized case, based on maximums of Boolean derivatives, is considered 
in [38]. 

Using SSBDDs, it is possible to considerably speed up the calculations 
described in Algorithm 1, because it is not needed to trace all paths in Eq. (5) for 
each .Di xx ∈  
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Fig. 2. SSBDD for the circuit in Fig. 1. 

 
 
 

Table 2. Signal paths and delays of the example 
 

Node Path Delay Pattern 

g g, 4, 2, 1, y 3 h (10) 
h1 h, 4, 2, 1, y 3 ε (01) 

¬h2 h, 7, 5, 2, 1, y 4 h (10) 
k1 k, 5, 2, 1, y 3 0 
m h, 3, 1, y 2 1 

¬k2 k, 6, 3, 1, y 3 ε (01) 

 
 

Example. An example of SSBDD for the circuit in Fig. 1 is presented in Fig. 2. 
The nodes of the graph, the corresponding paths in the circuit, and the path 
delays, calculated by Eq. (1), are depicted in Table 2 (here we assume that all the 
gates have a unit delay). 

Consider a transition pattern given in Table 2. The bold arrows in Fig. 2 mark 
the activated path in the graph before the transition. The shaded nodes are those 
involved in the transition, i.e. where the direction of the activated path changes. 
For the nodes g  and 1h  we have 1}max{}max{ 1 =∂∂=∂∂ hygy  [37]. Using the 
formula (2), we find that Uhhg =∧=∧ ε1  which means that at time 3=t  we 
may have a glitch on the output of the circuit. 

 
 

 
5. THE  TIMING  SIMULATION  ALGORITHMS 

 
Using the SSBDD model gives us the possibility to minimize the number of 

macro inputs to be processed as well as the possibility to use some SSBDD 
features in order to increase the timing simulation efficiency. 

h1 m 

k2 
h2 k1 

y  g 

3 3 

4 

1 

0 
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In this section we describe several implementations of the Algorithm 1 on the 
SSBDD model. First, the general algorithm is given. Then we describe the single 
and double stack based approaches. 

Given is a set of multivalued input patterns tx  at the input of a macro SSBDD 
),,,( X+MGy =  and a set of delays }}.,{,)({ heMmmd ii

e ε∈∈=∆  Certain 
values for both raise )( imd ε  and fall )( i

h md  delays are specified for each node. 
We denote a variable in the node im  as ).( imx  The output of the algorithm is a 
single waveform for the output of each macro. The waveforms show all the 
transitions taking place there. 

The general idea is as follows. Let the current time moment be xt  and the 
current pattern applied .tx  We are traversing the activated (before the transition) 
path ),( 0

Tmml  in the graph from the initial node 0m  to one of the terminal 
nodes Tm  and checking if Di xmx ∈)(  in order to find the node with transition 
that has minimum delay .mind  The transition in this node is the first transition 
that may influence the macro’s output. It will happen at the moment 

mindtt xy +=  iff .1}))((max{ =∂∂ imxy  When the node is found, the current 
time xt  is changed to .mindtx +  

Our task now is to find the next .mind  We go back to the initial node and 
traverse the path from the beginning taking into account that one of the values 
has already been changed. However, as we are probably traversing a new path, 
we can find a node with delay that is smaller or equal to the previous .mind  This 
means that the transition in that node has also taken place and it is not interesting 
any more. In general, we are not interested in all delays .)( xi

e tmd <  Suppose, 
we are in node ,im  ,)( Di xmx ∈  somewhere in the middle of the path. The delay 
here is )( i

e md  and somewhere before (along the path )),( 0 imml  we have 
already found the next minimum delay .mind  Then we will update the mind  with 

)( i
e md  iff .)( mindmdt i

e
x <<  

After we have reached a terminal node again, we check if it is different from 
the previously reached terminal node. If it is, we put the new transition to the 
output waveform labelling it with the current time moment. We continue the 
graph traversal procedure until no xtd >min  is found. This means that all the 
transitions (which have influence on the macro output) in the macro have already 
taken place and the next vector should be taken. When all the vectors have been 
simulated for the given macro, a new macro is taken. The whole process stops 
when the whole circuit has been finished. 

The above was the description of the general SSBDD-based timing simulation 
algorithm, which uses no stack. Note that in some cases we do not need to 
check all the nodes in the graph because those nodes will never lie on an 
activated path. To make the procedure even more efficient, we use a stack 
to store every encountered node along the path, with the delay which was 
taken as .mind  Using the stack, we have no need to begin path traversal from the 
initial node every time. We can return to the last node sm  taken from the stack 
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and take the )( s
e md  as the next mind  and update it further as we start moving 

forward. 
In the following, we give the description of a single-stack-based algorithm 

step by step. 
 

Algorithm 2. 
1. Initialization: ,0=t  ,0min =d  ,0=i  ,0=ptr  ,0).( =nodeptrstack  

,0).( =timeptrstack  macro output is undefined. 
2. If )( i

e mdt <  go to 3. Otherwise take i  as the index of 0m  if 
}0,{)( hmx i =  or as the index of 1m  if }1,{)( ε=imx , go to 7. 

3. If Di xmx ∈)(  go to 4. Otherwise take i as the index of 0m  if }0,{)( ε=imx  
or as the index of 1m  if },1,{)( hmx i = go to 7. 

4. If 0=ptr  or timeptrstackmd i
e ).()( < , go to 5. If not, go to 6. 

5. ,1+= ptrptr  ),().( i
e mdtimeptrstack =  .).( inodeptrstack =  

6. Take i  as the index of 0m  if ε=)( imx  or as the index of 1m  if .)( hmx i =  
7. If im  is not one of the terminal nodes, go to 2. If not, go to 8. 
8. If macro output is different from the value of the terminal node we have 

come to, update macro output with the new transition and label it with time .t  
9. If 0=ptr  stop, otherwise go to 10. 
10. ,).( timeptrstackt =  ,).( nodeptrstacki =  ,1−= ptrptr  =mind  

,).( timeptrstack  go to 2. 
 
Example. In Fig. 3 an example to illustrate the algorithm is given for the SSBDD 
in Fig. 2. The input pattern and the delays are the same as in Table 2. We start 
from the node g  and go to the node .1h  As the stack was empty and g  had a 
transition at the given moment of time, we put g  and its delay into the stack. The 
node 1h  has a transition but the delay in it is not smaller than that in .g  So we 
continue moving forward without updating the stack. The nodes 2h  and 1k  have 
no transitions this time. We just pass them by. Finally, we reach the terminal 
node .0,Tm  Thus the initial value at the output y  will be 0. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Single-stack-based timing simulation for the SSBDD in Fig. 2. 

 

h2 

h1 k1 y g h2 y = 0 

k1 y = 0 

y = 0 
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We get back to the node taken from the stack (it is )g  and go to another 
direction (the value in g  has been changed). The current moment of time is 3 

now. The node 2h  has a transition and the transition time is greater than the 

current moment of time. As the stack is empty again, we put 2h  and the delay 
into the stack and move forward. Finally, again we reach the same terminal node. 
Thus the output is stable. Again we get back to the node 2h  taken from the stack 
and reach the same terminal node, what means no change of the value on the 
output. Since the stack is empty now, the calculation terminates. 

Note that despite the node 2k  has a transition, we did not examine this macro 
input at all. That is, we have to check all of the macro inputs and calculate 
derivatives for all Di xmx ∈)(  only in the worst case. 

In Algorithm 2 and the example above we use a stack to return each time not 
to the very beginning of the graph but exactly to the node with the next transition. 
However, not every transition along the activated path can influence the output of 
the macro. In the following we give an idea how to improve the Algorithm 2 by 
using this feature. 

Given an input pattern that activates a full path ),,( ,
0

eTmml  which consists of 
the nodes ).,( ,

0
eTmmM  We designate ,{),( ,

0
NeTe MmmmmM ∈=  

),,( ,
0

eTmmMm ∈  ,)( emx =  }}1,0{∈e  the set of all nonterminal nodes along 
the path which hold the value .e  Similarly, the set of all the nodes along the path 
which hold the value e¬  are designated ,{),( ,

0
NeTe MmmmmM ∈=¬  

),,( ,
0

eTmmMm ∈  ,)( emx ¬=  }}.1,0{∈e  In other words, we divide all the 
nodes along the activated path into two subsets. The first one 

),( ,
0

0 eTmmM contains all the nodes which hold the current value 0 and the other 
one ),( ,

0
1 eTmmM  contains all the nodes which hold the value 1. Terminal node 

eTm ,  does not belong to any of the two subsets. If the currently reached terminal 
node is 0,Tm  then it is known that transitions in all the nodes ),( 0,

0
1 TmmMm ∈  

do not affect the output value (taking a new path, we will still reach the node 
),0,Tm  and vise versa, for the node 1,Tm  no transitions in nodes 

),( 1,
0

0 TmmMm ∈  can affect the output. 
The above statement shows clearly that, standing in the terminal node eTm , , 

we should consider only the nodes ),( ,
0

eTe mmMm ∈  as the potential sources of 
influence on the macro output. Therefore, we introduce a minor change to the 
Algorithm 2 using two different stacks for the nodes of ),( ,

0
0 eTmmM  and 

),( ,
0

1 eTmmM . Standing each time at the terminal node, we check only the 
dedicated stack for the next transition to simulate it. If there are some transitions 
in another stack, they will be left not simulated because they cannot affect the 
macro output. That is, we have to simulate all the nodes with transitions on the 
current active path only in the worst case. 

However, certain operations and comparison of data between two stacks 
should be added to make the algorithm work well. This generates some overhead 
and in the worst case the double-stack-based algorithm may work slower than the 
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single-stack-based one. This gave us an idea to try to use the two-stack approach 
only for finding the next moment of time but starting the traversal procedure 
from the initial node .0m  This helps us to avoid the time-consuming procedure 
of stack update. This means that we can win the time needed for stack update, but 
we lose the time needed for the path traversal from the beginning. 

For different circuits all the three algorithms should give different results. It is 
logical to suppose that the simpler algorithms should work faster for smaller 
macros, but for bigger ones sophisticated stack-based algorithms can give better 
results. In the next section we will illustrate this statement by experimental data, 
but now let us give an example to illustrate the two-stacks-based algorithm. 

 
Example. Consider the same SSBDD, the same input pattern, and the same 
delays as in the last example. Similarly, we begin with the node g  and traverse 
the activated path until the end, but, differently from the single stack case, we 
store the node g  in one stack and the node 1h  in another. We do not put nodes 

2h  and 1k  into the stacks similarly to the previous example. Finally we reach the 
terminal node .0,Tm  Thus the initial value at the output y  is 0. 

In this case, only nodes with transitions 0 to 1 can affect the macro output. 
Thus we have to check the corresponding stack. We find the node 1h  in this stack 
and go back to this node. However, at this point we cannot continue the graph 
traversal before we have checked another stack to see if it has a node which 
stands closer to the initial node and has a delay smaller than or equal to the delay 
in the node .1h  If there is such a node in another stack we have to go further to 
this node. This is the point where the overhead of the processing of stacks is 
added. 

In another stack we find node g  with the delay equal to the delay in ,1h  so 
we move further to node g  and start the traversal of newly activated path from 
that point. Both stacks are empty again. As the node 2h  has a transition and the 
delay is greater than the current moment of time, we put it into one of the stacks. 
Node 1k  does not have a transition, so we pass it by and come to the same 
terminal node (again ).0=y  

 
 
 
 
 
 
 
 

 
Fig. 4. Double-stack-based timing simulation for the SSBDD in Fig. 2. 

 
 

h2 

h1 k1 y g h2 y = 0 

k1 y = 0 



 282 

We look at the stack, which corresponds to the situation where 0=y , and 
find it to be empty. This means that the simulation is over. In Fig. 4 an 
illustration of the algorithm is given. Compared to the single-stack-based 
algorithm (Fig. 3) it has one step less. 

 
 
 

6. EXPERIMENTAL  DATA 
 
Experiments were carried out using two different types of benchmarks. The 

ISCAS’85 circuits were chosen since they are widely adopted benchmarks. 
However, the efficiency of simulation is highly dependent on the number of 
levels and on the number of gates in tree-like subcircuits (i.e., on the size of a 
macro) represented by graphs. Therefore we have also used 5 tree-like circuits 
with numbers of levels from 2 to 10 (numbers of gates from 3 to 1023). And we 
used two different input pattern generation modes: with single (S) or multiple 
(M) bit transitions allowed on inputs at the same time. In order to evaluate our 
approach, we used a gate-level event-driven timing simulation algorithm as a 
reference. Experimental results presented below clearly show a noticeable speed-
up of this approach. 

The results for tree-like circuits are illustrated for the case of single transitions 
in Fig. 5 and for the case of multiple transitions in Fig. 6. Simulation time is 
given in seconds for 30 000 random patterns. In our work we measured 
simulation time on both macro and gate levels. Note that the simulation time 
grows exponentially with the number of levels at the gate level (Fig. 5). The 
simulation time at the macro level (our approach) grows much slower (Fig. 5), 
but also not linearly. In Fig. 5 (right) all the four macro-level algorithms are 
shown. However, there is no noticeable difference in simulation time between 
them. 

 
 

 
 
Fig. 5. Comparison of simulation times of different algorithms (single-bit transition mode). 
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For the multiple-bit change input pattern generation mode there is a noticeable 
difference in speed for the macro-level timing simulation algorithms (Fig. 6). The 
double-stack-based algorithm (lower thin line) is the fastest for this case and the 
algorithm with no stack (upper bold line) is the slowest. The timing simulation at 
the gate level needs time (dashed line) that grows again much faster than the time 
our approach requires. 

Experimental results on ISCAS’85 benchmarks are given in Table 3. The best 
simulation times and speed-ups are shown in bold. 

Note that the double-stack-based and no-stack-based algorithms give the best 
results. However, there is no big difference between the four algorithms but there 
is still a great speed-up compared to the gate-level algorithm. The speed of 
simulation based on the proposed method increases up to 3.54 times for patterns 
with single transition and up to 2.91 times for patterns with multiple transitions. 
For the case of ISCAS’85 benchmarks, no relationship between the circuit size 
and the simulation speed-up can be noticed. 

However, Fig. 7 presents an interesting observation that the speed gain of 
timing simulation is directly proportional to the average size of a macro. The 
results  are  shown  for the  case of  ISCAS’85  benchmarks and the  double-stack  

 
 

 
 

Fig. 6. Comparison of simulation times of different algorithms (multiple-bit transition mode). 

 

 
 

Average macro size 
 

Fig. 7. Simulation speed-up compared to the average size (number of gates) of a macro. 

 



  

 
Table 3. Experimental results for the ISCAS’85 circuits 

 

 Name of the circuit and number of gates 

Type of the  
algorithm 

c432 
232 

c499 
618 

c880 
357 

c1355 
514 

c1908 
718 

c2670 
997 

c3540 
1446 

c5315 
1994 

c6288 
2416 

c7552 
2978 

 Pattern generation mode 

 S M S M S M S M S M S M S M S M S M S M 

Simulation time for 10 000 patterns, s 
No stack 0.77 1.49 1.71 3.38 1.34 2.52 2.81 5.17 2.32   4.49 3.80   7.85   3.63   8.69   6.18 15.2 30.8 139   8.88 24.4 
Single-stack 0.86 1.47 1.93 3.73 1.53 2.56 3.41 5.76 2.69   4.71 4.64   8.21   4.26   8.71   7.36 15.4 32.3 133 10.7 24.5 
Double-
stack 

0.80 1.37 1.79 3.77 1.33 2.40 2.94 5.20 2.36   4.50 4.02   7.66   3.78   8.42   6.55 15.1 31.6 141   9.22 23.7 

Double-
stack, 
no update 

0.79 1.46 1.80 3.53 1.38 2.58 2.94 5.44 2.34   4.59 4.01   8.00   3.78   8.81   6.43 15.6 33.0 152   9.26 24.7 

Gate level 2.16 3.32 5.30 9.83 3.26 5.19 4.86 8.38 6.98 11.5 9.24 15.9 12.9 23.6 20.1 37.7 58.7 272 28.0 57.1 

G/M ratio 
No stack 2.81 2.23 3.10 2.91 2.43 2.06 1.73 1.62 3.01   2.57 2.43   2.03   3.54   2.72   3.26   2.47   1.90     1.95   3.15   2.34 
Single-stack 2.51 2.26 2.75 2.64 2.13 2.03 1.43 1.45 2.59   2.45 1.99   1.94   3.02   2.71   2.73   2.44   1.82     2.04   2.60   2.32 
Double-
stack 

2.70 2.42 2.96 2.61 2.45 2.16 1.65 1.61 2.96   2.56 2.30   2.08   3.40   2.81   3.07   2.50   1.86     1.92   3.03   2.41 

Double-
stack, 
no update 

2.73 2.27 2.94 2.78 2.36 2.01 1.65 1.54 2.98   2.51 2.30   1.99   3.40   2.68   3.13   2.42   1.78     1.78   3.02   2.31 
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simulation algorithm. The observed relationship gives us a new criterion for 
arranging hardly arranged before ISCAS’85 benchmarks. 

For all the experiments we used a Sun Ultra 10 workstation with 440 MHz 
UltraSparc – IIi processor, 256 MB RAM, and SunOS 5.7. 

 
 
 

7. CONCLUSIONS 
 
A new approach to speed up gate-level timing simulation is proposed where, 

instead of gate delays, path delays for tree-like subcircuits (macros) represented 
by SSBDDs are used. SSBDDs capture the structure of a circuit whereas 
conventional BDDs do not allow that. At the same time, using SSBDDs for 
representing macros avoids exponential explosion of the model complexity. The 
number of paths in the circuit, processed by delay calculation, is a linear function 
of the number of gates. 

Experiments were carried out on the ISCAS’85 benchmarks with the number 
of gates up to about 3000. The linear feature of the model complexity enables 
efficient simulation of complex realistic combinational circuits. 

Four algorithms for this approach were implemented and their efficiencies 
compared. The timing simulation speed at the macro-level is up to 3.54 (2.43 on 
average) times faster compared to the gate-level simulation for the investigated 
set of ISCAS’85 benchmark circuits. The best among the macro-level algorithms 
is the double-stack-based one. 

The high speed of simulation is achieved at the cost of some loss of 
simulation data. Instead of all waveforms for all nodes of the gate-level network, 
only the waveforms for the outputs of macros are calculated. This simplification 
is nevertheless acceptable for most industrial applications of timing simulation. 
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STRUKTUURSETE  BINAARSETE  OTSUSTUSDIAGRAMMIDE  
RAKENDAMINE  DIGITAALSKEEMIDE  ASÜNKROONSEKS  

SIMULEERIMISEKS 
 

Artur JUTMAN ja Raimund UBAR 
 
Nüüdisaegsete digitaalskeemide üha kasvav töösagedus sunnib tähelepanu 

pöörama viidete modelleerimisele (asünkroonsele simuleerimisele). Laialt tuntud 
meetodeid skeemi käitumise kontrollimiseks ajas on asünkroonne simuleerimine. 
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Töös on esitatud uus ventiilitaseme asünkroonse simuleerimise kiirendamise 
meetod, mis baseerub struktuursetel binaarsetel otsustusdiagrammidel (SSBDD). 
SSBDD-d on juba leidnud rakendust digitaalskeemide esitamise efektiivse mate-
maatilise mudelina. Uus lähenemisviis kasutab ventiilide viidete asemel puukuju-
liste alamskeemide (makrode) teede viiteid. Seetõttu ei arvutata ajadiagramme 
mitte iga ventiili väljundis, vaid ainult makrode väljundites. Iga makro on esita-
tud SSBDD-ga, mis võimaldab kiiret viidete arvutamist. On näidatud, et kiiruse 
kasv asünkroonsel simuleerimisel on proportsionaalne skeemi makrode keskmise 
suurusega. Uut asünkroonse simuleerimise kiirendamise meetodit on kontrollitud 
eksperimentaalselt. 

 
 


