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Abstract. This paper describes an environment to accelerate fault simulation by hardware 
emulation on FPGA. Fault simulation is an important subtask in test pattern generation and it is 
frequently used throughout the test generation process. The problems associated with fault 
simulation of digital circuits are explained. The proposed approach allows simulation speed-up of 
40 to 500 times as compared to the state-of-the-art in software-based fault simulation. Based on the 
experiments, it can be concluded that it is beneficial to use emulation for circuits that require large 
numbers of test vectors while using simple but flexible algorithmic test vector generating circuits, 
e.g. built-in self-test. 
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1. INTRODUCTION 
 
Test generation has become one of the most complicated and time-consuming 

problems in the field of digital design. As the size of circuits grows, so do the test 
costs [1]. This includes both time and resources spent to test a circuit, and time 
and resources spent to generate appropriate test vectors. Many techniques exist to 
perform the suitability analysis of a given set of test vectors – the most important 
subtask of any test generation approach. Efficient fault simulation algorithms for 
combinational circuits are known already for some time [2]. However, large 
sequential designs create the need for faster implementation, e.g. by hardware 
emulation. For instance, it may take years to simulate processor cores [3]. At the 
same time, reconfigurable hardware devices have been found useful as system 
modelling environments [4]. This has been made possible by the availability of 
multimillion-gate FPGAs. For academic purposes, cheaper devices with rather 
large capacity, e.g. the newest Spartan3 chips, can be used. 
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The availability of large FPGAs does not allow merely implementation of the 
circuit under test along with fault models but, additionally, to include test vector 
generation and output response analysis circuits into a single reconfigurable 
device. It is important to stress that current approach is not aiming at testing the 
FPGA itself neither simulating any defects in it: FPGA is assumed to be tested by 
the manufacturer. The purpose of the emulation environment, described in this 
paper, is to speed up fault simulation mainly for ASIC and System-on-Chip 
(SoC) projects using FPGA simply as a fast emulation environment.  

A number of papers on fault emulation for combinational circuits has been 
published. They rely either on fault injection [5,6] or on implementing specific 
fault simulation algorithms in hardware [7]. Recently, acceleration of combina-
tional circuit fault diagnosis using FPGAs has been proposed in [8]. In many of 
the approaches, faults are injected either by modifying the configuration 
bitstream while the latter is being loaded into the device [9,10] or by using partial 
reconfiguration [11–13]. This kind of approach is slow due to the run-time over-
head required by multiple reconfigurations. Other options for fault injection are 
to model faults with additional circuitry either at netlist wires [10] (used also in 
this paper) or at the gates [14]. In addition to merely increasing the speed of fault 
simulation, the idea proposed in this paper can be used for selecting optimal 
built-in self-test (BIST) structures. In earlier papers [14,15], fault emulation 
methods to be used for evaluating the circular self-test path (CSTP) type BIST 
architectures have been presented. 

In [16], we proposed an efficient FPGA-based fault emulation environment for 
sequential circuits. The main feature of the emulation approach was in imple-
menting multiplexers and distributed decoders for fault injection, which, unlike 
the shift register based injection, allowed to insert faults in an arbitrary order. In 
addition, we used an on-chip input pattern generator as opposed to loading the 
simulation stimuli from the host computer. The fault emulation environment, 
presented in this paper, introduces hardware support for fault dropping that 
increases the simulation speed-up nearly by an order of magnitude. This is 
achieved without a significant penalty to the area of the accelerator FPGA. In 
addition, the improved emulation environment allows implementation of various 
fault-modelling scenarios. 

The emulation approach is planned for use in cooperation with diagnostic 
software Turbo Tester, described in Section 2. The emulation environment is 
described in Section 3. In Section 4, the results of experiments are presented and 
Section 5 is dedicated to conclusions. 

 
 

2. OVERVIEW  OF  THE  TURBO  TESTER 
 
The emulation environment was designed to work together with Turbo Tester 

(TT), a diagnostic software package developed at the Department of Computer 
Engineering of the Tallinn University of Technology [17,18]. The TT software 
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consists of the following test-related tools: test generation by different algorithms 
(deterministic, random and genetic), test program optimization, fault simulation 
for combinational and sequential circuits, and testability analysis and fault 
diagnosis. It includes test generators, logic and fault simulators, a test optimizer, 
a module for hazard analysis, linear feedback shift register (LFSR) simulators for 
BIST, design verification and design error diagnosis tools (Fig. 1). TT can read 
the schematic entries of various contemporary VLSI CADs that makes it 
independent of the existing design environment. Turbo Tester versions are 
available for MS Windows, Linux, and Solaris operating systems. 

The main advantage of the system is that different methods and algorithms for 
various test problems have been implemented and can be investigated separately 
of each other or working together in different combinations. 

Model synthesis. The component library of Turbo Tester consists of Binary 
Decision Diagram (BDD) representations for the library components of the 
circuits to be processed. The library is open and can be updated for new 
components. 

Test generation. For automatic test pattern generation (ATPG), random, 
deterministic and genetic test pattern generators (TPG) have been implemented. 
Mixed TPG strategies, based on different methods, can also be investigated. 
Tests can be generated both for combinational and sequential circuits. 

Test pattern analysis. Single fault simulation, parallel fault simulation and 
critical path tracing fault analysis methods are implemented in the system. These 
competing approaches can be investigated and compared for circuits of different 
complexities and structures. For this part the emulation approach was proposed. 
So far we have experimented only with “Fault Simulation” part (black in Fig. 1). 
In the future, also the other simulation-related parts might be considered (gray in 
Fig. 1). 
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Fig. 1. Turbo Tester environment. 
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Test set optimization. The tool minimizes the number of test patterns in the 
test set by means of static compaction. The technique implements effective 
representation of fault matrices by weighted bipartite graphs. 

Multivalued simulation. In Turbo Tester, multivalued simulation is applied 
to model possible hazards that can occur in logic circuits. The dynamic behaviour 
of a logic network during one single transition period can be described by a 
representative waveform on the output or simply by a corresponding logic value. 

Design error diagnosis. After a digital system has been designed according to 
specifications, it might go through a refinement process in order to be consistent 
with certain design requirements, e.g., timing specifications. The changes 
introduced by this may lead to undesired functional inconsistencies compared to 
the original design. Such design errors should be identified by verification. 

Testability analysis. The real cost of a digital product is expressed as 
 

Cost(Design +Test) < Cost(Design) + Cost(Test). 
 

It follows from the fact that looking at the design and test as one integral 
activity rather than two separate unrelated activities, designer can minimize the 
total cost. The tools can be used for, e.g. enumerating untestable faults, for 
estimating the controllability, observability and testability characteristics of the 
design. 

Evaluation of built-in self-test (BIST) quality. The BIST approach is 
represented by applications for built-in logic block observer (BILBO) and 
circular self-test path (CSTP) emulation. Different BIST architectures can be 
simulated and the self-test quality of these architectures can be evaluated. 

 
 

3. EMULATION  ENVIRONMENT 
 
The initial emulation environment was created keeping in mind that the main 

purpose was to evaluate the feasibility of replacing fault simulation with emulation. 
Based on that, the main focus was put on how to implement circuits to be tested on 
FPGAs. Less attention was paid how to organize data exchange between hardware 
and TT. For the first series of experiments, we looked at combinational circuits 
only. Results of experiments with these circuits were presented in [6]. 

For sequential circuits, most of the solutions used for combinational circuits 
could be exploited. The main modification was an extra loop in the controller 
because sequential circuits require not a single input combination but a sequence 
consisting of tens or even hundreds of input combinations. Also, instead of hard-
coded test sequence generators and output analysers, loadable modules were 
introduced. The authors of this paper carried out their first experiments with 
sequential circuits in [16]. 

As a novel feature, the emulation environment incorporates hardware support 
for fault dropping, i.e. if a fault has been detected by a test vector then the 
remaining test sequence will be cancelled and the process will continue with the 
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next fault. Comparison against the golden device is used for implementing the 
fault dropping. The proposed approach allows simulation speed-up of 40 to 500 
times as compared to the state-of-the-art in fault simulation. Another 
improvement is the use of three-valued logic instead of the two-valued one. This 
allows to eliminate the problem of undefined register values at power-up. It 
should be noted that the size of the circuits is more or less doubled because of the 
need to use two wires instead of one to encode a bit. 

Fault insertion. The main problem here was how to represent non-logic 
features, faults, in such a way that they can be synthesized using standard logic 
synthesis tools. Since most of the analysis is done using stuck-at-one and stuck-
at-zero fault models, the use of multiplexers at fault points was the most obvious 
one. Also, since typically a single fault is analysed at a time, decoders were 
introduced to activate faults (Fig. 2a). The extra multiplexers will increase the 
gate count (approximately 3–4 times) and will make the circuit slower (typically 
5–10 times). It is not a problem for smaller circuits but may be too prohibitive for 
larger designs – the circuit may not fit into the target FPGA. A solution is to 
insert faults selectively. Selection algorithm, essentially fault set partitioning, is a 
subject of future research. Compared against shift-register based fault injection 
approaches [10] (Fig. 2b), the use of multiplexers has both advantages and  
 

 

 
 

(a)               (b) 
 

Fig. 2. Fault point insertion with multiplexer (a) and with shift-register (b). 
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disadvantages. The main disadvantage is small increase both in area and delay of 
the circuit. Although the delay increase is only few percents, execution time may 
increase significantly for long test cycles. The main advantage is that any fault 
can be selected in a single clock cycle, i.e. there is no need to shift the code of a 
fault into the corresponding register. This difference comes from the way a fault 
point is activated – multiplexers receive activation through distributed decoders 
(shown simplified in Fig. 2a) but when using shift-registers, the activation is 
shifted from one flip-flop to another (Fig. 2b). It should be noted that also the 
order of fault points in the shift-register is important because this affects the 
length of the wires between different flip-flops. The decoders, on the other hand, 
require more control lines between the circuit under test and controller. 
Combining both approaches may be the best solution and a part of our future 
work is planned in that direction. 

Test vector generation and output data analysis. Here we relied on a well-
known solution for BIST – Linear Feedback Shift Register (LFSR) is used both 
for input vector generation and output correctness analysis [19]. LFSRs structures 
are thoroughly studied and their implementation in hardware is very simple. This 
simplifies data exchange with the software part – only seed and feedback poly-
nomial vectors are needed to get the desired behaviour. Hardware for the analysis 
of the output correctness needs first to store the expected output signature and 
then to report to the software part whether the modelled fault was detected or not. 
Figure 3a illustrates a stage of a LFSR, implemented in the current approach. 
Figures 3b and 3c illustrate the generator and the analyser, respectively. The  
 

 

 
 

(b)      (c) 
 

Fig. 3. LFSR-based generator and analyser: (a) single stage of the LFSR; (b) generator of the input 
vector; (c) analyser of the output vector. 

(a) 
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input “coefficient” is used for feedback polynomial. The input “result” is used 
only for the analysis of the result and is connected to zero for input vector 
generation, thus masking out XOR-gates at the stage’s input. AND- and XOR-
gates at the stage's output converge into a single stage of “mod 2 sum” block 
(Figs. 3b and 3c). 

Automation of the generation of the emulation environment was rather easy 
because of the modular structure of the hardware part. All commonly used 
modules are written in VHDL that allows to parameterize the design units 
(Fig. 4). 
� CUT – circuit under test, generated by the fault insertion program. 
� CUT-pkg and CUT-top – parameters of CUT and wrapper for CUT to inter-

face with the generic test environment, generated by the wrapper program. 
� Two LFSRs – to generate test vectors and to calculate the output signature. 
� Three counters – one to count test vectors, one to count test sequences and 

one to count modelled faults (generic VHDL module). 
� Test bench with controller (FSM) to connect all submodules, to initialize 

LFSRs and counters, and to organize data exchange with the external 
interface; a generic VHDL module; algorithms implemented by the FSM are 
depicted in Fig. 5. 

� Interface to organize data exchange between the test bench (FPGA) and the 
software part (Host PC). 

The abstraction level of VHDL modules corresponds to register-transfer level, 
thus allowing the use of basically any FPGA mapping tool. The interface is 
currently only partly implemented because further studies are needed to define 
data exchange protocols between hardware and software parts. In future, any 
suitable FPGA board can be used, assuming that supporting interfaces have been 
developed to organize data exchange between the FPGA and the host PC. 

 
 

 

 
 

Fig. 4. Structure of the emulation environment. 
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Hardware support for fault dropping. Compared against the initial emula-

tion environment, only minimal modifications were needed to introduce hard-
ware support for fault dropping. First, the reference unit, the golden device, had 
to be inserted. For that purpose we used the original netlist of the CUT – the one 
without fault models. Few alternative solutions, e.g. context switching like 
approach with one combinational part and two sets of registers, were also con-
sidered but the used solution appeared to be the cheapest (in terms of resources 
and performance). Second, the circuitry for on-the-fly comparison was needed to 
get the full benefit of the fault dropping approach. This was implemented using a 
simple parallel comparator and modified emulation algorithm. Moreover, the 
emulation environment was also simplified because the output signature analyser 
was not needed any more. The modified structure (Fig. 6) makes use of the new 
CUT-top module along with the golden device (GOLD). The LFSR for output 
analysis has been replaced by the comparator (CMP). In a similar manner, the 
emulation algorithm (Fig. 7) has been modified. There is no need to build the 
fault-free signature as a comparison is performed at the end of every emulation 
step. 

Encoded don’t-care value approach. This requires introduction of a new 
data type, three-valued logic represented by two-bit signals, and redefinition of 
all logic functions. These new definitions affect only the units under test. The rest 
of the environment can be used as it is, except LFSR for output analysis that must 
have the double amount of bits: two bits per each output in order to achieve 
three-valued encoding. When using fault-dropping approach, the comparator 
must use three-valued logic too. 

(Combinational circuits)
reset_LFSRs; 
for every test_vector 
  emulate_CUT; 
store_signature; 
for every fault { 
  reset_LFSRs; 
  for every test_vector 
    emulate_CUT; 
  compare_signature; 
  send_report; 
} 

Fig. 5. Algorithms, implemented by the state machine. 

(Sequential circuits) 
reset_LFSRs; 
for every test_sequence { 
  reset_CUT; 
  for every test_vector 
    emulate_CUT; 
} 
store_signature; 
for every fault { 
  reset_LFSRs; 
  for every test_sequence { 
    reset_CUT; 
    for every test_vector 
      emulate_CUT; 
  } 
  compare_signature; 
  send_report; 
}
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Fig. 6. Modified structure of the emulation environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4. RESULTS  OF  EXPERIMENTS 
4. RESULTS  OF  EXPERIMENTS 

 
For experiments, a powerful RC1000-PPE board with VirtexE chip XCV2000E 

(19200 slices) was used. All the test patterns were generated by a simulation-based 
ATPG SBGEN from the Turbo Tester system [17,18]. In all the experiments, a fault 
simulator, based on parallel sequential fault simulation algorithm similar to [20], 
belonging to Turbo Tester, was implemented. Test circuits were selected from 
ISCAS’89 and HLSynt’92 benchmark sets to evaluate the speedup when replacing 
fault simulation with emulation on FPGA. Results of some benchmarks are 
presented in the paper to illustrate the gains and losses of our approach (Tables 1 
and 2). Experiments with few combinational circuits – c2670, c3540, c5315, and 

(Sequential circuits & fault dropping) 
for every fault { 
  reset_LFSR; 
  for every test_sequence { 
    reset_CUT; reset_GOLD; 
    for every test_vector { 
      emulate_CUT; 
      emulate_GOLD; 
      if (outputs_differ)  break test_sequence; 
    } 
  } 
  send_report; 
} 

 
Fig. 7. FSM algorithm for fault dropping. 
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c6288 – from ISCAS’85 benchmark are presented for comparison in Table 1. 
Columns labelled “# of faults” illustrate the complexity of the test circuits. The 
columns “# of vectors” illustrate the complexity of tests. In Table 1, it is divided 
into two columns: “# of seq.” shows the number of sequences and “Seq. len.” 
shows lengths of these sequences. In Table 2, the column “# of vectors” is divided 
also into to two columns, “Total” and “Actual”. The column “Total” refers to the 
number of clock-cycles to be simulated by the initial emulation environment 
without considering fault-dropping while the second column “Actual” illustrates 
the number of simulated cycles with the improved (fault-dropping) environment. 
The column “SW” gives the fault simulation time based on a parallel algorithm and 
“Emul.” emulation time for the same set of test vectors. Synthesis times have been 
added for comparison (“Synt.”). The synthesis times include both source netlist 
modification (fault injection) and mapping onto FPGA. Columns “Slices” give the 
size of the emulation environment in FPGA. 

 
 

Table 1. Results of experiments without fault dropping 
 

# of vectors HW Circuit # of 
faults # of 

seq. 
Seq. 
len. 

SW 
simul. Slices MHz Synt. Emul. 

Speed- 
up 

c2670      824     20k     1 34.8″ 1783 20     5.1′   1.65″ 21.1 
c3540    1 036     10k     1 20.9″ 1874 15     7.8′   1.39″ 15.0 
c5315    2 076 1000       1     5.63″ 3412   12.5 15′   0.33″ 17.1 
c6288    3 559 1000       1 18.3″ 6423   5 61′   1.43″ 12.8 
s5378    5 150     80   100 26.8″ 3311 35   11.8′   1.18″ 22.7 
s15850 12 314   200   200 15.6′ 9939 15 79′ 32.80″ 28.5 
GCD (16)    1 634     80     50     5.28″ 1094 40     2.8′   0.16″ 33.0 
GCD (32)    3 734     10   400 22.6″ 2227 25     7.9′   0.60″ 37.7 
prefetch (16)    1 042     40   100     1.34″   776 75     1.2′   0.06″ 22.3 
prefetch (32)    2 252     40   400     9.46″ 1529 50     3.4′   0.72″ 13.1 
diff-eq (16) 10 008     20   200 87.9″ 7469 10 80′   4.00″ 22.0 
TLC     468      40   100     2.69″    391 60 41″   0.03" 89.7 

 
 

Table 2. Results of experiments with fault dropping 
 

# of vectors HW Circuit # of 
faults Total Actual 

SW 
simul. Slices MHz Synt. Emul. 

Speed- 
up 

s5378   5 150   8 000   2 896 26.8″   3 573 30   14.8′     0.50″     53.6 
s15850 12 314  40 000 25 521 15.6′ 10 131 15 85′ 21.0″     44.6 
GCD (16)   1 634   4 000      510     5.28″   1 152 40     2.9′     0.02″ 264 
GCD (32)   3 734   4 000      558 22.6″   2 456 25     9.0′     0.08″ 283 
prefetch (16)   1 042   4 000      181     1.34″      701 75     1.3′ 3 ms 447 
prefetch (32)   2 252 16 000   1 904     9.46″   1 448 50     3.6′     0.09″ 105 
diff-eq (16) 10 008    4 000      175 87.9″   7 710 10 82′     0.17″ 517 
TLC      468    4 000      925     2.69″      409 60 41″     0.01″ 269 
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For different benchmarks, the initial hardware emulation implementing 
signature analysis was on average 33 (ranging from 13 to 85) times faster than 
the software fault simulation. For the improved environment that supported fault-
dropping, the corresponding speed-up was on average 250 (from 44 to 517). It 
should be noted that when considering also the time of synthesis, it might not be 
useful to replace simulation with emulation, especially for smaller designs. 
Nevertheless, taking into account that sequential circuits, as opposed to combina-
tional ones, have much longer test sequences, the use of emulation will pay off. 

The second approach, encoded don’t-care values, does not improve the speed-
up. However, it increases the size of the emulation hardware by 50 to 100%. This 
is caused by the need to use two wires for every original wire to represent four 
different values. The logic is not always doubled because inputs and 
resettable/settable registers have two effective values and therefore the logic 
could be simplified. In Table 3, parameters in the terms of FPGA resources are 
compared for sequential circuits. Column “# of gates” presents the size of circuits 
in the terms of equivalent gates (for ASICs) and illustrates complexity of the 
circuits. Parameters of three implementations are compared in the remaining 
columns. The two most noteworthy observations that can be made from the table 
are the following. 
� The use of fault-dropping will increase the size of the implementation but 

much less than expected. The explanation is rather simple – the size of the 
added reference circuit is comparable to the size of the removed LFSR-based 
output analyser. 

� The increase in the size when using three-valued logic may increase the time 
of synthesis when the FPGA utilization is more than 50%. The reason is that 
when mapping random logic netlist onto FPGA, it is hard to route all inter-
connects. This results in significant increase of synthesis times, especially of 
place-and-route times. 

 
 

Table 3. Parameters of emulation environments on FPGA 
 

Without fault dropping With fault dropping Three-valued logic Circuit # of 
gates Slices MHz Synt. Slices MHz Synt. Slices MHz Synt. 

s5378   4 933 3311 35    11.8′   3 573 30    14.8′   6 036 30   86′ 
s15850 17 081 9939 15 79′ 10 131 15 85′ 14 112 15   86′ 
GCD (16)      926 1094 40     2.8′   1 152 40     2.9′   1 689 30       2.6′ 
GCD (32)   2 061 2227 25     7.9′   2 456 25     9.0′   4 148 20       5.9′ 
prefetch (16)      796   776 75     1.2′      701 75     1.3′   1 328 75       1.4′ 
prefetch (32)   1 698 1529 50     3.4′   1 448 50     3.6′   2 846 50       4.0′ 
diff-eq (16)   4 562 7469 10 80′   7 710 10 82′ 11 859 10 221′ 
TLC      290   391 60 41″      409 60 41″      668 60   44″ 
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5. CONCLUSIONS 
 
The paper presents an FPGA-based emulation environment for fault emula-

tion of combinational and synchronous sequential circuits. Trade-offs in terms of 
required FPGA resources and accuracy of test quality assessment for fault 
emulation have been investigated. Experiments carried out with HLSynth’92 and 
ISCAS’89 benchmarks showed that the proposed approach allows simulation 
speed-up of 40 to 500 times as compared to the state-of-the-art in software-based 
fault simulation.  

The experiments showed that for circuits that require large numbers of test 
vectors, e.g. sequential circuits, it is beneficial to replace simulation with emula-
tion. Based on that, it can be concluded that the most useful application would be 
to explore test generation and analysis architectures based on easily reprogrammed 
structures, e.g. LFSRs. This makes fault emulation very useful to select the best 
generator/analyser structures for BIST. The need to simulate the same circuit many 
times with different seed and feedback vectors reduces also the impact of the main 
drawback of the approach – rather large times of the synthesis. Another useful 
application of fault emulation would be genetic algorithms of test pattern generation 
where also large numbers of test vectors are analysed. Future work will include 
development of more advanced on-chip test vector generators and analysers. 
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FPGA-põhine  rikete  emuleerimise  keskkond 
 

Peeter Ellervee, Jaan Raik, Kalle Tammemäe ja Raimund Ubar 
 

On kirjeldatud rikete simuleerimise kiirendamise keskkonda, kasutades riistvara 
emuleerimist FPGA-l. Rikete simuleerimine on testimustrite genereerimise oluline 
alamülesanne, mida kasutatakse korduvalt testi genereerimise käigus. On antud 
selgitus digitaalskeemide rikete simuleerimisega kaasnevatele probleemidele. Uusi-
mate tarkvaraliste rikete simuleerimisega võrreldes lubab artiklis esitatud lähene-
mine simuleerimise kiirendamist 40 kuni 500 korda. Eksperimentide tulemustest 
järeldub, et emuleerimist tasub kasutada skeemide puhul, mis vajavad suurt hulka 
testvektoreid, kuid mis kasutavad vektorite genereerimiseks paindlikke algoritmi-
lisi lahendusi. Üheks selliseks näiteks on sisseehitatud omatest. 


