
 323

Proc. Estonian Acad. Sci. Eng., 2006, 12, 3-2, 323–335

Environment for FPGA-based fault emulation

Peeter Ellervee, Jaan Raik, Kalle Tammemäe and Raimund Ubar

Department of Computer Engineering, Tallinn University of Technology, Raja 15, 12618 Tallinn,
Estonia; lrv@cc.ttu.ee, jaan@pld.ttu.ee, kalle@cc.ttu.ee, raiub@pld.ttu.ee

Received 15 May 2006

Abstract. This paper describes an environment to accelerate fault simulation by hardware
emulation on FPGA. Fault simulation is an important subtask in test pattern generation and it is
frequently used throughout the test generation process. The problems associated with fault
simulation of digital circuits are explained. The proposed approach allows simulation speed-up of
40 to 500 times as compared to the state-of-the-art in software-based fault simulation. Based on the
experiments, it can be concluded that it is beneficial to use emulation for circuits that require large
numbers of test vectors while using simple but flexible algorithmic test vector generating circuits,
e.g. built-in self-test.

Key words: fault simulation, acceleration, emulation, field-programmable logic.

1. INTRODUCTION

Test generation has become one of the most complicated and time-consuming

problems in the field of digital design. As the size of circuits grows, so do the test
costs [1]. This includes both time and resources spent to test a circuit, and time
and resources spent to generate appropriate test vectors. Many techniques exist to
perform the suitability analysis of a given set of test vectors – the most important
subtask of any test generation approach. Efficient fault simulation algorithms for
combinational circuits are known already for some time [2]. However, large
sequential designs create the need for faster implementation, e.g. by hardware
emulation. For instance, it may take years to simulate processor cores [3]. At the
same time, reconfigurable hardware devices have been found useful as system
modelling environments [4]. This has been made possible by the availability of
multimillion-gate FPGAs. For academic purposes, cheaper devices with rather
large capacity, e.g. the newest Spartan3 chips, can be used.

 324

The availability of large FPGAs does not allow merely implementation of the
circuit under test along with fault models but, additionally, to include test vector
generation and output response analysis circuits into a single reconfigurable
device. It is important to stress that current approach is not aiming at testing the
FPGA itself neither simulating any defects in it: FPGA is assumed to be tested by
the manufacturer. The purpose of the emulation environment, described in this
paper, is to speed up fault simulation mainly for ASIC and System-on-Chip
(SoC) projects using FPGA simply as a fast emulation environment.

A number of papers on fault emulation for combinational circuits has been
published. They rely either on fault injection [5,6] or on implementing specific
fault simulation algorithms in hardware [7]. Recently, acceleration of combina-
tional circuit fault diagnosis using FPGAs has been proposed in [8]. In many of
the approaches, faults are injected either by modifying the configuration
bitstream while the latter is being loaded into the device [9,10] or by using partial
reconfiguration [11–13]. This kind of approach is slow due to the run-time over-
head required by multiple reconfigurations. Other options for fault injection are
to model faults with additional circuitry either at netlist wires [10] (used also in
this paper) or at the gates [14]. In addition to merely increasing the speed of fault
simulation, the idea proposed in this paper can be used for selecting optimal
built-in self-test (BIST) structures. In earlier papers [14,15], fault emulation
methods to be used for evaluating the circular self-test path (CSTP) type BIST
architectures have been presented.

In [16], we proposed an efficient FPGA-based fault emulation environment for
sequential circuits. The main feature of the emulation approach was in imple-
menting multiplexers and distributed decoders for fault injection, which, unlike
the shift register based injection, allowed to insert faults in an arbitrary order. In
addition, we used an on-chip input pattern generator as opposed to loading the
simulation stimuli from the host computer. The fault emulation environment,
presented in this paper, introduces hardware support for fault dropping that
increases the simulation speed-up nearly by an order of magnitude. This is
achieved without a significant penalty to the area of the accelerator FPGA. In
addition, the improved emulation environment allows implementation of various
fault-modelling scenarios.

The emulation approach is planned for use in cooperation with diagnostic
software Turbo Tester, described in Section 2. The emulation environment is
described in Section 3. In Section 4, the results of experiments are presented and
Section 5 is dedicated to conclusions.

2. OVERVIEW OF THE TURBO TESTER

The emulation environment was designed to work together with Turbo Tester

(TT), a diagnostic software package developed at the Department of Computer
Engineering of the Tallinn University of Technology [17,18]. The TT software

 325

consists of the following test-related tools: test generation by different algorithms
(deterministic, random and genetic), test program optimization, fault simulation
for combinational and sequential circuits, and testability analysis and fault
diagnosis. It includes test generators, logic and fault simulators, a test optimizer,
a module for hazard analysis, linear feedback shift register (LFSR) simulators for
BIST, design verification and design error diagnosis tools (Fig. 1). TT can read
the schematic entries of various contemporary VLSI CADs that makes it
independent of the existing design environment. Turbo Tester versions are
available for MS Windows, Linux, and Solaris operating systems.

The main advantage of the system is that different methods and algorithms for
various test problems have been implemented and can be investigated separately
of each other or working together in different combinations.

Model synthesis. The component library of Turbo Tester consists of Binary
Decision Diagram (BDD) representations for the library components of the
circuits to be processed. The library is open and can be updated for new
components.

Test generation. For automatic test pattern generation (ATPG), random,
deterministic and genetic test pattern generators (TPG) have been implemented.
Mixed TPG strategies, based on different methods, can also be investigated.
Tests can be generated both for combinational and sequential circuits.

Test pattern analysis. Single fault simulation, parallel fault simulation and
critical path tracing fault analysis methods are implemented in the system. These
competing approaches can be investigated and compared for circuits of different
complexities and structures. For this part the emulation approach was proposed.
So far we have experimented only with “Fault Simulation” part (black in Fig. 1).
In the future, also the other simulation-related parts might be considered (gray in
Fig. 1).

Design Error
Diagnosis

Test
Generation

BIST
Emulation

Design Test
Set

Levels:
Gate
SSBDD

Fault
Table

Test Set
Optimization

Methods:
BILBO
CSTP
Hybrid

Fault
Simulation

Faulty
Area

Circuits:
Combinational
Sequential

Logic
Simulation

Formats:
EDIF
AGM

Defect
Library

Hazard
Analysis

Data

Specifi-
cation

Algorithms:
Deterministic
Random
Genetic Multivalued

Simulation

Fault models:
Stuck-at faults
Physical defects

Fig. 1. Turbo Tester environment.

 326

Test set optimization. The tool minimizes the number of test patterns in the
test set by means of static compaction. The technique implements effective
representation of fault matrices by weighted bipartite graphs.

Multivalued simulation. In Turbo Tester, multivalued simulation is applied
to model possible hazards that can occur in logic circuits. The dynamic behaviour
of a logic network during one single transition period can be described by a
representative waveform on the output or simply by a corresponding logic value.

Design error diagnosis. After a digital system has been designed according to
specifications, it might go through a refinement process in order to be consistent
with certain design requirements, e.g., timing specifications. The changes
introduced by this may lead to undesired functional inconsistencies compared to
the original design. Such design errors should be identified by verification.

Testability analysis. The real cost of a digital product is expressed as

Cost(Design +Test) < Cost(Design) + Cost(Test).

It follows from the fact that looking at the design and test as one integral
activity rather than two separate unrelated activities, designer can minimize the
total cost. The tools can be used for, e.g. enumerating untestable faults, for
estimating the controllability, observability and testability characteristics of the
design.

Evaluation of built-in self-test (BIST) quality. The BIST approach is
represented by applications for built-in logic block observer (BILBO) and
circular self-test path (CSTP) emulation. Different BIST architectures can be
simulated and the self-test quality of these architectures can be evaluated.

3. EMULATION ENVIRONMENT

The initial emulation environment was created keeping in mind that the main

purpose was to evaluate the feasibility of replacing fault simulation with emulation.
Based on that, the main focus was put on how to implement circuits to be tested on
FPGAs. Less attention was paid how to organize data exchange between hardware
and TT. For the first series of experiments, we looked at combinational circuits
only. Results of experiments with these circuits were presented in [6].

For sequential circuits, most of the solutions used for combinational circuits
could be exploited. The main modification was an extra loop in the controller
because sequential circuits require not a single input combination but a sequence
consisting of tens or even hundreds of input combinations. Also, instead of hard-
coded test sequence generators and output analysers, loadable modules were
introduced. The authors of this paper carried out their first experiments with
sequential circuits in [16].

As a novel feature, the emulation environment incorporates hardware support
for fault dropping, i.e. if a fault has been detected by a test vector then the
remaining test sequence will be cancelled and the process will continue with the

 327

next fault. Comparison against the golden device is used for implementing the
fault dropping. The proposed approach allows simulation speed-up of 40 to 500
times as compared to the state-of-the-art in fault simulation. Another
improvement is the use of three-valued logic instead of the two-valued one. This
allows to eliminate the problem of undefined register values at power-up. It
should be noted that the size of the circuits is more or less doubled because of the
need to use two wires instead of one to encode a bit.

Fault insertion. The main problem here was how to represent non-logic
features, faults, in such a way that they can be synthesized using standard logic
synthesis tools. Since most of the analysis is done using stuck-at-one and stuck-
at-zero fault models, the use of multiplexers at fault points was the most obvious
one. Also, since typically a single fault is analysed at a time, decoders were
introduced to activate faults (Fig. 2a). The extra multiplexers will increase the
gate count (approximately 3–4 times) and will make the circuit slower (typically
5–10 times). It is not a problem for smaller circuits but may be too prohibitive for
larger designs – the circuit may not fit into the target FPGA. A solution is to
insert faults selectively. Selection algorithm, essentially fault set partitioning, is a
subject of future research. Compared against shift-register based fault injection
approaches [10] (Fig. 2b), the use of multiplexers has both advantages and

(a) (b)

Fig. 2. Fault point insertion with multiplexer (a) and with shift-register (b).

 328

disadvantages. The main disadvantage is small increase both in area and delay of
the circuit. Although the delay increase is only few percents, execution time may
increase significantly for long test cycles. The main advantage is that any fault
can be selected in a single clock cycle, i.e. there is no need to shift the code of a
fault into the corresponding register. This difference comes from the way a fault
point is activated – multiplexers receive activation through distributed decoders
(shown simplified in Fig. 2a) but when using shift-registers, the activation is
shifted from one flip-flop to another (Fig. 2b). It should be noted that also the
order of fault points in the shift-register is important because this affects the
length of the wires between different flip-flops. The decoders, on the other hand,
require more control lines between the circuit under test and controller.
Combining both approaches may be the best solution and a part of our future
work is planned in that direction.

Test vector generation and output data analysis. Here we relied on a well-
known solution for BIST – Linear Feedback Shift Register (LFSR) is used both
for input vector generation and output correctness analysis [19]. LFSRs structures
are thoroughly studied and their implementation in hardware is very simple. This
simplifies data exchange with the software part – only seed and feedback poly-
nomial vectors are needed to get the desired behaviour. Hardware for the analysis
of the output correctness needs first to store the expected output signature and
then to report to the software part whether the modelled fault was detected or not.
Figure 3a illustrates a stage of a LFSR, implemented in the current approach.
Figures 3b and 3c illustrate the generator and the analyser, respectively. The

(b) (c)

Fig. 3. LFSR-based generator and analyser: (a) single stage of the LFSR; (b) generator of the input
vector; (c) analyser of the output vector.

(a)

 329

input “coefficient” is used for feedback polynomial. The input “result” is used
only for the analysis of the result and is connected to zero for input vector
generation, thus masking out XOR-gates at the stage’s input. AND- and XOR-
gates at the stage's output converge into a single stage of “mod 2 sum” block
(Figs. 3b and 3c).

Automation of the generation of the emulation environment was rather easy
because of the modular structure of the hardware part. All commonly used
modules are written in VHDL that allows to parameterize the design units
(Fig. 4).
� CUT – circuit under test, generated by the fault insertion program.
� CUT-pkg and CUT-top – parameters of CUT and wrapper for CUT to inter-

face with the generic test environment, generated by the wrapper program.
� Two LFSRs – to generate test vectors and to calculate the output signature.
� Three counters – one to count test vectors, one to count test sequences and

one to count modelled faults (generic VHDL module).
� Test bench with controller (FSM) to connect all submodules, to initialize

LFSRs and counters, and to organize data exchange with the external
interface; a generic VHDL module; algorithms implemented by the FSM are
depicted in Fig. 5.

� Interface to organize data exchange between the test bench (FPGA) and the
software part (Host PC).

The abstraction level of VHDL modules corresponds to register-transfer level,
thus allowing the use of basically any FPGA mapping tool. The interface is
currently only partly implemented because further studies are needed to define
data exchange protocols between hardware and software parts. In future, any
suitable FPGA board can be used, assuming that supporting interfaces have been
developed to organize data exchange between the FPGA and the host PC.

Fig. 4. Structure of the emulation environment.

 330

Hardware support for fault dropping. Compared against the initial emula-

tion environment, only minimal modifications were needed to introduce hard-
ware support for fault dropping. First, the reference unit, the golden device, had
to be inserted. For that purpose we used the original netlist of the CUT – the one
without fault models. Few alternative solutions, e.g. context switching like
approach with one combinational part and two sets of registers, were also con-
sidered but the used solution appeared to be the cheapest (in terms of resources
and performance). Second, the circuitry for on-the-fly comparison was needed to
get the full benefit of the fault dropping approach. This was implemented using a
simple parallel comparator and modified emulation algorithm. Moreover, the
emulation environment was also simplified because the output signature analyser
was not needed any more. The modified structure (Fig. 6) makes use of the new
CUT-top module along with the golden device (GOLD). The LFSR for output
analysis has been replaced by the comparator (CMP). In a similar manner, the
emulation algorithm (Fig. 7) has been modified. There is no need to build the
fault-free signature as a comparison is performed at the end of every emulation
step.

Encoded don’t-care value approach. This requires introduction of a new
data type, three-valued logic represented by two-bit signals, and redefinition of
all logic functions. These new definitions affect only the units under test. The rest
of the environment can be used as it is, except LFSR for output analysis that must
have the double amount of bits: two bits per each output in order to achieve
three-valued encoding. When using fault-dropping approach, the comparator
must use three-valued logic too.

(Combinational circuits)
reset_LFSRs;
for every test_vector
 emulate_CUT;
store_signature;
for every fault {
 reset_LFSRs;
 for every test_vector
 emulate_CUT;
 compare_signature;
 send_report;
}

Fig. 5. Algorithms, implemented by the state machine.

(Sequential circuits)
reset_LFSRs;
for every test_sequence {
 reset_CUT;
 for every test_vector
 emulate_CUT;
}
store_signature;
for every fault {
 reset_LFSRs;
 for every test_sequence {
 reset_CUT;
 for every test_vector
 emulate_CUT;
 }
 compare_signature;
 send_report;
}

 331

Fig. 6. Modified structure of the emulation environment.

4. RESULTS OF EXPERIMENTS
4. RESULTS OF EXPERIMENTS

For experiments, a powerful RC1000-PPE board with VirtexE chip XCV2000E

(19200 slices) was used. All the test patterns were generated by a simulation-based
ATPG SBGEN from the Turbo Tester system [17,18]. In all the experiments, a fault
simulator, based on parallel sequential fault simulation algorithm similar to [20],
belonging to Turbo Tester, was implemented. Test circuits were selected from
ISCAS’89 and HLSynt’92 benchmark sets to evaluate the speedup when replacing
fault simulation with emulation on FPGA. Results of some benchmarks are
presented in the paper to illustrate the gains and losses of our approach (Tables 1
and 2). Experiments with few combinational circuits – c2670, c3540, c5315, and

(Sequential circuits & fault dropping)
for every fault {
 reset_LFSR;
 for every test_sequence {
 reset_CUT; reset_GOLD;
 for every test_vector {
 emulate_CUT;
 emulate_GOLD;
 if (outputs_differ) break test_sequence;
 }
 }
 send_report;
}

Fig. 7. FSM algorithm for fault dropping.

 332

c6288 – from ISCAS’85 benchmark are presented for comparison in Table 1.
Columns labelled “# of faults” illustrate the complexity of the test circuits. The
columns “# of vectors” illustrate the complexity of tests. In Table 1, it is divided
into two columns: “# of seq.” shows the number of sequences and “Seq. len.”
shows lengths of these sequences. In Table 2, the column “# of vectors” is divided
also into to two columns, “Total” and “Actual”. The column “Total” refers to the
number of clock-cycles to be simulated by the initial emulation environment
without considering fault-dropping while the second column “Actual” illustrates
the number of simulated cycles with the improved (fault-dropping) environment.
The column “SW” gives the fault simulation time based on a parallel algorithm and
“Emul.” emulation time for the same set of test vectors. Synthesis times have been
added for comparison (“Synt.”). The synthesis times include both source netlist
modification (fault injection) and mapping onto FPGA. Columns “Slices” give the
size of the emulation environment in FPGA.

Table 1. Results of experiments without fault dropping

of vectors HW Circuit # of
faults # of

seq.
Seq.
len.

SW
simul. Slices MHz Synt. Emul.

Speed-
up

c2670 824 20k 1 34.8″ 1783 20 5.1′ 1.65″ 21.1
c3540 1 036 10k 1 20.9″ 1874 15 7.8′ 1.39″ 15.0
c5315 2 076 1000 1 5.63″ 3412 12.5 15′ 0.33″ 17.1
c6288 3 559 1000 1 18.3″ 6423 5 61′ 1.43″ 12.8
s5378 5 150 80 100 26.8″ 3311 35 11.8′ 1.18″ 22.7
s15850 12 314 200 200 15.6′ 9939 15 79′ 32.80″ 28.5
GCD (16) 1 634 80 50 5.28″ 1094 40 2.8′ 0.16″ 33.0
GCD (32) 3 734 10 400 22.6″ 2227 25 7.9′ 0.60″ 37.7
prefetch (16) 1 042 40 100 1.34″ 776 75 1.2′ 0.06″ 22.3
prefetch (32) 2 252 40 400 9.46″ 1529 50 3.4′ 0.72″ 13.1
diff-eq (16) 10 008 20 200 87.9″ 7469 10 80′ 4.00″ 22.0
TLC 468 40 100 2.69″ 391 60 41″ 0.03" 89.7

Table 2. Results of experiments with fault dropping

of vectors HW Circuit # of
faults Total Actual

SW
simul. Slices MHz Synt. Emul.

Speed-
up

s5378 5 150 8 000 2 896 26.8″ 3 573 30 14.8′ 0.50″ 53.6
s15850 12 314 40 000 25 521 15.6′ 10 131 15 85′ 21.0″ 44.6
GCD (16) 1 634 4 000 510 5.28″ 1 152 40 2.9′ 0.02″ 264
GCD (32) 3 734 4 000 558 22.6″ 2 456 25 9.0′ 0.08″ 283
prefetch (16) 1 042 4 000 181 1.34″ 701 75 1.3′ 3 ms 447
prefetch (32) 2 252 16 000 1 904 9.46″ 1 448 50 3.6′ 0.09″ 105
diff-eq (16) 10 008 4 000 175 87.9″ 7 710 10 82′ 0.17″ 517
TLC 468 4 000 925 2.69″ 409 60 41″ 0.01″ 269

 333

For different benchmarks, the initial hardware emulation implementing
signature analysis was on average 33 (ranging from 13 to 85) times faster than
the software fault simulation. For the improved environment that supported fault-
dropping, the corresponding speed-up was on average 250 (from 44 to 517). It
should be noted that when considering also the time of synthesis, it might not be
useful to replace simulation with emulation, especially for smaller designs.
Nevertheless, taking into account that sequential circuits, as opposed to combina-
tional ones, have much longer test sequences, the use of emulation will pay off.

The second approach, encoded don’t-care values, does not improve the speed-
up. However, it increases the size of the emulation hardware by 50 to 100%. This
is caused by the need to use two wires for every original wire to represent four
different values. The logic is not always doubled because inputs and
resettable/settable registers have two effective values and therefore the logic
could be simplified. In Table 3, parameters in the terms of FPGA resources are
compared for sequential circuits. Column “# of gates” presents the size of circuits
in the terms of equivalent gates (for ASICs) and illustrates complexity of the
circuits. Parameters of three implementations are compared in the remaining
columns. The two most noteworthy observations that can be made from the table
are the following.
� The use of fault-dropping will increase the size of the implementation but

much less than expected. The explanation is rather simple – the size of the
added reference circuit is comparable to the size of the removed LFSR-based
output analyser.

� The increase in the size when using three-valued logic may increase the time
of synthesis when the FPGA utilization is more than 50%. The reason is that
when mapping random logic netlist onto FPGA, it is hard to route all inter-
connects. This results in significant increase of synthesis times, especially of
place-and-route times.

Table 3. Parameters of emulation environments on FPGA

Without fault dropping With fault dropping Three-valued logic Circuit # of
gates Slices MHz Synt. Slices MHz Synt. Slices MHz Synt.

s5378 4 933 3311 35 11.8′ 3 573 30 14.8′ 6 036 30 86′
s15850 17 081 9939 15 79′ 10 131 15 85′ 14 112 15 86′
GCD (16) 926 1094 40 2.8′ 1 152 40 2.9′ 1 689 30 2.6′
GCD (32) 2 061 2227 25 7.9′ 2 456 25 9.0′ 4 148 20 5.9′
prefetch (16) 796 776 75 1.2′ 701 75 1.3′ 1 328 75 1.4′
prefetch (32) 1 698 1529 50 3.4′ 1 448 50 3.6′ 2 846 50 4.0′
diff-eq (16) 4 562 7469 10 80′ 7 710 10 82′ 11 859 10 221′
TLC 290 391 60 41″ 409 60 41″ 668 60 44″

 334

5. CONCLUSIONS

The paper presents an FPGA-based emulation environment for fault emula-

tion of combinational and synchronous sequential circuits. Trade-offs in terms of
required FPGA resources and accuracy of test quality assessment for fault
emulation have been investigated. Experiments carried out with HLSynth’92 and
ISCAS’89 benchmarks showed that the proposed approach allows simulation
speed-up of 40 to 500 times as compared to the state-of-the-art in software-based
fault simulation.

The experiments showed that for circuits that require large numbers of test
vectors, e.g. sequential circuits, it is beneficial to replace simulation with emula-
tion. Based on that, it can be concluded that the most useful application would be
to explore test generation and analysis architectures based on easily reprogrammed
structures, e.g. LFSRs. This makes fault emulation very useful to select the best
generator/analyser structures for BIST. The need to simulate the same circuit many
times with different seed and feedback vectors reduces also the impact of the main
drawback of the approach – rather large times of the synthesis. Another useful
application of fault emulation would be genetic algorithms of test pattern generation
where also large numbers of test vectors are analysed. Future work will include
development of more advanced on-chip test vector generators and analysers.

ACKNOWLEDGEMENTS

This work was supported partly by Enterprise Estonia funded development

centre ELIKO and by Estonian Science Foundation (grants Nos. 5601, 5637,
5910 and 6717). The authors also thank Valentin Tihhomirov for implementing
the fault injection tool.

REFERENCES

 1. International technology roadmap for semiconductors, 2006. http://www.itrs.net/
 2. McGeer, P., McMillan, K., Saldanha, A., Sangiovanni-Vincetelli, A. and Scaglia, P. Fast

discrete function evaluation using decision diagrams. In Proc. IEEE/ACM International
Conference on Computer-Aided Design (Rudell, R. and Rutenbar, R. A., eds.). San Jose,
1995, 402–407.

 3. Gelsinger, P. Design and Test of the 80386. IEEE Des. Test Comput., 1987, 4, 64–71.
 4. Axis systems uses world’s largest FPGAs from xilinx to deliver most efficient verification

system in the industry. Xilinx Press Release #0273, 2003. http://www.xilinx.com/
 5. Sedaghat-Maman, R. and Barke, E. A new approach to fault emulation. In Proc. 8th IEEE

International Workshop on Rapid System Prototyping (Carothers, J. D., ed.). Chapel Hill,
1997, 173–179.

 6. Ellervee, P., Raik, J. and Tihhomirov, V. Fault emulation on FPGA: a feasibility study. In Proc.
21st Norchip Conference (Nielsen, I. R., ed.). Riga, 2003, 92–95.

 7. Abramovici, M. and Menon, P. Fault simulation on reconfigurable hardware. In Proc. 5th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines (Arnold, J.
and Pocek, K., eds.). Napa Valley, 1997, 182–190.

 335

 8. Lu, S.-K., Chen, J.-L., Wu, C.-W., Chang, W.-F. and Huang, S.-Y. Combinational circuit fault
diagnosis using logic emulation. In Proc. IEEE International Symposium on Circuits and
Systems. Bangkok, 2003, vol. 5, 549–552.

 9. Alderighi, M., D’Angelo, S., Mancini, M. and Sechi, G. R. A fault injection tool for SRAM-
based FPGAs. In Proc. 9th IEEE International On-Line Testing Symposium. Kos, 2003,
129–133.

10. Hwang, S.-A., Hong, J.-H. and Wu, C.-W. Sequential circuit fault simulation using logic
emulation. IEEE Trans. CAD Integr. Circ. Syst., 1998, 17, 724–736.

11. Wieler, R., Zhang, Z. and McLeod, R. D. Simulating static and dynamic faults in BIST
structures with a FPGA based emulator. In Proc. 4th International Workshop on Field-
Programmable Logic and Applications (Hartenstein, R. W. and Servít, M., eds.). Springer-
Verlag, Prague, 1994, 240–250.

12. Cheng, K.-T., Huang, S.-Y. and Dai, W.-J. Fault emulation: a new approach to fault grading. In
Proc. IEEE/ACM International Conference on CAD (Rudell, R. and Rutenbar, R. A., eds.).
San Jose, 1995, 681–686.

13. Burgun, L., Reblewski, F., Fenelon, G., Barbier, J. and Lepape, O. Serial fault emulation. In
Proc. 33rd IEEE Design Automation Conference. Las Vegas, 1996, 801–806.

14. Wieler, R., Zhang, Z. and McLeod, R. D. Emulating static faults using a xilinx based emulator.
In Proc. 3rd Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (Athanas, P. and Pocek, K. L., eds.). Napa Valley, 1995, 110–115.

15. Parreira, A., Teixeira, J. P. and Santos, M. B. Built-in self-test preparation in FPGAs. In Proc.
IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems. Tatranska
Lomnica, 2004, 109–112.

16. Ellervee, P., Raik, J., Tihhomirov, V. and Tammemäe, K. Evaluating fault emulation on FPGA. In
Proc. 14th International Conference on Field-Programmable Logic and Applications
(Becker, J., Platzner, M. and Vernalde, S., eds.). Springer-Verlag, Antwerpen, 2004, 354–363.

17. Jervan, G., Markus, A., Paomets, P., Raik, J. and Ubar, R. Turbo Tester: a CAD system for
teaching digital test. In Microelectronics Education. Kluwer Academic Publishers, 1998,
287–290.

18. “Turbo Tester” home page, 2006. http://www.pld.ttu.ee/tt
19. Pradhan, D. K., Liu, C. and Chakrabarty, K. EBIST: A novel test generator with built in fault

detection capability. In Proc. Conference on Design, Automation and Test in Europe.
Munich, 2003, 224–229.

20. Niermann, T. M., Cheng, W.-T. and Patel, J. H. PROOFS: a fast, memory efficient sequential
circuit fault simulator. In Proc. 27th IEEE Design Automation Conference. Orlando, 1990,
535–540.

FPGA-põhine rikete emuleerimise keskkond

Peeter Ellervee, Jaan Raik, Kalle Tammemäe ja Raimund Ubar

On kirjeldatud rikete simuleerimise kiirendamise keskkonda, kasutades riistvara
emuleerimist FPGA-l. Rikete simuleerimine on testimustrite genereerimise oluline
alamülesanne, mida kasutatakse korduvalt testi genereerimise käigus. On antud
selgitus digitaalskeemide rikete simuleerimisega kaasnevatele probleemidele. Uusi-
mate tarkvaraliste rikete simuleerimisega võrreldes lubab artiklis esitatud lähene-
mine simuleerimise kiirendamist 40 kuni 500 korda. Eksperimentide tulemustest
järeldub, et emuleerimist tasub kasutada skeemide puhul, mis vajavad suurt hulka
testvektoreid, kuid mis kasutavad vektorite genereerimiseks paindlikke algoritmi-
lisi lahendusi. Üheks selliseks näiteks on sisseehitatud omatest.

