
 300

Proc. Estonian Acad. Sci. Eng., 2006, 12, 3-2, 300–322 

 
 
 
 
 
 

Hybrid  BIST  methodology  for  testing   
core-based  systems 

 
Gert Jervana, Raimund Ubara and Zebo Pengb 

 
a  Department of Computer Engineering, Tallinn University of Technology, Raja 15, 12618 Tallinn, 

Estonia; {gerje, raiub}@pld.ttu.ee 
b  Embedded Systems Laboratory, Linköping University, SE-581 83 Linköping, Sweden; 

zpe@ida.liu.se 
 
Received 15 May 2006, in revised form 31 July 2006 
 
Abstract. This paper describes a hybrid BIST methodology for testing systems-on-chip. In our 
hybrid BIST approach a test set is assembled, for each core, from pseudorandom test patterns that 
are generated on-line, and deterministic test patterns that are generated off-line and stored in the 
system. The deterministic test set is specially designed to shorten the pseudorandom test cycle and 
to target random resistant faults. To support such a test strategy, we have developed several hybrid 
BIST architectures that target different test scenarios. As the test lengths of the two test sequences 
is one of the important parameters in the final test cost, we have to find the most efficient 
combination of those two test sets without sacrificing the test quality. We describe methods for 
finding the optimal combination of pseudorandom and deterministic test sets of the whole system, 
consisting of multiple cores, under given memory constraints, so that the total test time is 
minimized. Our approach employs a fast estimation methodology in order to avoid exhaustive 
search and to speed up the calculation process. Experimental results have shown the efficiency of 
the algorithms to find a near-optimal solutions. 
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1. INTRODUCTION 
 
Rapid advances of the microelectronics technology in recent years have 

brought new possibilities to the design and manufacturing of integrated circuits 
(ICs) [1]. Nowadays many systems are designed by embedding pre-designed and 
pre-verified complex functional blocks, usually referred as cores, into one single 
die. Such core-based design technique has led to increased design productivity, 
but at the same time it has introduced additional test-related problems. These 
additional testing problems, together with the test problems induced due to the 
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complexity and heterogeneous nature of such systems-on-chip (SoC), pose great 
challenges to the SoC testing community [2]. Typically, a SoC consists of micro-
processor cores, digital logic blocks, analogue devices, and memory 
structures [3]. These different types of components were traditionally tested as 
separate chips by dedicated automatic test equipment of different types. Now 
they must be tested all together as a single chip either by a super tester, which is 
capable of handling different types of cores and is very expensive, or by multiple 
testers, which is very time-consuming due to the time of moving from one tester 
to another. 

Another key issue to be addressed for SoC testing is the implementation of 
test access mechanisms on the chip. For traditional system-on-board design, 
direct test access to the peripheries of the basic components, in the form of 
separate chips, is usually available. For the corresponding cores, embedded 
deeply in a SoC, such access is impossible. Therefore, additional test access 
mechanisms must be included in a SoC to connect the core peripheries to the test 
sources and sinks, which are the SoC pins when testing by an external tester. 

Many testing problems, discussed above, can be overcome by using a built-in 
self-test (BIST) strategy. For example, the test access cost can be substantially 
reduced by putting the test sources and sinks next to the cores to be tested. BIST 
can also be used to deal with the discrepancy between the speed of the SoC, 
which is increasing rapidly, and that of the tester, which will soon be too slow to 
match typical SoC clock frequencies. The introduction of BIST mechanisms in a 
SoC will also improve the diagnostic ability and field-test capability, which are 
essential for many applications where regular operation and maintenance test is 
needed [4]. 

Since the introduction of BIST mechanisms into a SoC is a complex task, we 
need to develop powerful automated design methods and tools to optimize the 
test function together with other design criteria as well as to speed up the design 
process. In this paper, we are going to concentrate on one of the improvements of 
the classical BIST approach, namely on the hybrid BIST. We will describe the 
basic concepts of the approach and propose optimization methods for satisfying 
different test constraints. 

 
 

2. RELATED  WORK 
 
A classical BIST architecture consists of a test pattern generator (TPG), a test 

response analyser (TRA) and a BIST control unit (BCU), all implemented on the 
chip. Different implementations of such BIST architectures have been available 
and some of them have wide acceptance. One of the major problems of the 
classical BIST implementations is related to the TPG design. Typically, such a 
TPG is implemented by linear feedback shift registers (LFSR) [5–7]. Since the test 
patterns, generated by an LFSR, are pseudorandom by nature and have linear 
dependencies [8], the LFSR-based approach often does not guarantee sufficiently 
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high fault coverage (especially in the case of large and complex designs), and 
demands very long test application times in addition to high overheads. There-
fore, several proposals have been made to combine pseudorandom test patterns, 
generated by LFSRs, with deterministic patterns [9–15], to form a mixed-mode 
solution. 

A mixed-mode scheme uses pseudorandom patterns to cover easy-to-detect 
faults and, subsequently, deterministic patterns to target the remaining hard-to-
detect faults. The main strength of these approaches is in the possibility to have a 
trade-off between test data storage and test application time by varying the ratio 
of pseudorandom and deterministic test patterns.  

One of the mixed-mode approaches is based on the LFSR reseeding. In this 
approach, the quality of the test sequence is improved by generating only a 
limited number of test patterns from one LFSR seed (initial state), and during the 
test generation process the LFSR is reseeded with new seeds. This idea was first 
proposed by Koenemann in 1991 [12]. These new seeds are used to generate 
pseudorandom sequences and to encode the deterministic test patterns in order to 
reduce the number of non-useful patterns. In this approach, only a set of LFSR 
seeds have to be stored instead of the complete set of patterns, and as a result less 
storage is needed. 

Several heuristic approaches have been proposed to identify multiple seeds, 
and the number of vectors applied starting with each seed, to minimize the 
overall test application time under a given constraint on the maximum number of 
seeds [10,15]. If a small LFSR is used, it may not always be possible to find a seed 
that will generate a required deterministic test pattern, hence the fault coverage 
may remain low. Therefore, a different reseeding scenario, based on multiple-
polynomial LFSRs, has been proposed in [16]. There, deterministic patterns are 
encoded with a number of bits, specifying a seed and a polynomial identifier. 
During testing, not only the appropriate seed, but also the corresponding feed-
back polynomial, have to be loaded into the LFSR. Another alternative is to use 
variable-length seeds [15]. However, all these techniques generate test sets of 
excessive length. 

Another class of mixed-mode schemes embeds deterministic test patterns into 
LFSR sequences by mapping LFSR states to deterministic test patterns. This can 
be achieved by adding extra circuitry to generate control signals that complement 
certain bits or fix them either as 0 or 1 [17]. A hardware for implementing the bit-
flipping or bit-fixing sequence generation logic is the major cost of this approach, 
as it has to be customized for a given CUT and LFSR. An alternative approach 
transforms the LFSR-generated patterns into a new set of test patterns with 
higher fault coverage. The transformation is carried out by a mapping logic, 
which decodes sets of ineffective patterns and maps them into vectors that detect 
the hard-to-test faults [9]. The outputs of an n-stage random TPG are input to a 
mapping logic and the outputs of the mapping logic drive the inputs of the CUT. 
Nevertheless, most of these variations of controlling the bits of the LFSR 
sequence have not yet solved the problems with random resistance. 
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The main objective of all these previously mentioned methods has been 
improvement of the test quality in terms of fault coverage, while different aspects 
related to the test cost, like test length, area overhead and tester memory require-
ments, were largely omitted or handled in isolation. In this paper an alternative 
approach, called hybrid BIST, will be described. In particular, different test 
optimization algorithms, based on the proposed hybrid BIST architecture, will be 
presented. 

 
 

3. HYBRID  BIST 
 
As described earlier, a typical self-test approach employs usually some form 

of pseudorandom test pattern generators. These test sequences are often very long 
and not sufficient to detect all the faults. To avoid the test quality loss due to 
random pattern resistant faults and to speed up the testing process, we can apply 
deterministic test patterns targeting the random resistant and difficult to test 
faults. Such a hybrid BIST approach starts usually with a pseudorandom test 
sequence of length .L  After the application of pseudorandom patterns, a stored 
test approach will be used [18]. For the stored test approach, pre-computed test 
patterns are applied to the core under test in order to reach the desirable fault 
coverage level. For off-line generation of deterministic test patterns, arbitrary 
software test generators may be used based on, for example, deterministic or 
genetic algorithms. 

In a hybrid BIST technique, the length of the pseudorandom test is an 
important design parameter, which determines the behaviour of the whole test 
process. A shorter pseudorandom test sequence implies a larger deterministic test 
set. This requires additional memory space, but at the same time, shortens the 
overall test time. A longer pseudorandom test, on the other hand, will lead to 
larger test application time with reduced memory requirement. Therefore it is 
crucial to determine the optimal length of pseudorandom test in order to 
minimize the total testing cost. 

Figure 1 illustrates graphically the total cost of a hybrid BIST, consisting of 
pseudorandom test patterns and stored test patterns generated off-line. The 
horizontal axis in Fig. 1 denotes the fault coverage, achieved by the pseudo-
random test sequence before switching from the pseudorandom test to the stored 
one. Zero pseudorandom test coverage is the case when only stored test patterns 
are used and therefore the cost of stored test is the biggest at this point. The 
figure illustrates the situation where 100% fault coverage is achievable with 
pseudorandom vectors alone. 

The total test cost of the hybrid BIST TOTALC  can therefore be defined as 
 

TOTAL GEN MEM ,C C C L Sα β= + = +                              (1) 
 

where GENC  is the cost related to the effort for generating L  pseudorandom test 
patterns (number of clock cycles), MEMC  is related to the memory cost for storing  
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Fig. 1. Cost calculation for the hybrid BIST (under 100% assumption). 
 
 

S  pre-computed test patterns to improve the pseudorandom test set, and α  and 
β  are constants to map the test length and memory space to the costs of the two 
parts of the test solutions. 

We should note that defining the test cost as a sum of two costs, the cost of time 
for the pseudorandom test generation and the cost of memory associated with 
storing the TPG produced test, is a rather simplified cost model for the hybrid 
BIST technique. In this simplified model, neither the basic cost of silicon (or its 
equivalent), occupied by the LFSR-based generator, nor the effort, needed for 
generating deterministic test patterns, are taken into account. Similarly, all aspects 
related to test data transportation are omitted. However, these aspects can easily be 
added to the cost calculation formula after the desired hardware architecture and 
deterministic test pattern generation approaches are chosen. In the following 
sections, we are going to provide the algorithms to find the best trade-off between 
the length of pseudorandom test sequence and the number of deterministic patterns. 
For making such a trade-off, the basic implementation costs are invariant and will 
not influence the optimal selection of the hybrid BIST parameters. 

On the other hand, the attempt to add “time” to “space” (even in terms of their 
cost) seems rather controversial as it is very hard to specify which one costs more 
in general (or even in particular cases) and how to estimate these costs. This is 
also the reason why the total cost of the BIST function is not considered here. 
The values of the parameters α  and β  in the cost function are left to be 
determined by the designer and can be seen as one of the design decisions. If 
needed, it is possible to separate these two costs (time and memory space) and 
consider, for example, one of them as a design constraint. 

Figure 1 illustrates also how the cost of pseudorandom test is increasing when 
striving to higher fault coverage (the GENC  curve). In general, it can be very 
expensive to achieve high fault coverage with pseudorandom test patterns alone. 
The MEMC  curve describes the cost that we have to pay for storing additional pre-
computed tests at the given fault coverage level, reached by pseudorandom 
testing. The total cost TOTALC  is the sum of the above two costs. The TOTALC  
curve is shown in Fig. 1, where the minimum point is marked as MIN.C  
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Fig. 2. Cost calculation for the hybrid BIST. 
 
 

As mentioned earlier, in many situations 100% fault coverage is not achiev-
able with only pseudorandom vectors. Therefore we have to include this assump-
tion to the total cost calculation. The situation is illustrated in Fig. 2, where the 
horizontal axis indicates the number of pseudorandom patterns applied, instead 
of the fault coverage level. The curve of the total cost TOTALC  is still the sum of 
two cost curves GEN MEMC C+  with the new assumption that the maximum fault 
coverage is achievable only by either the hybrid BIST or pure deterministic test. 

 
 

4. HYBRID  BIST  ARCHITECTURES 
 
The previous section described the basic principles of the hybrid BIST and 

introduced the test cost calculation formulas. In this section, some basic concepts 
of hybrid BIST architectures will be discussed. Although our optimization methods 
are not devised for a particular test architecture and different architectural 
assumptions can easily be incorporated into the algorithms, some basic assump-
tions have to be made. 

 
4.1. Core-level  hybrid  BIST  architecture 

 
We have divided cores into two large classes. To the first class belong the 

cores that are equipped with their own pseudorandom test pattern generator and 
only deterministic patterns have to be transported to the cores. The second class 
consists of cores with no pre-existing BIST structures. Such cores require an 
alternative approach, where pseudorandom and deterministic test patterns have to 
be transported to the core under test from external sources. 

At the core level, pseudorandom testing can be performed using many 
different scenarios, as described earlier. We have assumed a core-level hybrid 
BIST  architecture  that  is  depicted in Fig. 3,  where  the  pseudorandom  pattern  
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Fig. 3. Hardware-based core-level hybrid BIST architecture. 
 
 
generator (PRPG) and the Multiple Input Signature Analyser (MISR) are 
implemented inside the core under test (CUT) using LFSRs or any other structure 
that provides pseudorandom test vectors with a required degree of randomness. 
The deterministic test patterns are precomputed off-line and stored outside the 
core, either in a ROM or in an ATE [19]. 

Core test is performed in two consecutive stages. During the first stage, 
pseudorandom test patterns are generated and applied. After a predetermined 
number of test cycles, additional test is performed with deterministic test patterns 
from the memory. For combinatorial cores, where a test-per-clock scheme can be 
used, each primary input of the CUT has a multiplexer at the input that 
determines whether the test is coming from the PRPG or from the memory 
(Fig. 3). The response is compacted into the MISR in both cases. The architecture 
can easily be modified with no or only minor modification of the optimization 
algorithms to be presented in the following sections. 

As testing of sequential cores is very complex, it is assumed here that every 
sequential core contains one or several scan paths (full scan). Therefore a test-
per-scan scheme has to be used and, for every individual core, the “Self-Test 
Using MISR and Parallel Shift Register Sequence Generator” (STUMPS) [20] 
architecture is assumed. Both internally generated pseudorandom patterns and 
externally stored deterministic test patterns are therefore applied via scan chains. 
In both situations, every core’s BIST logic is capable of producing a set of 
independent pseudorandom test patterns, i.e. the pseudorandom test sets for all 
the cores can be carried out simultaneously and independently. 
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4.2. System-level  hybrid  BIST  architectures 
 

4.2.1. Parallel hardware-based hybrid BIST architecture 

We start with a system-level test architecture, where every core has its own 
dedicated BIST logic. The deterministic tests are applied from the external source 
(either on-chip memory or ATE), one core at a time; in the current approach we 
have assumed for test data transportation an AMBA-like test bus [21]. AMBA 
(Advanced Microcontroller Bus Architecture) integrates an on-chip test access 
technique that reuses the basic bus infrastructure. An example of a multi-core 
system with such a test architecture is given in Fig. 4. 

Our optimization methods are not dependent of the location of the deter-
ministic test patterns. These patterns can be applied either from the external ATE 
or from an on-chip memory (ROM). As we have assumed a bus-based test 
architecture, the time needed for test data transportation from the particular test 
source to a given CUT is always the same. The corresponding time overhead, 
related to the test data transportation, can easily be incorporated into the pro-
posed algorithms. 

Considering the assumed test architecture, only one deterministic test set can 
be applied at any given time, while any number of pseudorandom test sessions 
can take place in parallel. To enforce the assumption that only one deterministic 
test can be applied at a time, a simple ad-hoc scheduling can be used. 

The above type of architecture, however, may not always be feasible as not all 
cores may be equipped with self-test structures. It may also introduce a 
significant area overhead and performance degradation, as some cores may 
require excessively large LFSRs. 

 
 
 

   

SoC 

Embedded  
tester 

Test  
controller 

Tester  
memory 

AMBA system  bus 

Core  4 
BIST 

Core  5 
BIST 

Core  1 
BIST 

Core  2 
BIST 

Core  3 
BIST 

 
 

Fig. 4. An example of a core-based system with independent BIST resources. 
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4.2.2. Software-based hybrid BIST architecture 

To make the BIST approach more attractive, we have to tackle the hardware 
overhead problem and to find solutions to reduce the additional delay and the 
long test application times. At the same time, fault coverage has to be kept at a 
high level. The simplest and most straightforward solution is to replace the hard-
ware LFSR implementation by software, which is especially attractive to test 
SoCs, because of the availability of computing resources directly in the system (a 
typical SoC usually contains at least one processor core). The software-based 
approach, on the other hand, is criticized because of the large memory require-
ments, as we have to store the test program and some test patterns, which are 
required for initialization and reconfiguration of the self-test cycle [11]. However, 
some preliminary results regarding such an approach for PCBs have been 
reported in [22] and show that a software-based approach is feasible. 

In case of a software-based solution, the test program, together with all 
necessary test data (LFSR polynomials, initial states, pseudorandom test length 
and signatures) are kept in a ROM. The deterministic test vectors are generated 
during the development process and are stored usually in the same place. For 
transporting the test patterns, we assume that some form of TAM is available.  

In the test mode, the test program will be executed by the processor core. The 
test program proceeds in two successive stages. In the first stage, the pseudo-
random test pattern generator, which emulates the LFSR, is executed. In the 
second stage, the test program will apply precomputed deterministic test vectors 
to the core under test. 

The pseudorandom TPG software is the same for all cores in the system and is 
stored as one single copy. All characteristics of the LFSR, needed for emulation, 
are specific to each core and are stored in the ROM. They will be loaded upon 
request. Such an approach is very effective in the case of multiple cores, because 
for each additional core only the BIST characteristics for this core have to be 
stored. This approach, however, may lead to a more complex test controller, as 
every core requires pseudorandom patterns with different characteristics (poly-
nomial, initial state and length, for example). The general concept of the software 
based pseudorandom TPG is depicted in Fig. 5. 

As the LFSR is implemented in software, there are no hardware constraints 
for the actual implementation. This allows developing for each particular core an 
efficient pseudorandom scheme without concerning about the hardware cost 
except the cost for the ROM. As has been shown by experiments, the selection of 
the best possible pseudorandom scheme is an important factor for such an 
approach [11]. 

As discussed in [11], the program to emulate the LFSR can be very simple and 
therefore the memory requirements for storing the pseudorandom TPG program 
together with the LFSR parameters are relatively small. This, however, does not 
have any influence on the cost calculation and optimization algorithms, to be 
proposed. These algorithms are general and can be applied to the hardware-based 
as well as to the software-based hybrid BIST optimization. 
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Core j+...

SoC  
 

Fig. 5. LFSR emulation. 
 

 
5. COST  CALCULATION  FOR  HYBRID  BIST 

 
For hybrid BIST cost calculations we have to calculate costs of the pseudo-

random test GENC Lα=  and deterministic test MEM .C Sβ=  Creating the curve 

GENC  is not difficult. For this purpose, a simulation of the behaviour of the 
LSFR, used for pseudorandom test pattern generation, is needed. Fault simulation 
should be carried out for the complete test sequence, generated by the LFSR. As 
a result of such a simulation, we find for each clock cycle the list of faults, which 
were covered up to this clock cycle. By removing these faults from the complete 
fault list, we know the number of faults remaining to be tested. 

More difficult is to find the values of ,Sβ  the cost for storing additional 
deterministic patterns in order to reach the given fault coverage level (100% in 
the ideal case). In [18] we proposed a method based on repetitive use of the ATPG 
and in [23] a method based on fault table manipulations was described. Both 
procedures are accurate but time-consuming and therefore not feasible for larger 
designs. 

To overcome the complexity explosion problem we have developed an 
estimation methodology [24] that leads us to the approximate solution. This can 
be used as an initial solution for the search of more accurate results, using 
different optimization heuristics, like Simulated Annealing [25]. In [26], a method 
based on Tabu search [27] has been proposed. 

Let us denote the deterministic test set by TD  and efficient pseudorandom 
test set [28] by .TPE  In the following we will use ( )FD i  and ( )FPE i  to denote 
the fault coverage figures of the test sequences ( )TD i  and ( ),TPE i  respectively, 
where i  is the length of the test sequence. 

 

Procedure 1. Estimation of the length of the deterministic test set TD 
1. Calculate, by fault simulation, the fault coverage functions ( ),FD i  

1, 2, , | |,i TD= …  and ( ),FPE i  1, 2, , | | .i TPE= …  The patterns in TD  are 
ordered in such a way that each pattern, put into the sequence, contributes 
with maximum increase in fault coverage. 
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2. For each * | |,i TPE≤  find the fault coverage value *F  that can be reached by 
a sequence of patterns 1 2 *( , , , )iP P P TPE⊆…  (Fig. 6). 

3. By solving the equation ( ) *,FD i F=  find the maximum integer value *j  that 
satisfies the condition ( *) *.FD j F≤  The value of *j  is the length of the 
deterministic sequence that can achieve the same fault coverage *.F  

4. Calculate the value of | ( *) | | | *ETD i TD j= − , which is the number of test 
patterns needed for the TD  to reach the maximum achievable fault coverage. 
The value | ( *) | | | *,ETD i TD j= −  calculated by the Procedure 1, can be used 

to estimate the length of the deterministic test sequence *TD  in the hybrid test 
set { *, *}TH TP TD=  with *i  efficient test patterns in *.TP  By finding 
| ( ) |ETD j  for all 1, 2, , | |j TPE= …  we get the cost function estimate MEM ( ).EC j  

In the following we shall illustrate the Procedure 1 with an example. In Fig. 7 
we have presented an extract of fault simulation results for both test sets (FC  is 
fault coverage). The length of the pseudorandom sequence has to be only so long 
as potentially necessary. By knowing the length of the complete deterministic test 
set and fault coverage figures for every individual pattern, we can estimate the 
size of the additional deterministic test set for any length of the pseudorandom 
test sequence, as illustrated in Fig. 7. We can see that for a given core, 60 
deterministic test cycles are needed to obtain the same fault coverage as with 524  
 

 
   

i   

F   

F   D     (   i   )   F   P   E     (   i   )   

i   *   

F*   

|   T   D   E   
   ( 
  i*   )   |   

100%   

|   T   D        |   j*   
  

 
 

Fig. 6. Estimation of the length of the deterministic test sequence. 
 
 

     

|TP| FC, %  |TD| FC, % 
1 21.9  1 43.3 
2 34.7  2 45.6 
  ...   

524 97.5  60 97.5 
  ...   

1000 98.9  90 100  
 

 
Fig. 7. Estimation of the length of the deterministic test sequence. 
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pseudorandom test cycles and it requires additional 30 deterministic test cycles to 
reach 100% fault coverage. Based on this information we assume that if we apply 
those 30 deterministic test cycles on top of the 524 pseudorandom cycles, we can 
obtain close to the maximum fault coverage. 

We have demonstrated [24] that this estimation methodology can efficiently be 
used in different test cost minimization algorithms. In the following we shall use 
it for test time minimization in the multi-core environment. 

 
 

6. HYBRID  BIST  IN  THE  SoC  ENVIRONMENT 
 
Many publications are devoted to the testing of core-based systems [13,29–34]. So 

far the main emphasis has been on the test scheduling, TAM design and testability 
analysis. The earlier test scheduling work has had the objective to determine start 
times for each test so that the total test application time is minimized. This assumes 
a fixed set of tests and test resources together with a test access architecture. Some 
approaches take into account also test conflicts and different constraints, e.g. 
power. However, there have not been investigations to find the optimal test sets for 
testing every individual core in such a manner that the test time of the total system 
is minimized and different ATE constraints satisfied. 

As total cost minimization for multi-core systems is an extremely complex 
problem and is rarely used in practice then the main emphasis here is on test time 
minimization under memory constraints. The memory constraints can be seen as 
limitations of the on-chip memory or automatic test equipment, where the 
deterministic test set will be stored, and are therefore of great practical importance. 
We shall concentrate on the test architecture, where every core is equipped with 
its own pseudorandom pattern generator and only deterministic patterns have to 
be transported to the cores (Fig. 4). 

It is important to mention here that the following approach neither takes into 
account the test power nor do we propose any methods for test access mechanism 
optimization. Those problems can be solved after the efficient test set for every 
individual core has been developed [35] and therefore are not considered here. 

In order to explain the test time minimization problem for multi-core systems, 
let us use an example design, consisting of 5 cores, each core as a different 
ISCAS benchmark. Using the hybrid BIST optimization methodology [23] we can 
find the optimal combination between pseudorandom and deterministic test 
patterns for every individual core (Fig. 8). Considering the assumed test 
architecture, only one deterministic test set can be applied at any given time, 
while any number of pseudorandom test sessions can take place in parallel. To 
enforce the assumption that only one deterministic test can be applied at a time, a 
simple ad hoc scheduling method can be used. The result of this schedule defines 
the starting moments for every deterministic test session, the memory require-
ments, and the total test length t  for the whole system. This situation is 
illustrated in Fig. 8. 
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Fig. 8. Ad hoc test schedule for a hybrid BIST of the core-based system example. 
 
 

As it can be seen in Fig. 8, the solution, where every individual core has the 
best possible combination between pseudorandom and deterministic patterns, 
usually does not lead to the best system-level test solution. In this example, we 
have illustrated three potential problems: 
� the total test length of the system is determined by the single longest 

individual test set, while other tests may be substantially shorter; 
� the resulting deterministic test sets do not take into account the memory 

requirements, imposed by the size of the on-chip memory or the external test 
equipment; 

� the proposed test schedule may introduce idle periods, due to the scheduling 
conflicts between the deterministic tests of different cores. 
There are several possibilities for improvement. For example, the ad hoc 

solution in Fig. 8 can easily be improved by using a better scheduling strategy. 
This, however, does not necessarily lead to a significantly better solution as the 
ratio between pseudorandom and deterministic test patterns for every individual 
core is not changed. Therefore we have to explore different combinations between 
pseudorandom and deterministic test patterns for every individual core in order to 
find a solution, where the total test length of the system is minimized and the 
memory constraints are satisfied. In the following sections, we shall define this 
problem more precisely and describe a fast iterative algorithm for calculating the 
optimal combination between different test sets for the whole system. 

 
6.1. Basic  definitions  and  formulation  of  the  problem 

 
Let us assume that a system S  consists of n  cores 1 2, , , .nC C C…  For every 

core kC S∈  a complete sequence of deterministic test patterns F
kTD  and a 

complete sequence of pseudorandom test patterns F
kTP  can be generated. 

 

Definition 1. A hybrid BIST set { , }k k kTH TP TD=  for a core kC  is a sequence  
of tests,  constructed  from a subset F

k kTP TP⊆  of the pseudorandom test  
sequence and a deterministic test sequence .F

k kTD TD⊆  The sequences kTP  and 

kTD  complement each other to achieve the maximum achievable fault coverage. 
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Definition 2. A pattern in a pseudorandom test sequence is called efficient if it 
detects at least one new fault that is not detected by the previous test patterns in 
the sequence. The ordered sequence of efficient patterns form an efficient 
pseudorandom test sequence 1 2( , , , ) .k n kTPE P P P TP= ⊆…  Each efficient pattern 

j kP TPE∈  is characterized by the length of the pseudorandom test sequence 
,kTP  from the start to the efficient pattern ,jP  including .jP  An efficient 

pseudorandom test sequence ,kTPE  which includes all efficient patterns of F
kTP  

is called full efficient pseudorandom test sequence and denoted by .F
kTPE  

 

Definition 3. The cost of a hybrid test set kTH  for a core kC  is determined by 
the total length of its pseudorandom and deterministic test sequences, which can 
be characterized by their costs, ,P kCOST  and , ,D kCOST  respectively: 

 

, , , | | | |,T k P k D k k k kCOST COST COST TP TDσ ϕ= + = +                (2) 
 

and by the cost of recourses needed for storing the deterministic test sequence 

kTD  in the memory: 
 

, | | .M k k kCOST TDγ=                                          (3) 
 

The parameters σ  and ( 1, 2, , )k k nϕ = …  can be introduced by the designer to 
align the application times of different test sequences. For example, when a test-
per-clock BIST scheme is used, a new test pattern can be generated and applied 
in each clock cycle and in this case 1.σ =  The parameter kϕ  for a particular core 

kC  is equal to the total number of clock cycles needed for applying one 
deterministic test pattern from the memory. In a special case, when deterministic 
test patterns are applied by an external test equipment, application of 
deterministic test patterns may be up to one order of magnitude slower than by 
applying BIST patterns. The coefficient kγ  is used to map the number of test 
patterns in the deterministic test sequence kTD  into the memory recourses, 
measured in bits. 

 

Definition 4. When assuming the test architecture described above, a hybrid test 
set 1 2{ , , , }nTH TH TH TH= …  for a system 1 2{ , , , }nS C C C= …  consists of 
hybrid tests kTH  for each individual core ,kC  where the pseudorandom 
components of TH  can be scheduled in parallel, whereas the deterministic 
components of TH  must be scheduled in sequence due to the shared test 
resources. 

 

Definition 5. 1 2( , , , )nJ j j j= …  is called the characteristic vector of a hybrid 
test set 1 2{ , , , },nTH TH TH TH= …  where | |k kj TPE=  is the length of the 
efficient pseudorandom test sequence .k k kTPE TP TH⊆ ⊆  According to Defini-
tion 2, for each kj  corresponds a pseudorandom subsequence ( ) ,F

k k kTP j TP⊆  
and according to Definition 1, any pseudorandom test sequence ( )k kTP j  should 
be complemented with a deterministic test sequence, denoted with ( ),k kTD j  that 
is generated in order to achieve the maximum achievable fault coverage. Based 
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on this we can conclude that the characteristic vector J  determines entirely the 
structure of the hybrid test set kTH  for all cores .kC S∈  

 

Definition 6. The test length of a hybrid test 1 2{ , , , }nTH TH TH TH= …  for a 
system 1 2{ , , , }nS C C C= …  is given by: 

 

max{max( | | | |), | |}.T k k k k k
k k

COST TP TD TDσ ϕ ϕ= + ∑                   (4) 

 

The total cost of resources, needed for storing the patterns from all deterministic 
test sequences kTD  in the memory, is given by 

 

, .M M k
k

COST COST=∑                                       (5) 

 
 

Definition 7. Let us introduce a generic cost function , ,( )M k k T kCOST f COST=  
for every core ,kC S∈  and an integrated generic cost function MCOST =  

( )k Tf COST  for the whole system .S  The functions , ,( )M k k T kCOST f COST=  
will be created in the following way. Let us have a hybrid BIST set 

( ) { ( ), ( )}k k kTH j TP j TD j=  for a core kC  with j  efficient patterns in the 
pseudorandom test sequence. By calculating the costs ,T kCOST  and ,M kCOST   
for all possible hybrid test set structures ( ),kTH j  i.e. for all values 

1, 2, , | |,F
kj TPE= …  we can create the cost functions ,T kCOST =  , ( )T kf j   

and  , , ( ).M k M kCOST f j=  By taking the inverse function 1
, ,( ),T k T kj f COST−=  and 

inserting  it into the , ( )M kf j  we get the generic cost function ,M kCOST =  
1

, , , ,( ( )) ( )M k T k T k k T kf f COST f COST− =  where the memory costs are directly related 
to the lengths of all possible hybrid test solutions. The integrated generic cost 
function ( )M TCOST f COST=  for the whole system is the sum of all cost 
functions , ,( )M k k T kCOST f COST=  of individual cores .kC S∈  

 

From the function ( )M TCOST f COST=  the value of TCOST  for every given 
value of MCOST  can be found. The value of TCOST  determines the lower bound 
of the length of the hybrid test set for the whole system. To find the component 

kj  of the characteristic vector ,J  i.e. to find the structure of the hybrid test set 
for all cores, the equation , ( )T k Tf j COST=  should be solved. 

The objective here is to find a shortest possible (min ( ))TCOST  hybrid  
test sequence OPTTH  when the memory constraints are not violated i.e., 

,LIMIT .M MCOST COST≤  
 

6.2. Minimization  of  the  test  length  under  memory  constraints 
 
As described above, the exact calculations for finding the cost of the 

deterministic test set , ,( )M k k T kCOST f COST=  are very time-consuming. There-
fore, we shall use the cost estimates, calculated by Procedure 1, instead. Using 
estimates can give us a close to minimal solution for the test length of the hybrid 
test at given memory constraints. After obtaining this solution, the cost estimates 
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can be improved and another, better solution can be calculated. This iterative 
procedure will be continued until we reach the final solution. 

 

Procedure 2. Test length minimization 
1. Given the memory constraint ,LIMIT ,MCOST  find the estimated total test  

length *E
TCOST  as a solution to the equation ,LIMIT( ) .E E

T Mf COST COST=  
2. Based on *,E

TCOST  find a candidate solution * * *
1 2* ( , , , )nJ j j j= …  where each 

*
kj  is the maximum integer value that satisfies the equation *

, ( )E
T k kCOST j ≤  

*.E
TCOST  

3. To calculate the exact value of *
MCOST  for the candidate solution *,J  find 

the set of not yet detected faults *
NOT, ( )k kF j  and generate the corresponding 

deterministic test set *
kTD  by using an ATPG algorithm. 

4. If *
,LIMIT ,M MCOST COST=  go to the Step 9. 

5. If the difference *
,LIMIT| |M MCOST COST−  is bigger than that in the  

earlier iteration, make a correction 2t t∆ ∆=  and go to Step 7. 
6. Calculate a new test length ,E N

TCOST  from the equation ( )E E
k Tf COST =  

* ,MCOST  and find the difference ,* , .E E N
T Tt COST COST∆ = −  

7. Calculate a new cost estimate ,* ,*E E
T TCOST COST t∆= +  for the next iteration. 

8. If the value of ,*E
TCOST  is the same as in an earlier iteration, go to Step 9, 

otherwise go to Step 2. 
9. END: The vector * * *

1 2* ( , , , )nJ j j j= …  is the solution. 
To illustrate the above procedure, in Figs. 9 and 10 an example of the iterative 

search for the shortest length of the hybrid test is given. Figure 9 represents all 
the  basic  cost  curves  , ( ),E

D kCOST j  , ( ),E
P kCOST j  and , ( ),E

T kCOST j  as functions 
of the length j  of kTPE  where minj  denotes  the  optimal  solution  for a  single 
core hybrid BIST optimization problem [18]. Figure 10 represents the estimated  
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Fig. 9. Cost curves for a given core Ck. 
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Fig. 10. Minimization of the test length. 
 
 

generic cost function ( )E E E
M TCOST f COST=  for the whole system. At first 

(Step 1), the estimated *E
TCOST  for the given memory constraints is found 

(point 1 in Fig. 10). Then (Step 2), based on *E
TCOST  the length *

kj  of kTPE  for 
the core kC  in Fig. 9 is found. This procedure (Step 2) is repeated for all the 
cores to find the characteristic vector *J  of the system as the first iterative 
solution. After that the real memory cost *E

MCOST  is calculated (Step 3, point 1* 
in Fig. 10). As we see in Fig. 10, the value of *E

MCOST  at the point 1* violates 
the memory constraints. The difference 1t∆  is determined by the curve of the 
estimated cost (Step 6). After correction, a new value of *E

TCOST  is found 
(point 2 in Fig. 10). Based on *,E

TCOST  a new *J  is found (Step 2), and a new 
*E

MCOST  is calculated (Step 3, point 2* in Fig. 10). An additional iteration via 
points 3 and 3* can be followed in Fig. 10. 

It is easy to see that Procedure 2 always converges. By each iteration we get 
closer to the memory constraints level, and also closer to the minimal test length 
at given constraints. However, the solution may be only near-optimal since we 
only evaluate solutions, derived from the estimated cost functions. 

 
 

7. EXPERIMENTAL  RESULTS 
 
We have performed experiments with several systems, composed of different 

ISCAS benchmarks [36] as cores (S1: c5315, c880, c432, c499, c499, c5315; S2: 
c432, c499, c880, c1355, c1908, c5315, c6288; S3: c880, c5315, c3540, c1908, 
c880), using our in-house software tools [37,38]. The results are presented in 
Table 1. In Table 1 our approach, where the test length is found based on 
estimates, is compared with an approach, where deterministic test sets have been 
found by manipulating the fault tables for every possible switching point between 
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pseudorandom and deterministic test patterns. As it can be seen from the results, 
our approach can give significant speedup (more than one order of magnitude), 
while retaining acceptable accuracy (the biggest deviation is less than 9% from 
the fault table based solution, and in average 2.4%). 

In Fig. 11 the estimated cost curves for the individual cores and the estimated 
and real cost curves for one of the systems with 7 cores are shown. In Fig. 11 is 
also shown a test solution point for this system under given memory constraint 
that has been found based on our algorithm. In this example a memory constraint 
 
 

Table 1. Experimental results with combinatorial cores 
 

Fault table based approach Our approach System Number 
of cores 

Memory 
constraint, 

bits 
Total test length, 

clocks 
CPU time*, 

s 
Total test length, 

clocks 
CPU time, 

s 

20 000   222   223   199.78 
10 000   487   487     57.08 

S1 6 

  7 000   552 

3 772.84 

  599   114.16 

14 000   207   209 167.3 
  5 500   540   542   133.84 

S2 7 

  2 500 1017 

  3 433.10 

1040   200.76 

  7 000   552   586   174.84 
  3 500 3309 3413   291.40 

S3 5 

  2 000 8549 

10 143.14 

  487   199.78 
——————— 
* CPU time for calculating all possible hybrid BIST solutions. 

 
 

0

2000

4000

6000

8000

Memory usage: 5357 bits

1000 1500500

5500

542

M
e
m
o
ry
, 
b
it
s

Memory usage: 

1353

480

1025

363

2136

0

0

Core name:

c499 

c880

c1355

c1908

c5315

c6288

c432

 Deterministic 

time: 

33

8

25

11

12

0

0

Estimated cost
Real cost

Cost estimates
for individual cores

Memory constraint
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MLIMIT = 5500 bits has been used. The final test length for this memory constraint 
is 542 clock cycles and that results in a test schedule depicted in Fig. 12. In 
Fig. 13 another test schedule for the same system, when the memory constraints 
are different (MLIMIT = 14 000 bits), is shown. 

This approach can easily be extended to systems with full-scan sequential 
cores. The main difference lies in the fact that in case of a test-per-scan scheme, 
the test application is done via scan chains and one test cycle is longer than one 
clock cycle. This is valid both for the pseudorandom and the deterministic test. 
As every core contains scan chains with different lengths, the analysis procedure 
has to account for this and switching from one core to another has to respect the 
local, core-level test cycles. In the following, the experimental results with 
systems where every individual core is equipped with Self-Test Using MISR and 
Parallel Shift Register Sequence Generator (STUMPS) [6] are presented [39]. 
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Fig. 12. Test schedule for the system S2 (MLIMIT = 5500). 
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While every core has its own STUMPS architecture, at the system level we 
assume the same architecture as described earlier: every core’s BIST logic is 
capable of producing a set of independent pseudorandom test patterns, i.e. the 
pseudorandom test sets for all the cores can be carried out simultaneously. The 
deterministic tests, on the other hand, can only be carried out for one core at a 
time, which means that only one test access bus at the system level is needed. An 
example of a multi-core system with such a test architecture is given in Fig. 14. 

Experiments have been performed with several systems, composed of 
different ISCAS’89 benchmarks as cores. All cores have been redesigned to 
include full scan path (one or several). The STUMPS architecture was simulated 
in software and for deterministic test pattern generation a commercial ATPG tool 
was used. The results are presented in Table 2. In Table 2 we compare our  
 

 

 
 

Fig. 14. Example of a core-based system with the STUMPS test architecture. 
 

 
Table 2. Experimental results with STUMPS architecture 

 

Exhaustive approach Our approach SoC Number 
of cores 

Memory 
constraint, 

bits 
Total test length, 

clocks 
CPU time*, 

s 
Total test length, 

clocks 
CPU time, 

s 

25 000 5750 5775 270 
22 000 7100 7150 216 

J 6 

19 000 9050 

57 540 

9050 335 

22 000 5225 5275 168 
17 000 7075 7075 150 

K 6 

13 000 9475 

53 640 

9475 427 

15 000 3564 3570 164 
13 500 4848 4863 294 

L 6 

12 200 9350 

58 740 

9350 464 
——————— 
* CPU time for calculating all possible hybrid BIST solutions. 
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approach, where the test length is found based on estimates, with an exact 
approach, where deterministic test sets have been found by a brute force method 
(repetitive use of test pattern generator) for every possible switching point 
between pseudorandom and deterministic test patterns. As it can be seen from the 
results, our approach gives significant speedup (several orders of magnitude), 
while retaining very high accuracy. 

 
 

8. CONCLUSIONS 
 
In this paper we have presented an approach for improving the classical BIST 

technique, called hybrid BIST. The method is based on a hybrid test set that is 
composed of a limited number of pseudorandom test vectors and some additional 
deterministic test patterns that are specially designed to shorten the pseudo-
random test cycle and to target random resistant faults.  

We have described hybrid BIST cost calculation models and proposed 
algorithms for test time minimization, based on different test architectures. Due 
to the complexity of optimizing several SoC test parameters simultaneously, we 
have devised a solution, where one of the parameters is constrained (test 
memory) and we try to minimize the second one (test time). This approach is 
important, for example, in handheld devices where the available memory is 
usually very limited. The experimental results have demonstrated the efficiency 
of the proposed approach. 
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Hübriidne  mitmetuumaliste  süsteemide   
isetestimise  metoodika 

 
Gert Jervan, Raimund Ubar ja Zebo Peng 

 
On kirjeldatud kiipsüsteemide hübriidset isetestimise metoodikat. Iga üksiku 

tuuma testid kombineeritakse kahest erinevast vektorite jadast: pseudojuhuslikest 
vektoritest, mis genereeritakse jooksvalt, ja süsteemi salvestatud, eelnevalt gene-
reeritud deterministlikest vektoritest. Deterministlikud vektorid on loodud nii, et 
lühendada pseudojuhuslikku jada ja avastada vigu, mis on immuunsed juhuslike 
vektorite suhtes. Et võimaldada sellist testimise strateegiat, on välja töötatud 
mitmeid hübriidseid isetestimise arhitektuure. Kuna hübriidse isetestimise maksu-
must mõjutab väga palju erinevate testijadade pikkus, siis on oluline leida nende 
jadade optimaalne koostis. Samas ei tohi aga ohverdada testi kvaliteeti. On kirjel-
datud meetodeid, mida saab kasutada pseudojuhuslike ja deterministlike jadade 
vahelise optimaalse kombinatsiooni leidmiseks kiipsüsteemide testimiseks. Need 
meetodid võimaldavad leida etteantud mälu kitsenduste juures lühima testijada. 
Täpsete arvutuste asemel kasutatakse kiiret kaudse hinnangu meetodit, mille tule-
musel on võimalik vältida otsinguruumi täielikku uurimist ja kiirendada lahendi 
leidmise protsessi. Eksperimendid on näidanud väljatöötatud meetodite efektiivsust 
optimaalsele lähedaste tulemuste saamisel. 


