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Abstract. We study accuracy of numerical methods such as the Finite Difference Method (FDM) 
and the Finite Element Method (FEM) in calculation of electric fields inside the spherical 
conductor. Two different FDM formulations are described. Performance of these FDM formula-
tions is compared to the analytical solution and FEM in models of an homogeneous sphere and 
three-layer spherical head. Electrodes were applied onto the surfaces on two opposite sides of the 
sphere. The FDM formulations were accurate to within 5% inside the object but errors increased to 
15% near tissue boundaries of the three-layer model that were close to the electrodes. Differences 
between calculation methods at the electrode location reached 25% in some cases. 
 
Key words: biomedical engineering, bioimpedance, potential distribution, lead field, FDM, FEM. 

 
 

1. INTRODUCTION 
 
In this article we investigate the accuracy of FDM and FEM in calculation of 

electric fields, e.g. for simulation of bioelectric fields [1,2] or for bioimpedance 
measurement [3]. These methods can be used also for simulation in any electrical 
conductance scenario. Our interest is in validating the numerical methods in 
calculating electrical potential and current distribution in biological objects such 
as the human head (EEG – Electroencephalography, EIT – Electrical Impedance 
Tomography), thorax (ECG – Electrocardiography, EIT) and heart (ICG – 
Impedance Cardiography). We analyse more closely the performance of 
numerical methods near the current insertion electrodes. That makes our results 
applicable for bioimpedance simulation and impedance tomography [4]. 
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Electroencephalography as well as bioimpedance measurement in the human 
head have been used for the localization of active regions in the brain [5–7]. The 
EEG measures directly the electric activity of the brain and bioimpedance 
measures the changes in electric conductance. Regions in the brain with higher 
activity need more oxygen, and blood supply in these regions is increased. Active 
regions in the brain become more conductive because blood is a better electric 
conductor than the white or gray matter of the brain. Identification of the active 
region can more reliably be done with functional Magnetic Resonance Imaging 
(fMRI). Alternatively the bioimpedance measurement gives reliable results with 
relatively cheap equipment that is portable and can be used in case of medical 
emergency. Bioimpedance measurement on the head (EIT on the head) uses 
electrodes on the head surface to generate and measure the electric field and 
therefore measures non-invasively. 

Measurement of the heart bioimpedance can also be done non-invasively with 
an electrode array on the body surface (EIT on thorax). The objective is to get 
information on the cardiac blood output and also on the muscle condition. In the 
case of the heart we are also interested in invasive measurement that uses 
electrodes inside the heart chambers. Invasive measurement can be conducted by 
intracardiac catheter that is inserted to the left or right side of the heart through 
veins. One catheter wire can carry several electrodes. Those electrodes have to 
insert the current and also measure the potentials. In addition, in many cases the 
intracardiac catheter also has to submit a pacing or defibrillation pulse when used 
by an implanted cardiac pacemaker or defibrillator. The implantable nature of the 
cardiac pacemaker complicates the impedance measurement process and limits 
considerably the number of usable electrodes. 

Until now we have been content with the results of FDM calculations and 
taken them as a practical way to observe signals as relative numbers. This study 
was initiated by the growing need to be able to get absolute signal values from 
simulations. As the simulated signal values are actually comparable with the 
physically measured ones, simulation of bioelectric phenomena becomes more 
useful. We compare potential distributions, calculated inside a homogeneous 
sphere, with four methods: analytical formula, FEM solver and FDM in two 
different formulations. Similar validation of the computation methods is 
described in [8–11]. 
 

 
2. NUMERICAL  METHODS  FOR  SIMULATING  BIOELECTRIC  

PHENOMENA 
 
Mathematical equations, including integrals and derivatives, cannot be imple-

mented on computers without approximation. In some situations, integral equa-
tions can be converted to differential equations and vice versa. There are 
numerical methods for solving them both. Bioelectric simulation of the human 
body leads essentially to solving the Laplace and Poisson equations [12,13] for 
current conduction in a volume conductor. 
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2.1. Model  geometry 
 
We have used numerical methods to calculate electrical potential distribution 

in a three-dimensional model of a sphere with a radius of 5 cm and electric 
conductivity of the blood 0.7σ =  S/m. Electrodes were placed on two sides of 
the sphere on the surface. The source current was fixed at 1A in all cases. 

For demonstration we also compute the potential distribution in the three-
layer spherical head model. We chose this particular model because the analytical 
formula is also capable of solving it. The three-layer model gives us the 
opportunity to observe the performance of the solvers in a scenario that is closer 
to real application. The outer radius of the head sphere is 9.2r =  cm. The scalp 
layer thickness is 7 mm and scull layer thickness 5 mm. The conductivity of the 
brain is 0.45, of the skull 0.03 and of the scalp 0.45 S/m. The conductivities of 
the scalp and the brain were the same as in [14,15], but the skull conductivity has 
been calculated from the skull/brain resistivity ratio of 15 [16]. The source current 
was fixed at 1A in all cases. 

 
2.2. Analytical  formulation 

 
The analytical model we used to compare our results with has been defined by 

Rush and Drisscoll [14]. It is capable of calculating potential distribution inside a 
conductive sphere model and can use an inhomogeneous model with up to 3 
layers of different conductivities [14,17–20]. This model was created for solving 
electrical lead field problems of the head. In this model the electrode size is not 
specified, it uses point electrodes instead. The model allows to use two 
electrodes, which may be located anywhere on the sphere surface. We use a 
configuration of the electrodes that are on two opposite sides of the sphere. We 
use this analytical model to obtain the potential distribution inside a 
homogeneous sphere and in a three-layer spherical head model. 

 
2.3. Discrete  formulation 

 
The equations are discretized by using FEM or FDM. The discretization of the 

equations result in a set of linear equations that can be represented as sparse 
matrices 
 

,Ax b=                                                      (1) 
 

where A  is a symmetrical and positive definite n n×  matrix (n  being the 
number of elements). There are various methods to solve a set of linear equations 
such as Eq. (1). However, the size and sparsity of the matrices encountered in 
bioelectric simulation of the human body make most of the methods obsolete. In 
such cases we must use iterative methods. In iterative methods the vector x  is 
modified in such a way that the difference between the left and the right hand 
side of the matrix equation is minimized. The vector x  is modified between each 
iteration and when the difference becomes small enough, the problem is 
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considered to have been solved. There are various ways of approximating the 
modification of x  [21,22]. One of the most effective and most used iterative 
methods is the Conjugate Gradient (CG) Method. We have also used CG to solve 
our matrix equations. It is generally formulated as 

 

( ) 0,f x Ax b∇ = − =                                             (2) 
 

with the iteration equation 
 

1 .k k k
kx x pα+ = +                                              (3) 

 

These equations state that the minimum of the error function ( )f x  can be 
found at a point where the gradient of the function is zero. Effectively, by 
minimizing the function ( )f x  the equation Ax b=  can be solved. Also the 
coefficient kα  is to be chosen so that 1( )kf x +  is minimized and the optimization 
directions kp  are to be chosen so that they are conjugated with the matrix ,A  i.e. 
( , ) 0i jp Ap =  as i j≠  [23]. 

The convergence of the CG depends on the spectrum of eigenvalues of the 
matrix A  and it can be improved by preconditioning. With preconditioning the 
equation to be solved becomes 

 

1 1 ,P Ax P b− −=                                                   (4) 
 

which is equivalent to the original equation but is better suitable for iterative 
solution. The choice of the preconditioner 1P−  is all but trivial and depends on 
the problem at hand, its size and complexity. We have used diagonal and in-place 
incomplete Cholesky preconditioners [23] depending on the size of the problem. 

In order to select a suitable preconditioner, one has to consider the complexity 
of time and memory the preconditioner can have. For large problems, where 
memory size becomes a limit, simple preconditioners such as the diagonal is 
used. Generally, more complex preconditioners perform better and drastically 
reduce the iterations needed for the solution to converge. The bigger the problem, 
the better preconditioner it requires. Unfortunately, better preconditioners can 
rarely be used for large problems due to memory constraints. 

 
2.4. The  finite  difference  method 

 
In bioelectromagnetic simulations of the human body we want to calculate the 

current and potential distribution in a model. The model can be constructed by 
creating a general model of the area of interest or by extracting it from medical 
images. As computer performance and memory capacity increase, even bigger 
and more complex models can be generated and used for simulation. Thus now it 
is possible to create realistic models from e.g. magnetic resonance (MR) or 
computed tomography (CT) image sets. 

The bioelectric potential field in the volume Ω  can be defined with the 
Poisson equation 
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SJσ ϕ∇ ⋅ ∇ = ∇ ⋅  in ,Ω                                (5) 
 

where σ  is conductivity, ϕ  denotes the potential and SJ  is current source 
density. For piecewise homogeneous media, Eq. (5) can be rewritten as 

 

2 .SJσ ϕ∇ = ∇ ⋅                                                (6) 
 

Now, using Taylor series expansion, the second order derivative can be 
defined as 

 

2

2 2

( ) ( d ) ( d ) 2 ( )
.

d

f x f x x f x x f x

x x

∂ + + − −=
∂

                         (7) 

 

Substituting the Taylor series expansion of the second order derivative (7) to 
(6) and discretizing the result into piecewise linear cubic subvolumes, we get for 
node k  

 

,k n n n kn n
G G iϕ ϕ− =∑ ∑                                       (8) 

 

where nϕ  is the voltage at the neighbour, nG  is the conductance to the 
neighbour, kϕ  is the voltage at node k  and ki  is the input current at the node .k  
For sourceless nodes, 0.ki =  Applying Eq. (8) for all nodes in the model, a set of 
simultaneous equations is obtained, which can be formulated as a linear matrix 
equation 

 

.Ax b=  
 

The matrix A  contains conductances between nodes, x  is the result and b  is the 
current source vector. 

 
2.5. The  finite  element  method 

 
Whereas in FDM the solution is approximated by replacing the second order 

derivatives with discrete versions, in FEM the idea is to approximate the solution 
with a set of basis functions and with their linear combinations. The result is 
obtained from the boundary conditions for the problem. In FEM the problem is 
transformed into weak formulation and approximated by the Galerkin method. 
The model domain can be divided into small subdomains, i.e. elements in which 
the solution is approximated by a linear combination of basis functions belonging 
to a Hilbert space .H  Notation a(·,·) is used for a bounded bilinear form H H×  
into .R  The variational problem is to find ,u H∈  such that 

 

( , ) ( )a u v F v=    for all  ,v H∈                               (9) 
 

where u and v  are arbitrary functions, a  is a mapping function and F is a 
functional, belonging to *H , the dual space of H. 
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If we define a finite dimensional subspace hH  of H  such that ,h hu H∈  
Eq. (9) becomes 
 

( , ) ( )h h ha u v F v=     for all  ,h hv H∈                            (10) 
 

which is called the finite element method. The full mathematical background of 
this method is complicated [24]. The result of the formulation is a linear equation 

 

.Ax b=  
 

The basis functions iϕ  are usually chosen to be low-order polynomials and 
belong to subspace 1 2{ , , , }nϕ ϕ ϕ…  of .nH  Now, a discrete version of Eq. (10) is 

 

( , ) ( )nA u v F v=   for every  .nv H∈                              (11) 
 

By choosing 
1

( ),
n

n i i
i

u xα ϕ
=

=∑  we get 
 

1

( , ) ( )
n

i i j j
i

a Fα ϕ ϕ ϕ
=

=∑   for every  1, 2, , ,j n= …                     (12) 

 

which again can be represented as a linear matrix equation .Ax b=  A commonly 
used technique is to select basis functions such that the majority of matrix A  
elements are 
 

( , ) 0ij i ja a ϕ ϕ= =   if  | | 2,i j− ≥                              (13) 
 

and for the right hand side of the matrix equation 
 

( ) ( ).n i jF F ϕ=                                              (14) 
 

The basis functions are selected in such manner that all the elements attached 
to a node have the same value at the node. It is also required that the values of the 
first derivatives of the basis functions are the same at the node. By requiring the 
basis functions to be zero at all other points jx  except the point in question ix  as 
in Eq. (13), one gets a really sparse matrix A, since all but neighbouring nodes 
have a value of zero. The more nodes are used, the higher order polynomials can 
be used to approximate the solution [21]. 

 
2.6. Choice  of  the  FDM  grid 

 
In FDM, there is a couple of ways to choose subvolumes, i.e. the discretiza-

tion grid and the nodes that form the grid. Different formulations determine how 
the conductance between nodes is calculated. Due to the digitization of medical 
images, a realistically shaped volume conductor consists of voxels. Thus there 
are two obvious ways of defining the node spacing and also the conductance 
between two nodes: the first one places the nodes in the middle of each voxel 
(centre-voxel) and the second one has nodes placed in the vertices of each voxel 
(corner-voxel). This study examines both of these methods. 
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2.6.1. Corner-voxel formulation 

In corner-voxel formulation the boundaries of volumes can be easily defined 
since the nodes are located at the surface of each voxel as seen in Fig. 1a. This 
formulation allows a voxel to be unambiguously defined as a specific material. 
On the other hand, the conductance between two nodes can not be easily 
determined and must be calculated using the conductivity of the material and the 
size of the neighbouring voxels as seen in Fig. 1b. Since the nodes in the grid do 
not correspond to a specific voxel in the original data, it might be difficult to 
relate the results and the voxels in the original model and in such case 
interpolation is needed. The corner-voxel formulation has been used, e.g., at the 
Ragnar Granit Institute at Tampere University of Technology [25,26]. 

Generally, the macroscopic conductance for a homogeneous volume conductor 
can be defined using Ohm’s law. Additionally, by noting that in a linear resistor or 
conductor the electric field E  is constant along the resistor axis, conductance can 
be defined as 

 

d d
,

d d
L L

J a E a A I
G

l UE l E l

σ σ= = = =∫∫ ∫∫
∫ ∫

                              (15) 

 
where A  is the cross-section area of the conductor and l  is the length of it. The 
total resistance between two adjacent nodes can be calculated as a parallel sum of 
four resistors from the four adjacent voxels. Each of the resistors occupies one 
quarter of the voxel as it can be thought to be the effective media the resistor  
 

 

 
 
  (a)            (b) 
 
Fig. 1. Node definition in the formulation where nodes are inserted to the vertices of each voxel; 
the resistance between two adjacent nodes is calculated as a parallel circuit of resistors, formed by 
the adjacent volumes: (a) the grid spacing with respect to the voxels in the data; (b) the components 
of a resistor between two adjacent nodes. 
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represents. Thus the formula to calculate the conductance between two nodes 
becomes 

 

1 1 2 2 3 3 4 4 ,
4

A A A A
G

l

σ σ σ σ+ + +
=                               (16) 

 

where ( 1,2,3,4)iA i =  is the voxel cross-section area in the direction of the 
neighbour and l  is the distance to the neighbour. This is true for all nodes 
regardless of their location in the model and allows piecewise approximation of 
inhomogeneous conductivity. 

 
2.6.2. Centre-voxel formulation 

The formulation of FDM conductivity matrices as used at Tallinn University 
of Technology is based on the idea that one node of the mesh represents also one 
voxel of volume data. When electric current flows between the nodes, it 
effectively flows from the centre of the voxel to the centre of another (centre-
voxel formulation, Fig. 2). 

The conductance G  between the nodes is defined by the formula 
 

1 2

1
,

1 1
2 2

G d

σ σ

=
+

                                             (17) 

 

where d  is the distance between two nodes (or voxel size) and 1σ  and 2σ  are 
electrical conductivities of the media at the locations of the nodes 1 and 2. 

The original purpose behind this formulation of the FDM was to model 
implanted electrodes. Therefore it was a logical choice to implement electrodes 
of the size of one or more voxels that have a staighforward surface contact with 
the surrounding media. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. FDM conductivity formulation with mesh nodes in the centre of the volume data voxels. 

 

1 2 
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2.7. The  sphere  model  used  in  FDM  formulations 
 
In both of the FDM formulations the same volume data model was used as a 

basis for FDM grid generation. Resolutions used for the FDM grid were 80, 100, 
125, 150, 175, 200, 225 and 250 voxels of linear resolution for the sphere. The 
models were then modified in such a way that source and sink electodes were 
added as a layer of one or more voxels to the opposite sides of the sphere model. 
The outer limits of the model were cube shaped with identical number of voxels 
in x, y and z direction. The electrode layers effectively increased the model size 
by 2 voxel in each direction. The resulting model resolutions and the number of 
elements in FDM solver is found in Table 1. The basic electric field can be 
calculated with just one voxel electrode. Additionally bigger electrodes are 
implemented with more voxels used per electrode on the surface. The electrode 
shapes used and the corresponding circular electrodes are shown in Fig. 3. 
Volume data for the creation of FDM matrices was calculated using Matlab. 
Centre-voxel formulation matrices were created in Matlab and corner-voxel 
matrices using custom software on Java platform. Conjugate Gradient method 
was used to solve the matrices with Incomplete Cholesky preconditioning.  
 

 
Table 1. Resolution of the FDM sphere model 

 
Sphere 

resolution 
Nodes in 

centre-voxel 
formulation 

Nodes in 
corner-voxel 
formulation 

Voxel size, 
mm 

Average calculation 
time, min:sec 

  803      551 368      571 787 1.25   0:15 
1003   1 061 208   1 092 727 1.00   0:29 
1253   2 000 376   2 048 383 0.80   1:08 
1503   3 511 808   3 581 577 0.66   2:08 
1753   5 451 776   5 545 233 0.57   3:40 
2003   8 242 408   8 365 427 0.50   6:17 
2253 11 543 176 11 697 083 0.44   9:40 
2503 16 003 008 16 194 277 0.40 24:00 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Four different shapes used for FDM modelling of the electrodes; the number indicates the 
number of voxels used for modelling the circular electrode in the FDM model. 

1 4 12 21 
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Diagonal preconditioner was used for the largest matrix with over 16 × 106 nodes 
(matrix rows and columns) to conserve memory. Matrices were solved with 
custom-built efficient Java-based solver on a PC with 2 GB of memory and a 
3 GHz processor. The largest FDM problems used about 1.2 GB of memory. 
Calculation times of the linear systems can be found in Table 1. 

 
2.8. The  sphere  model  used  in  the  FEM 

 
The FEM model was created with two different mesh densities. The low-

resolution mesh consisted of approximately 10 000 tetrahedral mesh elements 
and the high resolution mesh consisted of approximately 200 000 elements. The 
mesh was rebuilt for every electrode size. Electrodes with radii 0.25, 0.5, 1 and 
2 mm were used for computing the potential distribution. Mesh density was 
increased around the electrode slightly in order to represent the contact area as 
accurately as possible. As the area around the electrode has the highest current 
density, increasing mesh density there should theoretically improve the accuracy 
of the solution and also the linear system solver convergence rate. Figure 4 
depicts the low-resolution and high-resolution meshes. The electrodes with a 
radius of 0.25 mm are shown both at the low-resolution and the high-resolution 
mesh. Figure 5 shows that at low resolution the small electrode connection to the 
surface is depicted with only 4 elements and therefore should theoretically not 
provide better results than the low-resolution FDM. All FEM models, meshes 
and calculations were performed with the Femlab/Comsol software. 

 
 

 
 

Fig. 4. FEM model mesh at low resolution with 10 000 elements (left half) and high resolution with 
200 000 elements (right half). 
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(a) (b) 

 
 

Fig. 5. FEM mesh near electrodes: (a) low-resolution mesh with electrode r = 0.25 mm; (b) high-
resolution mesh with electrode r = 0.25 mm. 

 
 

3. RESULTS 
 
The computed results show the potential distribution inside the sphere model. 

The easiest way to present the potential distribution is to show a slice through the 
middle of the sphere with the potential shown gray-coded (Fig. 6). In order to 
make a clean cross-method comparison, we plotted only the potentials on the 
centre line through the sphere that also goes through the electrodes (Fig. 7). 

Potential distribution inside the homogeneous sphere, computed with the 
analytical method, FDM and FEM look almost the same when plotted on the 
same large-scale drawing. To see the differences, we investigated a 1 cm deep 
area near the electrode (shown with a dashed box in Fig. 7). 

 
 

 
Fig. 6. Potential distribution on the centre slice inside the homogeneous sphere; analytical solution. 
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         Coordinate, cm 
 

Fig. 7. Potential distribution on the middle line (dashed line in Fig. 6) between electrodes inside the 
homogeneous sphere; analytical solution. 
 
 

Figure 8 shows that with a smaller electrode the potential between the two 
electrodes increases. One has to keep in mind that the current stays fixed at 1A  
 
 

 
 

         Coordinate, cm 
 

Fig. 8. Potential distribution on a line through the sphere near the surface on the left side of the 
sphere; electrode touches the sphere at the coordinate – 5 cm. 
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and the potential distribution in the other half of the sphere is similar to the 
potential on the left side of the sphere as seen in Fig. 7. The FEM results differ 
from the analytical solution noticeably only near the electrode until the depth of 
3 mm. Inside the rest of the sphere the analytical solution matches the FEM 
solution. It would be logical to conclude that when the electrode size diminishes, 
the potential needed to produce the same current approaches infinity. All the four 
electrode sizes plotted in Fig. 8 are presented with two lines: the solid line for the 
high resolution and the dashed line for the low resolution of the FEM mesh. It is 
noticeable that the low and high resolution lines are almost indistinguishable 
from each other. The biggest difference between the solutions with low and high 
resolution occurred in the models with the smallest electrode and it is not higher 
than 4%. 

Now let us analyse the results obtained with different FDM formulations. The 
graph of the analytical solution is kept as a reference in all plots of the centre-line 
potential distribution of the sphere. The results of different resolutions of FDM 
centre-node formulation with 1 voxel electrode are plotted in Fig. 9. 

In Fig. 9 it can be seen that increasing the resolution also increases the 
potential on the electrodes. This follows directly from the fact that by increasing 
the resolution the electrode size is decreased since it still takes up one voxel. The 
last points of the FDM lines are outside the sphere surface because an additional 
voxel was added to the sphere surface as electrode. Potential value of the last 
point is taken from the centre of the electrode voxel. 

 
 

 
 

           Coordinate, cm 
 

Fig. 9. FDM centre-voxel formulation used with increasing resolutions from 80 to 225 voxels in x, 
y and z direction of the sphere; the electrode corresponds to one voxel. 
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In Fig. 10 it can be seen that the corner-voxel formulation correlates much 
better with analytical solution near the surface of the sphere where the electrode 
is positioned. Note that the vertical scaling is changed to accomodate the graphs 
better. Once again, potential increases as the size of the 1 voxel electrode 
decreases with increasing resolution. In this plot the whole voxel of the electrode 
resides outside the sphere. We see almost horizontal lines and very little change 
in potential inside the last voxel designated to the electrode. That is caused by 
very high conductivity of the electrode. 

With fixed electrode size the results are next plotted using different 
resolutions (Figs. 11 to 13). For the FDM formulations different electrode shapes 
are used as shown in Fig. 3. 

The vertical scaling in the last two figures has been held the same to provide 
better comparison. Neither of the two FDM formulations can be meaningfully 
compared to the analytical solution because in the latter the electrodes are 
modelled as point electrodes. The analytical solution is shown for reference. The 
results of each of the FDM systems seem to be gathered around a small area or 
converged. The corner-voxel FDM results (Fig. 12) have smaller potential values 
at the electrode. This is due to the fact that it uses more connections to the 
surface than in the centre-voxel formulation and thus effectively distributes the 
current into the system through a wider contact surface. 

Next, the results of both FDM systems in the r = 1 mm electrode case are 
compared with the FEM solution (Fig. 13). Only the highest resolution from both 
FDM systems is plotted to provide clean straightforward comparison. 

 
 

 
 

           Coordinate, cm 
 

Fig. 10. FDM corner-voxel formulation used with increasing resolutions from 80 to 225 voxels in 
x, y and z direction of the sphere; the electrode corresponds to one voxel. 
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Fig. 11. FDM centre-voxel formulation compared with the analytical solution; electrode size is 
fixed at r = 1 mm; the FDM formulation used electrodes composed of: 1) 4 voxels, resolution  
100; 2) 12 voxels, resolution 200; 3) 21 voxels, resolution 250 voxels (middle line of the three solid 
lines). 

 
 
 

 
 
Fig. 12. FDM corner-voxel formulation compared with the analytical solution; electrode size fixed 
at r = 1 mm; the FDM formulation used electrodes composed of: 1) 4 voxels, resolution 100; 2) 12 
voxels, resolution 200 (middle line of the three solid lines); 3) 21 voxels, resolution 250 voxels. 

 
 
FEM uses higher density mesh near the electrode and therefore minimizes 

discretization errors. FEM mesh is also able to present the shape of the circular 
electrode more accurately. 



 277

 
 

Fig. 13. Comparison of the modelling systems with r = 1 mm electrode: 1) FDM corner-voxel 
form; 2) FEM (r = 1 mm circular electrode); 3) FDM centre-voxel form; FDM formulations used 
electrodes composed of 21 voxels and resolution was 250 voxels. 

 
 
Next we analyse analytical and FDM results for the three-layer spherical head 

model (Fig. 14). 
 
 

 
 

Fig. 14. Potential distribution near the electrode in a three-layer spherical head model; analytical 
solution is compared to the FDM corner-voxel formulation (1) and FDM center-voxel 
formulation (2). 
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Figure 14 shows the results from the FDM formulations with the highest 
resolution of 250 voxels in x, y and z direction and electrode area with 21 voxels 
(see Fig. 3). The analytical solution and centre-voxel formulation of FDM seem 
to have very good correlation. The exact match at the last 4–5 mm from the 
surface is probably an accidental coincidence, because the analytical solution 
should ideally represent the field of an infinitely small electrode while the real 
electrode has a radius of 1 mm. The most interesting is the skull area, where both 
FDM formulations are close to the analytical solution. When observed closely, 
centre-voxel formulation seems to cover the tissue interfaces (scalp-skull and 
skull-brain interfaces) more smoothly. This is due to the way it describes the 
connections between mesh nodes. Centre-voxel FDM formulation uses 
conductivity averaging between nodes that lay in neighbouring voxels. Corner-
voxel formulation of FDM has sharper edges in the solution and it can also be 
seen in Fig. 14 (particularly near the skull–brain interface). 

To understand how the differences observed in Fig. 14 are distributed inside 
the 3-dimentional sphere, the potentials are imaged on a slice through the middle 
of the sphere. Figure 15 illustrates the results of FDM corner-voxel formulation 
for reference. Figure 16a shows the areas of difference of the analytical results 
and FDM center-voxel form. Figure 16b shows the areas of difference of the 
analytical results and FDM corner-voxel form. Figure 17 shows the difference 
between the two FDM formulations. 

 
 
 

 
 
Fig. 15. Potential distribution in FDM corner-voxel formulation of the three-layer spherical head 
model; selected brightness contour-lines are added for better illustration of the field. 
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(a)     (b) 
 

Fig. 16. Areas of difference between analytical and FDM centre-voxel formulation (a) and 
analytical compared to FDM corner-voxel formulation (b); brightness shows calculated potential 
differences in percentages. 

 
 

 
 
Fig. 17. Areas of difference between two FDM formulations; brightness shows calculated potential 
differences in percentages. 

 
 
On these figures the biggest difference is at the electrode location with a value 

of 25% between the two FDM formulations (Figs. 14 and 17). Other areas did not 
exhibit differences above 15% (15% was therefore chosen as the brightest colour 
for Figs. 16 and 17). The centre area of the sphere, where potential values are 
negligibly small, was omitted from the difference plots. In Fig. 16 the two FDM 
formulations differ from the analytical solution in a similar way, because both 
FDM formulations used the same discretized model for grid generation. The area 
near the electrodes is most problematic and the differences in the skull area are 
also visible (in Fig. 16 shown as brighter band). The errors in the skull area are 
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arising from discretization, where the nodes of the FDM formulations did not 
happen to be at the exact boundary of the skull. In other areas, the differences 
between the FDM formulations and analytical solution did not exceed 5%. The 
two FDM methods differ very little from each other (less than 3%) except near 
the electrode (Fig. 17). 

 
 

4. DISCUSSION 
 
Looking at Fig. 3 we notice, that the shapes and surface areas of FDM and 

FEM implementations of electrodes do not match exactly. Still, with higher 
resolution (more voxels for electrode in FDM) it is possible to obtain a better 
shape and surface area match between the electrodes of FDM and FEM. 
Generally, most errors of numerical methods appear where discretization of the 
object is too sparse to accurately present the sharp changes of the calculated 
parameter (electric potential in our case). In impedance measurement this 
happens most often on the electrode interface with the object (tissue). Although 
other areas in the object can also exhibit very sharp differences in conductivity, 
the electrode interface remains to be the highest source of errors because of the 
high current density. In this study we are demonstrating the performance of FDM 
in possibly the worst scenario. 

When using the analytical model extensively and studying also current 
densities within the model we noticed that the values obtained close to the sur-
face of the sphere were not consistent. The analytical formula consists of a series 
of terms, which should be summed up to an infinite number of terms. When the 
number of terms was increased to reasonable maximum, the smoothness of 
current densities near the surface improved but was still far from the expected 
(smooth) distribution. When solving the current densities within a model with a 
9.2 cm outer radius, the fluctuations in the current density extended from the 
surface to the depth of 2 mm. Therefore, also considering the potentials we 
cannot consider the analytical solution (with the accuracy applied) very reliable 
in the 2 mm proximity of the sphere surface. 

As can be seen in Figs. 9, 10, 13 and 14, the same electrode surface in the two 
FDM formulations produces higher electrode potentials in the centre-voxel 
formulation. This might follow from the fact that when using one voxel 
electrodes, the centre-voxel formulation uses 1 node to enter the current into the 
subject instead of 4 (as in corner-voxel formulation). The centre-voxel FDM has 
effectively smaller electrode area and therefore needs more potential to produce 
the same current. These effects can be observed both in the homogeneous sphere 
model (Fig. 13) and in the three-layer model (Fig. 14). We therefore conclude 
that using few elements for the electrode does not produce consistent results with 
the FDM formulations near the electrode. This aspect of FDM modelling has to 
be investigated further and measures have to be taken to dramatically increase the 
number of voxels used for FDM-modelling of the electrodes. When absolute 
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values of the potential at the current-generation electrodes is not important, then 
both FDM formulations seem to give quite usable potential distribution inside the 
object that is consistent with the results of the analytical solution and FEM. 

When modelling impedance measurement with the 4-electrode system (that 
uses separate electrodes for current insertion and voltage pick-up), the inaccuracies 
near the current insertion electrodes are not so important. The potential field inside 
the test object, starting from a short distance from excitation electrodes is accurate 
to within 3%. When sharp tissue boundaries are encountered, the FDM formula-
tions can exhibit higher errors due to discretization. Differences as high as 15% 
were observed in the skull region near the electrode (Fig. 16). These discretization 
errors are assumed to be possible to minimize when higher resolutions of the FDM 
mesh are used. 

Validity and usefullness of the results presented here depend on the applica-
tions. For lead sensitivity estimation, the potential on the model surface is not 
important. The lead sensitivity field equals to the current density field in the 
model and that has not been discussed here. 

However, to make the potentials, calculated with different discretization 
methods, comparable, one must assert that the electrodes are large enough as 
compared to the discretization of the model. This brings up the question, what is 
a large enough electrode and what actually is gained using only one node as the 
source and the sink. For sensitivity mapping via the lead field theory there 
definitely is a reason for it, but to simulate actual measurement of a bioelectric 
phenomena it is of no purpose. Thus, a detailed study of the electrode size in the 
applied methods is needed. 

Although FEM usually gives good results for complex problems, FDM is still 
needed in cases where proper meshing for FEM might become a problem. These 
cases include biological objects, where often the object is not described by 
surfaces but by discrete volume elements. FDM provides also a fast method for 
solving electric fields in biological media, where a multitude of models of the 
object are used. For example, in dynamic situations, where every frame of a 
moving object would have to be separately meshed in the FEM case. 

The accuracy of the FDM on the electrode could be increased with local 
increasing of the FDM mesh resolution. FDM mesh density can also be increased 
near sharp boundaries that are close to the electrode (where higher signal change 
is expected). Implementing those features to the FDM solver, it would become a 
fast, accurate and robust tool for solving electric field problems. 
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Numbriliste  meetodite  täpsus  staatiliste   
ja  kvaasistaatiliste  elektriväljade  arvutamisel 

 
Rauno Gordon, Tuukka Arola, Katrina Wendel, Outi Ryynanen  

ja Jari Hyttinen 
 
On uuritud numbriliste meetodite FDM ja FEM täpsust elektriväljade arvuta-

misel sfäärilises elektrijuhis. On kirjeldatud kahte erinevat FDM-i formuleerin-
gut. Esimeses neist asetsevad FDM-i võre sõlmed kuubikukujuliste ruumi-
elementide nurkades, teises keskmetes. Nende kahe formuleeringu tulemusi on 
võrreldud analüütilise meetodi ja FEM-i tulemusega, arvutades elektrivälja 
homogeenses ja kolmekihilises sfäärilise pea mudelis. Elektroodid on asetatud 
sfäärilise mudeli pinnale kahel vastaspoolel. FDM-i formuleeringute tulemused 
erinevad objektide seesmistes osades kuni 5%. Kolmekihilise mudeli sees kasva-
vad aga vead kahe koe eralduspindadel kuni 15%-ni kohtades, mis on elektroo-
didele kõige lähemal. Erinevate arvutusmeetodite tulemuste erinevused elektroo-
dide juures ulatuvad 25%-ni. 

 


