
 235

Proc. Estonian Acad. Sci. Phys. Math., 2006, 55, 4, 235–245 

 
 
 
 
 
 

Eddy-driven  flows  over  varying  bottom  
topography  in  natural  water  bodies 

 
Jaak Heinloo 

 
Marine Systems Institute at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, 
Estonia; heinloo@phys.sea.ee 
 
Received 12 June 2006, in revised form 19 October 2006 
 
Abstract. A mechanism of the formation of eddy-driven flows in natural water bodies with varying 
bottom topography is discussed. The discussion is based on the theory of rotationally anisotropic 
turbulence. It is argued that a flow develops under the coupled effect of a preferred rotation 
orientation of turbulent eddies, and bottom topography. The flow formation is illustrated on a 
simple model. According to the model, flows are formed in regions with the depth smaller than the 
critical depth predicted by the model. 
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1. INTRODUCTION 
 
Statistical treatment of eddy-driven flows over varying bottom topography has 

attracted great attention. The methods developed within the approach [1–11] have 
proved to be productive in the discussion of many aspects of the flows. 
Nevertheless, the statistical methods are preferred in analysis not only because of 
their efficiency. It would be more natural to treat many aspects of the flows 
immediately in terms of average fields, though, the conventional turbulence 
mechanics (CTM) does not include a tool appropriate for the approach. One 
substantial shortcoming of the CTM is connected with the “negative viscosity” 
problem in parameterization of effects associated with the eddy-to-mean energy 
transfer. Although the notion “negative viscosity”, first introduced in [12], has 
been rather widely used in many investigations [13–15], it is nevertheless 
physically controversial. The very sense of viscosity as a physical phenomenon 
does not accept negative viscosity coefficient values, therefore the notion 
“negative viscosity” should be ascribed a sense of an artificial, physically 
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nonjustified construction to make the theoretical predictions compatible with 
observational evidence. 

Unlike the CTM, the generalized mechanics of turbulence elaborated in [16–18] 
(henceforth referred to as the theory of rotationally anisotropic turbulence, or the 
RAT theory) explains the effect without any requirement of the negative 
viscosity coefficient. The present paper illustrates this assertion on an example of 
the formation of eddy-driven flows over varying topography. 

The formation of eddy-driven flows over varying topography is commonly 
tied with the potential vorticity conservation [19]. In the suggested model the 
potential vorticity conservation is derived as a consequence of the moment of 
momentum or angular momentum (in the sense defined in the RAT theory) 
conservation for a water column between the surface and the bottom. This 
treatment assigns the turbulence a permanent role in the flow formation and 
reduces the problem of the flow energy source to the problem of the energy 
source of the orientated (large-scale) turbulence constituent. The model explains 
the orientated nature of the large-scale turbulence constituent as induced by the 
Earth’s rotation. In the model the turbulence feeds the average flow in the regions 
where the depth is smaller than the critical depth predicted by the model. In the 
regions of the water body where the actual depth is larger than the critical depth, 
the actual depth does not influence the medium motion. The motion in this region 
has a character of two-dimensional turbulence with a preferred rotation 
orientation of turbulent eddies and zero average flow velocity. The situation 
agrees with [20], indicating a significant eddy mixing in the ocean interior outside 
the regions affected by topography. 

The paper starts with some basic statements of the RAT theory (Section 2), 
crucial for understanding the model discussed afterwards (Section 3). The model 
complements some previous applications of the RAT theory concerning the 
discussion of oceanographic problems [21–24]. 

 
 

2. THE  RAT  THEORY 
 
The RAT theory [18] starts from the definition of the quantity 

 

,′= ×M v R                                                 (1) 
 

where ′v  denotes a fluctuating constituent of the flow field velocity ,v  R  is the 
curvature radius of ′v  streamline, and angular brackets denote statistical 
averaging. The quantity M  differs from zero if turbulent eddies have an average 
preferred rotation orientation. (Hereafter we call the property of a turbulent flow 
expressed as 0≠M  the rotational anisotropy.) A preferred rotation orientation of 
turbulent eddies is expectedly inherent to large-scale eddies, while the small-
scale eddies (characterized by a relatively small ),R  which do not contribute to 

,M  constitute rotationally isotropic turbulence. Due to its physical sense as the 
density of the average moment of momentum (or angular momentum) per unit 
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mass, M  is called the internal moment of momentum of the turbulent flow field. 
Let us stress that the nontriviality of the defined -fieldM  presumes the inclusion 
of R  into the arguments of the probability distribution specifying the averaging 
operation applied. 

Consider now some conclusions following from definition (1). 
(a) Definition (1) is coupled with the definition of the quantity 

 

2
,

R

′ ×= v RΩ                                                   (2) 

 

 which has the sense of the average angular velocity of rotation of turbulent 
eddies (henceforth – the angular velocity of internal rotation). As a 
characteristic of the fluctuating constituent of the turbulent motion field the 
quantity Ω  differs from the vorticity, 1

2 ,= ∇ × uω  defined as a 
characteristic of the average velocity field .=u v  The moment M  and 
angular velocity Ω  define the effective moment of inertia J  determined by 

.J=M Ω  The square root of J  determines the finite spatial scale of the 
rotationally anisotropic (large-scale) turbulence constituent. 

(b) Using the identity 2 2( ) ( )v R′ ′ ′= × ⋅ ×v R v R  and definitions (1) and (2), the 
total turbulence energy 21

2K v′=  can be presented as 
 

0 ,K K KΩ= +                                                 (3) 
 

 where 1
2K Ω = ⋅M Ω  and 0 1

2K ′ ′= ⋅M Ω  ( ′ ′= × −M v R M  and 
2 )R′ ′= × −v RΩ Ω  determine the densities (per unit mass) of energies of 

rotationally anisotropic (large-scale) and rotationally isotropic (small-scale) 
turbulence constituents. 

(c) The description of the motion of the rotationally anisotropic turbulent flow 
(realized by the RAT theory) is based on the conservation laws of 
momentum (the Reynolds equation), the moment of momentum ,M  and the 
turbulence energy 0.K  The inclusion of the equation for energy 0K  into the 
motion description set-up consolidates the RAT theory with the CTM 
specified as describing the turbulence constituent with energy 0 ,K  and the 
inclusion of the equation for the moment M  relates the RAT theory to the 
approach of the 1970s [25–27], based on the hydrodynamics of micropolar 
continua [28–31]. 

(d) The evident interaction between the average flow and the large-scale 
turbulence constituent characterized by M  turns the turbulent (Reynolds) 
stress tensor asymmetric with the antisymmetric constituent describing the 
interaction. The asymmetry becomes possible due to the inclusion of R  into 
the arguments of the probability distribution. In general, the probability 
distribution appears noninvariant under the commutation of the components 
of the fluctuating constituent of the velocity field. The specifics of the RAT 
theory vanish if the averaging is assumed in the sense of the CTM. 
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3. THE  MODEL  OF  EDDY-DRIVEN  FLOW  OVER  VARYING  
TOPOGRAPHY  IN  NATURAL  WATER  BODIES 

3.1. The  model  set-up 
 
According to [32,33], the dominant interaction between the average flow and 

the turbulence realizes between the average flow and the large-scale turbulence 
constituent, characterized within the RAT theory by ,M  therefore the energy 
equation for 0K  is disregarded in the first approximation of the motion 
description set-up. However, this equation remains essential for considering the 
energy processes. Within this approximation the motion description realizes in 
the frame of the conservation laws for the momentum (the Reynolds equation) 
and for the moment of momentum M  (the equation of the large-scale 
turbulence) only. These laws are expressed as [18] 

 

,

d
{ }

d ij jt
ρ σ ρ= +u

f                                             (4) 

 

and 
 

,

d
{ } .

d ij jm
t

ρ ρ= − +M
mσ                                        (5) 

 

In (4) and (5) (in addition to M  and u  explained above) the following notations 
are used: ρ  denotes the medium density; d d ;t t= ∂ ∂ + ⋅ ∇u  ijσ  and ijm  
(specified below for the model considered) denote the components of the stress 
tensor and the moment stress tensor; the notations in curly brackets denote 
component presentation of the corresponding quantities, the Latin indices obtain 
the values 1,2,3, the index next to comma denotes differentiation by the 
respective space co-ordinate, and Einstein summation is assumed; f  denotes the 
(average) body force density per unit mass (henceforth – the body force); 

 

4 ( )γ= −σ Ω ω                                               (6) 
 

is the dual vector of the antisymmetric constituent of the stress tensor (the 
components of σ  are defined as ,k ijk ijeσ σ=  where ijke  denotes the components 
of the Levi–Civita tensor; 0γ >  is the coefficient of the rotational viscosity 
characterizing the shear in relative rotation, i.e. if ),≠Ω ω  and 

 

f 1 ( ) .J= + + ∇ ⋅m m m u Ω                                        (7) 
 

In (7) 
 

f ′= ×m f R                                                  (8) 
 

is the moment caused by the body force fluctuations ( )′f  and 
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1 4
κ
ρ

= −m Ω                                                (9) 

 

is the moment caused by the decay of the average effect of eddies rotation 
orientation in the cascading process ( 0κ >  is the coefficient of cascade 
scattering; further, κ  as well as γ  and J  defined above are considered 
constant). 

The quantities f  and fm  in (4) and (7) are specified as dependent on the 
external fields acting on the medium. In particular, for the motion of the medium 
with constant density in the gravity field we have ,=f g  where g  is the 
gravitational acceleration, and f 0.=m  In geophysical situation, considering the 
motion in a frame rotating with the Earth, Eq. (4) is modified by replacing f  
with 

 

02 ,= + ×f g u ω                                            (10) 
 

where 0ω  is the angular velocity of the Earth’s rotation, and the second term on 
the right side of (10) is the density per unit mass of the Coriolis force. 
Equation (5) is also modified by replacing d d ,tM  ,Ω  ,ω  and ( )J ∇ ⋅u Ω  with 

0d d ,t + ×M Mω  0 ,+Ω ω  0 ,+ω ω  and 0 0( ) ( ) ,J J∇ ⋅ + + ×u Ω ω Ω ω  
respectively. The replacements performed are equivalent to the replacement of 
expression (7) for m  with 

 

0 0 04 ( ) ( ) ( ) 2 .J J
κ
ρ

= − + + ∇ ⋅ + + ×m uΩ ω Ω ω Ω ω                     (11) 

 

Let us apply now Eqs (4) and (5), together with f  and m  determined in (10) 
and (11), to a natural water body in the northern hemisphere with depth 

( , )H H x y=  (the right-hand co-ordinate system ( , , )x y z  with the vertical axis 
z  directed downwards and with 0z =  on the free surface is used). The following 
assumptions are adopted: 
  (i) 0ω  is identified with the vertical projection of the angular velocity of the 

Earth’s rotation; 
 (ii) the flow field velocity u  can be presented as ( ( , ), ( , ),0)x yu x y u x y=u  

everywhere except in the continuity equation ( 0)∇ ⋅ =u  expressed as [34] 
 

1 d 1

d
z

h

u H
H

z H t H

∂ = = ⋅ ∇
∂

u                                    (12) 

 
 ( ( , ,0)h x y∇ = ∂ ∂ ∂ ∂  and d d );t ≡ ⋅ ∇ hu  
(iii) (0, 0, ( , ));x yΩ=Ω  
(iv) the effects caused by the turbulent shear stresses (described by the 

symmetric constituent of the stress tensor and realizing the average flow 
interaction with the small-scale turbulence) are negligibly small with respect 
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to the effects caused by the antisymmetric constituent of stresses (describing 
the average flow interaction with large-scale turbulence), i.e. 

ˆ{ } ,ij pσ = − + ⋅1 E σ                                        (13) 
 

 where ,p  ˆ,1  and E  denote thermodynamic pressure, the unit tensor, and 
the Levi–Civita tensor; 

 (v) the diffusive effects of the moment of momentum, described by the moment 
stress tensor ijm  in (4), can be ignored, i.e. ijm  vanishes. 

Within the model specifications made it follows from Eqs (4) and (5) that 
,p z gρ∂ ∂ =  

 

0d
2 ( ) 2 ,

d h hp
t

ρ γ ρ= −∇ + ∇ × − + ×u
uΩ ω ω                  (14) 

 

and 
 

0 0d
4 ( ) 4 ( ) ( ).

d
zu

J J
t z

ρ γ κ ρ ∂= − − − + + +
∂

Ω Ω ω Ω ω Ω ω            (15) 

 

From (14) and (15), using the continuity equation in form (12), we have 
 

0d
( )

d h ht H H

γ+ = ∇ × ∇ × −ω ω Ω ω                            (16) 

 

and 
 

0 0d
4 4 ,

d
J

t H H H
ρ γ κ+ − += − −Ω ω Ω ω Ω ω

                    (17) 

 

where 0( ) H+ω ω  is the potential vorticity. 
 

3.2. Model  analysis 
 
The model analysis is started from Eqs (16) and (17). Consider first the 

situation when 0.≡u  Then from (17) it follows that 
 

0.
κ

γ κ
= −

+
Ω ω                                             (18) 

 

Expression (18) states that there are rotating eddies in the flow, although the 
mean flow is absent. (Depth H  drops out of the description due to 0,≡u  
because of which H  is not constrained in any way.) This corollary of the model 
agrees with [20], concluding a significant eddy mixing in the ocean interior 
outside the regions affected by topography, and with [21], where the -fieldΩ  is 
considered as being essential for the salinity transport in the ocean. The effect 
declared by (18) does not come up for 0,κ =  i.e. if the cascade scattering of the 
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moment of momentum is hampered. When 0,γ =  i.e. if the shear in the relative 
rotation is absent, then 0= −Ω ω  and the medium remains resting in the absolute 
(nonrotating) frame. (The energetic background of (18) is explained by the 
energy balance condition (27) below.) 

Consider now the situation when 0,≠u  0.≠ω  Let us proceed from the 
presumption that the moment of momentum 0( )J +Ω ω  is conserved for the 
water columns extended between the surface and the bottom, expressed 
mathematically as 

 

0d
0.

dt H

+ =Ω ω
                                             (19) 

 

If condition (19) holds, then it follows from Eq. (17) that 
 

0 0( )
γ κ

γ
++ = +ω ω Ω ω                                      (20) 

 

and the conservation of the potential vorticity is an immediate result of (19). 
Due to 0,≠u  from (19) it follows that 

 

0 ,H= −CΩ ω                                              (21) 
 

where C  is a constant vector. Using (21), we have from (20) 
 

0.H
γ κ

γ
+= −Cω ω                                           (22) 

 

To determine ,C  the balance of energies 21
2

uK u=  and K Ω  is considered. 
Equations for uK  and K Ω  follow from (14) and (15) after their scalar 
multiplication by u  and ,Ω  respectively. Restricting ourselves to the situation 
when 0 const,=ω  i.e. neglecting the latitudinal variance of 0 ,ω  we have 

 

d
,

d

u
u

h

K
Q

t
ρ = ∇ ⋅ −h                                        (23) 

 

d
.

d

K
Q A B

t
ρ Ψ

Ω

= − − −                                     (24) 

 

In (23) and (24), 2 ( )u p γ= − + − ×h u uΩ ω  denote the flux vector for energy 
;uK  

 

4 ( )Q γ= − − ⋅Ω ω ω                                         (25) 
 

describes the interaction between energies uK  and ;K Ω  
 

2 24 4 | | 0Ψ κΩ γ= + − >Ω ω                                 (26) 
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describes the scatter of energy K Ω  into energy 0;K  04A κ= ⋅Ω ω  and 
0 1( ) d dB J H H tρ −= − + ⋅Ω ω Ω  describe the interaction of energy K Ω  with 

0 ,K  their signs depend on the specific situation. (The given interpretation of ,Ψ  
,A  and B  follows from the comparison of Eq. (24) with the equation for 0 ,K  

following as the difference of the energy equations for total turbulence K  and 
for .)K Ω  So, as condition (19) reads in energetic terms as d d ,K t Bρ Ω = −  from 
(24) we have 

 

.Q A Ψ= +                                                  (27) 
 

Consider now the quantity .Ψ  Replacing Ω  and ω  in (26) according to (21) 
and (22) and determining the critical depth crH  as the depth where d d 0,HΨ =  
i.e. where the scatter of energy K Ω  into energy 0K  obtains the minimum value, 
we have for ,C  

 

0

cr

1
.

H

γ
γ κ

=
+

C ω                                            (28) 

 

The achieved minimum value of Ψ  is determined as 
21 04 ( )γκ γ κ ω−+  and it 

differs from zero if γ  and κ  differ from zero. Making use of (28), we have from 
(21), (22), and (25) 

 

0

cr

1 ,
H

H

γ
γ κ

 
= − − + 

Ω ω                                     (29) 

 

0

cr

1 ,
H

H

 
= − − 

 
ω ω                                           (30) 

 

and 
 

20

cr cr

4 1 .
H H

Q
H H

γκ ω
γ κ

 
= − ⋅ − +  

                            (31) 

 

From the comparison of (29) with (18) it follows that (18) is equivalent to the 
replacement of the actual depth H  with the effective depth equalized with cr .H  
In the area where the equality (18) holds (coinciding with the area outside the 
regions affected by topography), the actual depth does not influence the flow, Ψ  
has a minimum, and 0.Q =  In this area the actual depth H  becomes essential 
only if there is influx of energy uK  through the boundaries (caused, for example, 
by the wind stress at the upper boundary of the water body). Then Q  becomes 
positive to compensate the energy influx and, according to (31), cr .H H<  

Consider now the area with cr ,H H<  where, according to (31), 0,Q <  i.e. the 
turbulence energy feeds the average flow. This is the situation, for example, in 
shallow coastal regions. On the basis of (30) it can be concluded that in these 
regions the flow is directed anticyclonically in a closed water body and 
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cyclonically around islands. Let us stress the essential role of the conditions 
0κ ≠  and 0γ ≠  for the suggested model, i.e. the effect is predicted as an effect 

specific to the RAT theory. Indeed, in the case of the CTM we have 0κ =  or 
0γ =  and therefore 0.Q Ψ= =  The critical depth crH  as well as ω  and Ω  

would remain undetermined in this case. Finally, crH  can be estimated in real 
flows by the behaviour of the covariance between the velocity fluctuation 
components: for crH H<  the covariance is constant, while for crH H<  the 
covariance changes together with .H  

 
 

4. CONCLUSIONS 
 
The suggested model predicts the following flow scheme. Suppose the energy 

fluxes to the average flow through the water body boundaries are excluded; then 
the average flow velocity is zero in the interior of the water body outside the 
regions affected by bottom topography. The scheme corresponds to the minimum 
scatter of the turbulence energy K Ω  into energy 0 ,K  compensated by the 
opposite action of the Earth’s rotation providing the turbulence with the property 
of rotational anisotropy. Due to this balance there is a motion in the form of eddy 
rotation in the water body, although the motion in the form of the average flow is 
absent. In the area where the actual depth is smaller than the critical depth (like in 
the shallow coastal area), the bottom topography becomes essential and the 
medium turbulence appears to feed the average flow energy. The effect can be 
explained as a specific effect predicted by the RAT theory. 

 
 

ACKNOWLEDGEMENT 
 
The author thanks Dr. Aleksander Toompuu for helpful discussions. 
 
 

REFERENCES 
 

  1. Salmon, R., Holloway, G. and Henderschott, M. C. The equilibrium statistical mechanics of 
simple quasi-geostrophic models. J. Fluid Mech., 1976, 75, 691–703. 

  2. Bretherton, F. P. and Haidvogel, D. B. Two dimensional turbulence above topography. J. Fluid 
Mech., 1976, 78, 129–154. 

  3. Herring, J. R. On the statistical theory of two dimensional topographic turbulence. J. Atmos. 
Sci., 1977, 34, 1731–1750. 

  4. Holloway, G. A spectral theory of non linear barotropic motion above irregular topography. 
J. Phys. Oceanogr., 1978, 8, 414–427. 

  5. Holloway, G. Systematic forcing of large-scale geophysical flows by eddy–topography 
interaction. J. Fluid Mech., 1987, 184, 463–476. 

  6. Haidvogel, D. B. and Brink, D. H. Mean currents driven by topographic drag over the 
continental shelf and slope. J. Phys. Oceanogr., 1986, 16, 2159–2171. 

  7. Carnavale, G. F. and Frederiksen, J. S. Nonlinear stability and statistical mechanics of flow 
over topography. J. Fluid Mech., 1987, 175, 157–181. 



 244

  8. Holloway, G. and Sou, T. Measuring skill of a topographic stress parameterization in a large-
scale ocean model. J. Phys. Oceanogr., 1996, 26, 1088–1092. 

  9. Adcock, S. T. and Marshall, D. P. Interactions between geostrophic eddies and the mean 
circulation over large-scale bottom topography. J. Phys. Oceanogr., 2000, 30, 3232–3238. 

10. Polyakov, I. An eddy parameterization based on maximum entropy production with application 
to modeling of the Arctic Ocean circulation. J. Phys. Oceanogr., 2001, 31, 2255–2270. 

11. Merryfield, W. J., Cummins, P. F. and Holloway, G. Equilibrium statistical mechanics of baro-
tropic flow over finite topography. J. Phys. Oceanogr., 2001, 31, 1880–1890. 

12. Starr, V. P. Physics of Negative Viscosity Phenomena. McGraw-Hill, New York, 1968. 
13. Bacri, J.-C. and Perzynski, R. “Negative-Viscosity” effect in a magnetic fluid. Phys. Rev. Lett., 

1995, 75, 2128–2131. 
14. Morimoto, H., Maekawa, T. and Matsumoto, Y. Nonequilibrium Brownian dynamics of 

negative viscosity induced in a magnetic fluid subjected to both ac magnetic and shear flow 
fields. Phys. Rev. E, 2002, 65, 061508. 

15. Smolyakov, A. I., Diamond, P. H. and Malkov, M. Coherent structure phenomena in drift 
wave–zonal flow turbulence. Phys. Rev. Lett., 2000, 84, 491–494. 

16. Heinloo, J. Phenomenological Mechanics of Turbulence. Valgus, Tallinn, 1984 (in Russian). 
17. Heinloo, J. Turbulence Mechanics. Introduction to the General Theory of Turbulence. Estonian 

Academy of Sciences, Tallinn, 1999 (in Russian). 
18. Heinloo, J. The formulation of turbulence mechanics. Phys. Rev. E, 2004, 69, 056317. 
19. Rhines, P. B. and Holland, W. R. A theoretical discussion of eddy-driven mean flows. Dyn. 

Atmos. Oceans, 1979, 3, 289–325. 
20. O’Dwyer, J., Williams, R. G., Lacasce, J. H. and Speer, K. G. Does the potential vorticity 

distribution constrain the spreading of floats in the North Atlantic? J. Phys. Oceanogr., 
2000, 30, 721–732. 

21. Toompuu, A., Heinloo, J. and Soomere, T. Modelling of the Gibraltar Salinity Anomaly. 
Oceanology, 1989, 29, 698–702. 

22. Heinloo, J. and Võsumaa, Ü. Rotationally anisotropic turbulence in the sea. Ann. Geophys., 
1992, 10, 708–715. 

23. Võsumaa, Ü. and Heinloo, J. Evolution model of the vertical structure of the active layer of the 
sea. J. Geophys. Res., 1996, 101, 25635–25646. 

24. Heinloo, J. and Toompuu, A. Antarctic Circumpolar Current as a density-driven flow. Proc. 
Estonian Acad. Sci. Phys. Math., 2004, 53, 252–265. 

25. Eringen, A. C. Micromorphic description of turbulent channel flow. J. Math. Anal. Appl., 1972, 
39, 253–266. 

26. Eringen, A. C. and Chang, T. S. Micropolar description of hydrodynamic turbulence. Recent 
Adv. Engng. Sci., 1968, 5, 1–8. 

27. Peddieson, J. An application of the micropolar fluid model to the calculation of turbulent shear 
flow. Int. J. Eng. Sci., 1972, 10, 23–32. 

28. Eringen, A. C. Theory of micropolar fluids. Math. Mech., 1966, 16, 1–18. 
29. Dahler, J. S. Transport phenomena in a fluid composed of diatomic molecules. J. Chem. Phys., 

1959, 90, 1447–1475. 
30. Dahler, J. S. and Scriven, L. F. Angular momentum of continua. Nature, 1961, 192, 36–37. 
31. Eringen, A. C. Mechanics of micromorphic continua. In Mechanics of Generalized Continua 

(Kröner, E., ed.). Springer-Verlag, 1968, 18–33. 
32. Richardson, L. F. Weather Prediction by Numerical Process. Cambridge University Press, 

Cambridge, 1922. 
33. Kolmogoroff, A. N. The local structure of turbulence in incompressible viscous fluids for very 

large Reynolds numbers. C. R. Acad. Sci. URSS, 1941, 30, 376–387. 
34. Pedlosky, J. Geophysical Fluid Dynamics. Springer, New York, 1987. 

 
 



 245

Keeriste  poolt  tekitatud  voolamised  muutuva  topograafia  
kohal  looduslikes  veekogudes 

 
Jaak Heinloo 

 
On käsitletud keeriste pöörlemise eelisorientatsiooni ja veekogu põhja topo-

graafia koosmõjul tekkivate voolamiste kujunemist, lähtudes pöördeliselt mitte-
isotroopsete keskkondade mehaanikast. On näidatud, et veekogu põhja topo-
graafia ja keeriste pöörlemise vastasmõju genereerib pikivoolamisi piirkondades, 
kus veekogu sügavus on väiksem teatud teooria poolt määratud iseloomulikust 
sügavusest. 


