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Abstract. We classify Lorentzian para-Sasakian manifolds which satisfy P - C' =0, Z - C =
LeQ(g,C), P-Z—Z-P=0,and P-Z+ Z - P =0, where P is the v—Weyl projective
tensor, Z is the concircular tensor, and C' is the Weyl conformal curvature tensor.
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1. INTRODUCTION

Matsumoto [!] introduced the notion of Lorentzian para-Sasakian (LP-Sasakian
for short) manifold. Mihai and Rosca defined the same notion independently in [2].
This type of manifold is also discussed in [*4].

Let M be an n-dimensional Riemannian manifold of class C'™. A v-projective
symmetry is a projectable vector field X with the property in which every
diffeomorphism ¢ of its one-parametric group is a projective map between leaves.
In the theory of the projective transformations of connections the Weyl projective
tensor plays an important role.

Recently, the authors of [°] studied the contact metric manifold M" satisfying
the curvature conditions Z(£, X) - R = 0 and R(§, X) - Z = 0, where Z is the
concircular tensor of M™ defined by

T

Z(X,Y)W = R(X,Y)W — TOESY)

Ro(X, Y)W, €]
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where

R and 7 are the Riemannian—Christoffel curvature tensor and the scalar curvature
of M™, respectively. They observed immediately from the form of the concircular
curvature tensor that Riemannian manifolds with a vanishing concircular curvature
tensor are of constant curvature. Thus one can think of the concircular curvature
tensor as a measure of the failure of a Riemannian manifold to be of constant
curvature.

In the theory of the projective transformations of connections the Weyl
projective tensor plays an important role. The v—Weyl projective tensor P in a
Riemannian manifold (M", g) is defined by [°]

P(X,Y)W = R(X,Y)W — ﬁRl(x, Y)W, )

where
Ri( X, Y)W =S, W)X — S(X,W)Y,

with S being the Ricci tensor of M.

In the present study we give a classification of the LP-Sasakian manifold M"
satisfying the curvature conditions P-C' = 0, Z-C = LcQ(g,C), P-Z—Z-P =0,
and P-Z + Z - P =0, where Z is the concircular tensor defined by (1), P is the
v—Weyl projective tensor, and C is the Weyl conformal curvature tensor of M".

2. PRELIMINARIES

A differentiable manifold of dimension n is called an LP-Sasakian mani-
fold [12] if it admits a (1, 1)-tensor field ¢, a contravariant vector field £, a covariant
vector field 77, and a Lorentzian metric g which satisfy

n(€) = -1, 3)

¢*=T+n®E, 4)

9(¢X,9Y) = g(X,Y) + n(X)n(Y), &)
9(X, &) =n(X), Vx§ = ¢X, (6)
P(X,Y) = g(X,9Y) = g(¢X,Y) = (Y, X), (7
(Vx®)(Y, W) = g(Y, (Vx®)W) = (Vx®)(W,Y), ®)

where V is the covariant differentiation with respect to g. The Lorentzian metric
g makes a timelike unit vector field, that is, g(£,{) = —1. The manifold M"
equipped with a Lorentzian almost paracontact structure (¢,£,7,9) is said to be a
Lorentzian almost paracontact manifold (see [%3]).
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If we replace in (3) and (4) £ by —¢, then the triple (4,£,n7) is an almost
paracontact structure on M" defined by Sato []. The Lorentzian metric given by
(6) stands analogous to the almost paracontact Riemannian metric for any almost
paracontact manifold (see [78)).

A Lorentzian almost paracontact manifold M"™ equipped with the structure
(¢,£,m,9) is called a Lorentzian paracontact manifold (see [']) if

D(X,Y) = 3 (Vxm)Y +(Vyn)X)

A Lorentzian almost paracontact manifold M"™, equipped with the structure
(,£,m.9), is called an LP-Sasakian manifold (see [1]) if

(V@)Y = g(¢X, oY )E +n(Y)4”X.

In an LP-Sasakian manifold the 1-form 7 is closed. In ['] it is also proved that if
an n-dimensional Lorentzian manifold (M™, g) admits a timelike unit vector field
& such that the 1-form 7 associated to £ is closed and satisfies

(VxVyn)W = g(X,Y)n(W) + g(X, W)n(Y) + 2n(X)n(Y)n(W),

then M™ admits an LP-Sasakian structure.
Further, on such an LP-Sasakian manifold M" with the structure (¢,£,n,9) the
following relations hold:

g(R(X, Y)W, &) = n(R(X,Y)W) = g(Y, W)n(X) — g(X, W)n(Y), ()

R(&X)Y =g(X,Y){ —n(Y)X, (10)
R(X,Y)E =n(Y)X —n(X)Y, (11)

R(&, X)§ = X +n(X)¢, (12)

S(X,€) = (n—1n(X), (13)
S(¢X,9Y) = S(X,Y) + (n— 1)n(X)n(Y) (14)

for any vector fields X, Y (see [12]), where S is the Ricci curvature and Q is the
Ricci operator given by S(X,Y) = g(QX,Y).
An LP-Sasakian manifold M" is said to be n-Einstein if its Ricci tensor .S is of
the form
S(X,Y) = ag(X,Y) + bn(X)n(Y) (15)

for any vector fields X, Y, where a, b are functions on M"(see [9:107).
Next we define endomorphisms R(X,Y) and X A4 Y of x(M) by

R(X,Y)W: vayW—VyVXW—V[Xy]W, (16)
(X AA Y)W = A(Y, W)X — A(X, W)Y, (17)
respectively, where X, Y, W € x(M) and A is the symmetric (0, 2)-tensor.
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For a (0, k)-tensor field 7', k > 1, on (M, g) we define P - T, Z - T, and
Q(g,T) by
(P(X,Y) -T)(X1,...X) =—T(P(X,Y) Xy, Xo, ..., Xk)
(X0, P(XY) X, Xp)
o T(X1, Xo, ., P(X,Y)XE),  (18)

(Z(X,Y) - T) X1, ... Xi) = — T(Z(X,Y) X1, X2, ..., X3)
~T(X1,Z(X,Y)Xa, ..., Xk)
— = T(X1, Xo, ., Z(X,Y)XE),  (19)

Q(g,T) (X1, ., X3 X, Y) = — T((XAY) X1, Xo, ..., Xi)
— T(X1,(XAY) X, ..., Xz)
= T(X1, Xa, o (XAY) X)), (20)

respectively [11].
By definition the Weyl conformal curvature tensor C'is given by
1 9(Y, Z)QX — g(X, 2)QY

CXY)Z = RIX,Y)Z == | Loy, 2)X — S(X, Z)Y
T

— gV, 2) X —g(X, 2)Y 21
where () denotes the Ricci operator, ie., S(X,Y) = g(QX,Y) and 7 is scalar
curvature [?]. The Weyl conformal curvature tensor C' is defined by C'(X,Y, Z, W)
=g(C(X,Y)Z,W).If C = 0,n > 4, then M is called conformally flat.

3. MAIN RESULTS

In the present section we consider the LP-Sasakian manifold M™ satisfying the
curvature conditions P - C =0, Z - C = LcQ(g,C), P-Z — Z - P = 0, and
P-Z+7Z -P=0.

First we give the following proposition.

Proposition 1. Let M be an n-dimensional (n > 3) LP-Sasakian manifold. If the
condition P - C = 0 holds on M, then

S%(x,U) = — —(n—1)>-1|5(X,U)

+(n —1)[r = (n - 1)]g(X,U)
+nlr —n(n —1)n(X)n(U)

is satisfied on M, where S*(X,U) = S(QX,U).
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Proof. Assume that M is an n-dimensional, n > 3, LP-Sasakian manifold
satisfying the condition P - C' = 0. From (18) we have
(P(V,X)-O)Y, U)W =PV, X)C(Y, U)W
- C(P(V,X)Y, U)W —C(Y,P(V,X)U)W
— C(Y,U)P(V, X)W =0, (22)

where X, Y, U, V,W € x(M). Taking V' = £ in (22), we have

(P(&,X) - C)(Y,U)W =P(§, X)C(Y, U)W
- C(PEX)Y, U)W = C(Y, P, X)U)W
— C(Y,U)P(&, X)W = 0. (23)

Furthermore, substituting (2), (9), (13), (21) into (23) and multiplying with &, we
get

—9(X, CY,U)W) = nn(C(Y, U)W)n(X) = g(X, Y )n(C(§, U)W)
+nn(Y)n(C(X, U)W) — g(X, U)n(C(Y, )W
+nn(U)n(CY, X)W) + nn(W)n(C(Y, U)X)

+L{S(X,C(Y,U)W) S(XY)n(CE V)W)
(X, U)n(C(Y.OW)} =0, &4

~—

Thus, replacing W with £ in (24), we have
1
—g(X,C(Y,0)8) = m(C(Y,U)X) + ——S(X,C(¥,U)) =0.  (25)

Again, taking Y = £ in (25) and after some calculations, since n > 3, we get

S3HX,U) = — - (n- 1)2—-1|58(X,U)
+ (=Dl = (n-1D]g(X,U)
+nlr —n(n = Dn(X)nU).
Our theorem is thus proved. O

Theorem 2. Let M be an n-dimensional (n > 3) LP-Sasakian manifold. If the
condition Z - C = LcQ(g,C) holds on M, then either M is conformally flat or
Lo =" — 1

(n—1)

Proof. Let M™ be an LP-Sasakian manifold. So we have
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Then from (19) and (20) we can write
Z(V, X)C(Yy, U)W - C(Z(V,X)Y, U)W — C(Y, Z(V, X)) U)W
-, U)Z(V, X)W
=Lc[(VAX)CY,UW —-C(VAX)Y, U)W
—C(Y,(VAX) U)W —-CY,U)(VAX)W]. (26)
Therefore, replacing V' with £ in (26), we have
= Lol(€ A X)C(Y, U)W — C((€ A X)Y, U)W
—C(Y,EANX) U)W —=C(Y,U)(ENX)W]. 27)
Using (20), (9) and taking the inner product of (27) with £, we get

- Le|[-g(X,C(V.0)W) = n(C(Y, U)W )n(X)

n(n -1)
—9(X, Y)n(C, U)W) + (Y )n(C(X, U)W)
—g9(X, Un(CY, W) + n(U)n(C(Y, X)W) + n(W)n(C(Y,U)X)] = 0.
(28)
Putting X =Y in (28), we have
— (nT_ i Lo [=g(v, COn UMW) + n(Wn(C(v,U)Y)
—g(¥V,Y)n(C (& U)W) = g(Y, U)n(C(Y, E)W)] = 0. (29)
A contraction of (29) with respect to Y gives us
[1 -5 =D ~ Le|n(c(e, )W) =o. (30)
If Lo #1— =T then Eq. (30) is reduced to
n(C(&U)W) =0, €20

which gives

SO = (o = 1) a0 + (g =)o@V G2

Therefore, M is a n-Einstein manifold. So, using (31) and (32), we have Eq. (28)
in the form
CY,U W, X)=0,
which means that M is conformally flat.
If L # 0 and n(C(&,U)W) # 0, then 1 — atn-n — Lo = 0, which gives
Lo=1- ﬁ This completes the proof of the theorem. 0
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Corollary 3. Every n-dimensional (n > 3) nonconformally flat LP-Sasakian
manifold satisfies Z - C' = (1 — ﬁ)@(g, ).

Theorem 4. Let M be an n-dimensional (n > 3) LP-Sasakian manifold. M
satisfies the condition

P-Z—-Z-P=0
if and only if M is a n-Einstein manifold.

Proof. Let M satisfy the condition P - Z — Z - P = 0. Then we can write

P(V,X)-Z(Y, U)W — Z(V,X) - P(Y, U)W

_ ﬁ[R(V, X)Ri(Y,U)W — Ry(V, X)R(Y,U)W]

+ [RI(V7X)R0(Y7 U)W - RO(Vv X)Rl(Yv U)W]

T
n(n —1)2
T

oy [Bo(V, X)R(Y, U)W — R(V, X)Ro(Y, U)W] = 0. (33)

n(n—1)

Therefore, replacing V' with & in (33), we have

P&, X) - Z(Y, U)W — Z(&, X) - P(Y,U)W
_ 5[3(5, X)Ry(Y,UYW — Ry(&, X)R(Y, U)W]

o & O R UIW = Ro(&, X)Ra (Y, U)W

T

n(n—1)

Using (10), (13), we get

1
n—1

1S,

) (Xv Y)f S(Uv W)H(Y)X - g(X, U)S(Y> W)f
+S(Y,W)n(U)X — S(X,R

Y, U)W)E+ (n = g(U, W)n(Y)X

— (n— (Y, W)n(U)X]
e . 9T (X,Y)E = 9T, W)n(Y)X = (¥, W)g(X, )¢
+ (Y, W)n(U)X = S(U,W)g(X,Y)§ + S(UW)n(Y)X
+S(Y,W)g(X,U)§ = S(Y,W)n(U)X]
+ m[g(?ﬂ R(Y,U)W)¢ + g(Y,W)n(U)X — g(U, W)g(X,Y)E
+g(Y,W)g(X,U)§ — g(Y,W)n(U)X] = 0. (35)

216



Again, taking U = £ in (35), we get
L~ g, V(W n(X)E ~ SV, W)X
= (Y, Wn(X AOV)E+ (0 — 1) (Y, W)X

+W[Q(X’ Y)n(W)& = n(W)n(Y)X — g(Y, W)n(X)¢§ — g(Y, W)X

—(n = 1Dg(X,Y)n(W)§ + (n — D)n(W)n(Y)X
=S(Y,W)n(X)¢+ S(Y,W)X] = 0.

\J\_r: S—
|

a

Is

(36)

Taking the inner product of (36) with £, we find

ﬁ[g(x, Y)n(W) — (n— 1)g(X, Y )n(W)]

M[Q(Xa Y)n(W) +n(X)n(Y)n(W)] = 0. (37)

Again, taking W = £ and using (3) in (37), we get

(n—2)

S(X,Y) = [(n —1) - )T} g(X,Y)

n(n —1

- |2 . 3

So, M is a n-Einstein manifold.
Conversely, if M™ is a n-Einstein manifold, then it is easy to show that
P.-Z — 7P =0. Our theorem is thus proved. O

Theorem 5. Let M be an n-dimensional (n > 3) LP-Sasakian manifold. M
satisfies the condition
P-Z+Z-P=0

if and only if M is an Einstein manifold.

Proof. Let M satisfy the condition P - Z + Z - P = 0. Then, from (33) and (34),
we can write

2R(§,X)R(Y, U)W
LR, X)Ry(Y, U)W + Ry (€, X)R(Y, U)W

n—1
+m[31<faX>Ro<Ya U)W + Ro(&, X) Ry (Y, U)W]
_m[RO(f’ X)R(Y, U)W + R(&, X)Ro(Y,U)W] =0.  (39)
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Using (6), (10), and (13) in (39), we have

2[9(X, R(Y, U)W)§ = g(U, W)n(Y) X + g(Y, W)n(U) X]

LS W)X, Y)E — SU,W)n(Y)X — (Y, W)g(X, V)¢

HS(YV, W)n(U)X + S(X, R(Y,U)W)E — (n — 1)g(U, W)n(Y) X
+(n = 1)g(Y, W)n(U)X]

"'W[Q(Ua W)S(X,Y)E — (n—1)g(U, W)n(Y) X

—g(Y,W)S(X,U)§ + (n —1)g(Y, W)n(U)X + S(U,W)g(X,Y)&
=S(UW)n(Y)X = S(Y,W)g(X,U)§ + S(Y,W)nU)X]
g(X, R(Y,U)W)¢ = 29(U, W)n(Y)X +29(Y, W)n(U)X

n nT— 1 [
+g((Ua W))g(X, Y)§—g(Y,W)g(X,U)¢] = 0. (40)
Replacing Y with £ and using (3) in (40), we have
2[g(X, R(§, UYW)E + g(U, W)X +n(W)n(U)X]

S WIN(X)E + ST W)X — (n— Dg(X, Un(W)e

+2(n = Dn(W)n(U)X + S(X, R(& U)W)E + (n — 1)g(U, W) X]

+ﬁ[<n — Dg(U,Wn(X)E + (n = 1)g(U, W)X
=S(X,Un(W)§ + (n = L)n(W)n(U)X + S(U, W)n(X)§
(U,T )X = (n=1)g(X, U)n(W)§ + (n — 1)n(W)n(U)X]
—m[ 9(X, R(§,U)W)E + 29(U, W)X + 2n(W)n(U)X
+g(U, W)n(X)§ — g(X,U)n(W)¢{] = 0. (41)

Taking the inner product of (41) with £ and using (7), (10), we get

[2 - 2] (X U)n(W) 4+ n(XIn(U)n(W)]

n(n—1)
* [n@f_ 02 - J [(n = 1)g(X, U)n(W) + 2(n.— )y(X)n(U)n(W)
+S(X, U)n(W)] = 0. 42)

Again, taking W = £ and using (3) in (42), we get

[n(?T _ 2] [9(X,U) 4+ n(X)n(U)]

n—1)
B {n(nT 12 nll] [(n—1)g(X,U)
+2(n — D)n(X)n(U) + S(X,U)] = 0. 43)
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Thus, from (43), we have

So, M™ is an Einstein manifold.
Conversely, if M™ is an Einstein manifold, then it is easy to show that
P-Z + Z - P = 0. Our theorem is thus proved. O

ACKNOWLEDGEMENT

This study was supported by the Dumlupinar University research foundation
(project No. 2004-9).

REFERENCES

1. Matsumoto, K. On Lorentzian paracontact manifolds. Bull. of Yamagata Univ. Nat. Sci.,
1989, 12, 151-156.

2. Mihai, I. and Rosca, R. On Lorentzian P-Sasakian Manifolds, Classical Analysis. World
Scientific, Singapore, 1992, 155-169.

3. Matsumoto, K. and Mihai, I. On a certain transformation in a Lorentzian para-Sasakian
manifold. Tensor, N. S., 1988, 47, 189-197.

4. Tripathi, M. M. and De, U. C. Lorentzian almost paracontact manifolds and their
submanifolds. J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math., 2001, 8, 101-105.

5. Blair, D. E., Kim, J. S. and Tripathi, M. M. On the concircular curvature tensor of a contact
metric manifold. J. Korean Math. Soc., 2005, 42, 883—892.

6. Tigaeru, C. v-projective symmetries of fibered manifolds. Arch. Math., 1998, 34, 347-352.

7. Sato, I. On a structure similar to almost contact structures. Tensor, N. S., 1976, 30, 219—
224.

8. Sato, I. On a structure similar to almost contact structures II. Tensor, N. S., 1977, 31,
199-205.

9. Yano, K. and Kon, M. Structures on Manifolds. Series in Pure Mathematics, Vol. 3, 1984.
World Scientific, Singapore.

10. Blair, D. E. Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics,
Vol. 509, 1976, Springer-Verlag, Berlin.
11. Deszcz, R. On pseudosymmetric spaces. Bull. Soc. Math. Belg., 1990, 49, 134-145.

Uhest Lorentzi para-Sasaki muutkondade klassist
Cengizhan Murathan, Ahmet Y1ldiz, Kadri Arslan ja Uday Chand De
On kisitletud Lorentzi para-Sasaki muutkondi, mille puhul P-C =0, Z - C =

LcQ(g,C),P-Z—Z-P=0voiP-Z+ Z-P =0,kus C on Weyli konformse
kdveruse tensor, P on v—Weyli projektiivne tensor ja Z on kontsirkulaartensor.
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