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Carlson’s inequality and interpolation
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Abstract. In this survey, we explain and discuss some recent results concerning the close
connection between Carlson type inequalities and interpolation theory. In particular, we point
out that a fairly general Carlson type inequality can be used to extend the usefulness of the
Gustavsson—Peetre (), interpolation method.
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1. INTRODUCTION

In 1934, it was proved by Carlson [!] that if ¢ = {ax}72, is anonzero sequence
of nonnegative numbers, then
o0 4 o o0
(Zak> < W2ZG%Z/€2CL%, (D)
k=1 k=

1 k=1

and the number 72 is the smallest possible constant. Since then, inequalities of
this type have attracted great interest among mathematicians, and even today many
research papers have this theme as their central subject.

In modern language, the inequality (1) may be written as

1/2 1/2
lally, < v/ llalli/* llall,/Ge,
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where l5(k?) denotes a weighted I space. Thus, the inequality (1) can be thought
of as a special case of the inequality

1-6 | 16
lallx < Cllalla, llall, 2

where C' is some positive constant, X, Ay, and A; are normed spaces, and the
parameter 6 satisfies 0 < 6 < 1.

Many papers have been written on inequalities of the type (2), henceforth
referred to as Carlson type inequalities, and several applications have been found
(see [?] and the references therein). The purpose of this paper is to give an overview
of how Carlson type inequalities connect to interpolation theory. In Section 2, we
describe how interpolation theory can be applied to achieve certain inequalities
of this type. In Section 3, we go the other way, illustrating how Carlson type
inequalities can be applied to achieve embeddings of real interpolation spaces in
the weighted Lebesgue spaces. In Section 4, we explain how a certain Carlson type
inequality, which was used in connection with interpolation of Orlicz spaces by
the Gustavsson—Peetre (-),, method, can be modified so as to extend the class of
functions ¢ that can be used.

2. CARLSON TYPE INEQUALITIES VIA INTERPOLATION

Let (£2,du) be any measure space. Suppose that weight functions w > 0,
wp > 0, and wy > 0 are defined on €2, and that the parameters p, pg, p1 € (0, <]
and 0 € (0, 1) are given. Let X be the weighted Lebesgue space L, (€2, w? du), and
let A; = Ly, (Q,w? du), i = 0,1. The main result in this section reads (cf. ?]):

Theorem 1. Assume that 0 < p,pg,p1 < 00,0 < 6 < 1, and

qg p Po b1
For k € Z, define the sets Q) by

Qp = {w e 02k < M < 2k+1}.
w1 (w)
Suppose that for some constant B it holds that
W) < B, ke 3)

Suppose, moreover, that for some s € [q, 00| we have

— € Ly(, dp). 4
Wl (2, dp) 4)

Then there exists a constant C such that

1 llx < AN 1%, - (5)
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Remark 1. The condition (3) is not needed in the case where ¢ = oo or s = gq.
However, for the case ¢ < s < oo, the role of the measure is crucial and not fully
understood.

The proof of the above theorem is divided into three steps, which we will briefly
describe below (see [3] for details).

Step 1. We first assume that (4) holds for s = co. We then divide the space €2 into
two parts; 20 where the quotient wg /w is small, and Q! where it is large, and the
integral appearing on the left-hand side of the inequality is correspondingly split
into a sum of two integrals. Via Holder’s inequality, the hypotheses (3) and (4) can
then be used to get upper bounds for the coefficients of the two integrals in terms
of geometric series. We then specify what should be meant as “small” and “large”,
respectively, thus specifying what the sets Q¥ and Q! really are. In this way, an
additive inequality is transformed into the multiplicative inequality (5). It turns out
that the constant C' can be chosen as

w

-6, 6
Wy Wy

C=0Cy

Loo(Q,dp)

Step 2. Next, we assume that (4) holds with s = ¢. An application of Holder’s
inequality with parameters

A=0p bp

Po b1

<3

then yields the desired inequality with

w

1-6_0
Wy Wy

C =

Lq (Q,d/.l,)

Step 3. By the two previous steps, we have the two inequalities

w 1—6 0

[fwll, < Co||—5=g—5|| fwolly, " Il fwrll, (6)
0 Wllw

and

w 1-6 6

[fwll, < \|—=g—= || Ifwoll,, " lfwill,, - (7

0
Wo Wifl,

Now, fix the function f and the weights wq and w;. Define the linear (multiplica-
tion) operator 1" on the vector space of measurable functions on 2 by

TW = (fuy "wi)W.
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For any choice of W, we may choose w such that

w
R
wy

(W= —=
0

a.e.

Thus the inequalities (6) and (7) state that
T : Loo(Q,dp) — Ly(Q, dp)

with norm at most

1-0 0
Co [l fwolly, ™ | Fonllp,

and
T : Ly(Q2,dp) — Lp(2, dp)

with norm at most

1-6 0
fwollpy ™ |l Fwrllp,

respectively. If (4) is now assumed to hold for some s € (g, c0), put

77:1—g,
S

so that

1 1-0
L_1-6
S q 00

It thus follows by the Riesz—Thorin Interpolation Theorem that
T : Ls(Q,dp) — Lp(92, dp)
with norm not exceeding
G I fwolly, fwnlly, -
In other words,

w
-0, 9
o Wi

Ifwl], < C/°

S

which is (5).

1-0 0
[fwollpy ™ Il fewillp,
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3. EMBEDDINGS VIA CARLSON TYPE INEQUALITIES

If Ag and A; are compatible Banach spaces, an intermediate space X is said to
be of class C;(0; Ay, Ay) if there is a constant C' such that

Ifllx < COT(, f; Ao, A1),  f € A(Ag, Ay),

where J is the Peetre J functional. This condition is known to be equivalent to the
Carlson type inequality (5), and also to the (continuous) embedding

(Ao, A1)g1 C X, (8)

where the space on the left-hand side is a real interpolation space. The scale of real
interpolation spaces is increasing in the second parameter; thus

(Ao, A1)p,1 C (Ao, A1),

for any r > 1.

Suppose that X, Ag, and A; are as in Section 2. Theorem 1 thus states that the
given conditions on the weights imply the embedding (8). It turns out, however,
that the same conditions are sufficient to achieve a stronger embedding.

Theorem 2. Suppose that w, wo, w1, p, Po,P1, and 0 satisfy the hypotheses of
Theorem 1. Then
(Ao, A1)ep € X.

A detailed proof of this, which uses the Reiteration Theorem for real
interpolation spaces, can be found in [?].

4. A BLOCK INEQUALITY

Let ¢ : Ry — Ry be a concave function, and let (-),, be the corresponding
interpolation method (this method, introduced by Peetre, is sometimes referred to
as the + method. See Gustavsson and Peetre [*] for details). Let P* be the class

p(st)

of ¢ for which
t
lim sup #(st) = lim sup =0,
t—0+ 550 ©(5)  t—o0 >0 to(st)

and let P° consist of those ¢ for which

lim ¢(t) = lim —= = 0.

t—0+ t—oo

We associate to ¢ the function
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Consider the inequality

<ol ||-2_ > 9
Zk:ak - w(”w@k) Iy )

This inequality was used by Gustavsson and Peetre [*] to identify the spaces arising
when the (-), method is applied to a couple of Orlicz spaces, when ¢ € PE.
As was shown by Kruglyak et al. [*], the restriction on ¢ can be overcome if the
inequality is modified as follows:

Sz 2 ) | 2 g )

2k Exn 2k ey

k_ Ok

p(2F)

9

lp

n n

lp lq

Here, the x, are intervals, whose endpoints are points from the special sequence
associated to ¢, which was used by Brudnyi and Kruglyak when solving the
K -divisibility problem (see [°] and the references therein). In its simplest form, the
K -divisibility property says that if there are concave functions g, 1 : Rp — Ry
such that

K(t,a; Ao, A1) < o + @1,

where K is the Peetre K -functional, then there exists a decomposition a = ag+ a1,
where a; € A;,7 =0, 1, and a constant v > 0 for which

K(t,xi; Ao, A1) < v, 1=0,1.

Note that the inequality (9) is obtained from the inequality (10) if the intervals
Xn consist of only one point each: y,, = [2™,2™]. The main result of this section
is the following.

Theorem 3.

(a) In order that there exists a constant C such that (9) holds it is
necessary and sufficient that p € PT,

(b) In order that there exists a constant C' such that (10) holds it is necessary and
sufficient that p € PO.

Remark 2. The sufficiency part of (a) was proved by Gustavsson and Peetre [*].
The remaining parts were proved by Kruglyak et al. [°].

Remark 3. As the inequality (10) allows a larger class of ¢, Kruglyak et al. were
able to use their block version to extend the characterization of the Gustavsson—
Peetre (-),, functor (see [°] for details).
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Carlsoni mittevordus ja interpolatsioon
Leo Larsson ja Lars-Erik Persson
On kisitletud tihedat ithendust Carlsoni-tiitipi mittevorduse ja interpolatsiooni-
teooria vahel. Eriti on juhitud tdhelepanu asjaolule, et iiht kaunis iildist Carlsoni-

tiitipi mittevordust voib kasutada Gustavssoni—Peetre (-),, interpolatsioonimeetodi
kasulikkuse iildistamise juures.
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