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Abstract. So far trilinear forms have mostly been considered in low dimensions, in particular
the dimension two (binary) case, and when the ring of scalars K is either the real numbers R
or the complex ones C. The main aim in both situations has been to decide when a normalized
form has norm unity. Here we consider the case of quaternions, K = H. This note is rather
preliminary, and somewhat experimental, where the computer program Mathematica plays a
certain role. A preliminary result obtained is that the form has norm unity if and only if
the discriminant of a certain 5-dimensional quadratic form has all its principal minors non-
negative. We found also a rather unexpected similarity between the noncommutative case ofH
and the commutative one of R and C.
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1. INTRODUCTION

Most studies on trilinear forms have been devoted to forms in low dimensions,
in particular the dimension two or binary case, the ring of scalars K being the real
numbers R or the complex ones C. The main goal in both situations has been to
find a criterion for a normalized (see 2.1) form to have norm unity.
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Here we consider the case of quaternions, K = H. A motivation for this study
was that the cases R and C may behave quite differently, for instance, from the
point of view of the norm unity criterion. Therefore we began to look for a more
general approach. Recall that the ring of quaternions H is obtained from C by
adjoining, besides i, another imaginary unit j (j2 = −1). As was discovered by
Hamilton himself, H is noncommutative. Continuation of this procedure – known
as the Cayley–Dickson process – gives next rise to the ring of octonions O, which
is an 8-dimensional ring over the reals. (In passing to octonions, one loses also the
associativity.) So far we have not been able to extend our results fully to the latter
case.

In this rather preliminary, and somewhat experimental note we present a result
for quaternion forms, which exhibits a rather unexpected similarity between the
noncommutative case of H and the commutative one of R and C (Section 5).

2. DEFINITIONS

In the commutative case (K = R,C) an N -dimensional trilinear form T can be
defined by the formula

T (x, y, z) = ajk`x
jykz`. (1)

Here, x, y, z denote vectors in three copies of KN ; thus, x = (x0, . . . , xN−1),
and similarly for y, z. The coefficients ajk` are here arbitrary elements of K; they
may be viewed as components of a 3-tensor or, as Gel’fand [1] says, elements of a
3-dimensional matrix. Furthermore, we use the Einstein summation convention.

In this case it is irrelevant in which order we take the coefficients and the
variables. This is not so for the noncommutative case of K = H. So we modify (1)
as follows:

T (x, y, z) = xjykajk`z
`. (2)

For a motivation of this choice see Section 2.2, where we associate to T a vector
bilinear form T̃ (cf. [2]). From here on, we take K = H.

The norm of a vector is the square root of the sum of the squares of its
components,

‖x‖2 =
N−1∑

j=0

|xj |2,

similarly with y, z. The (maximum) norm of the form T is

‖T‖ = sup
x,y,z 6=0

|T (x, y, z)|
‖x‖‖y‖‖z‖ . (3)
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2.1. Normalized forms

Our main concern in this paper is to describe the structure of forms of norm
unity. Let us say that a form T is normalized (see [3]) if

a000 = 1; a0k` = aj0` = ajk0 = 0. (4)

Next, let T be any form of norm unity, ‖T‖ = 1. As we are in the finite-
dimensional case, it follows that there exist unit vectors e, f, g in our three copies
of the space KN such that T (e, f, g) = 1. A variational argument (cf. [4]) shows
that

T (x, f, g) = T (e, y, g) = T (e, f, z) = 0 ∀x⊥e, ∀y⊥g, ∀z⊥f.

Making suitable unitary transformations, we can arrange that e, f, g are the standard
first basis vectors in our spaces, e = (1, 0, . . . ), etc. Thus, we have reduced
ourselves to normalized forms.

2.2. The associated vector bilinear form

As in [2], we define a vector bilinear form T̃ , which may be viewed as a
mapping from HN ×HN to the left dual of HN . It is given by the formula

〈x, T̃ (y, z)〉 = T (x, y, z) ∀x ∈ HN , y ∈ HN , z ∈ HN .

Its components T̃j(y, z) are given by

T̃j(y, z) = ykajk`z
` ∀j = 0, 1, . . . N − 1.

From this we obtain the following expression for the norm of T :

‖T‖ = ‖T̃‖ = sup
y,z

(
∑N−1

j=0 |ykajk`z
`|2)1/2

‖y‖‖z‖ .

In this way we have eliminated one variable, x.
We observe now that if ‖T‖ ≤ 1, then we have the inequality

N−1∑

j=0

|ykajk`z
`|2 ≤ ‖y‖2‖z‖2. (5)

152



2.3. Inhomogeneous coordinates

First, let us rewrite (5) in a more explicit form:

N−1∑

j=0

∣∣∣∣∣∣

N−1∑

k,`=0

ykajk`z
`

∣∣∣∣∣∣

2

≤
(

N−1∑

k=0

|yk|2
)
·
(

N−1∑

`=0

|z`|2
)

. (6)

Next, we define inhomogeneous coordinates by putting yk = y0ηk, z` = ζ`z0.
Note that, formally, η0 = ζ0 = 1. Inserting this into (6), we obtain

N−1∑

j=0

∣∣∣∣∣∣

N−1∑

k,`=0

ηkajk`ζ
`

∣∣∣∣∣∣

2

≤
(

1 +
N−1∑

k=1

|ηk|2
)
·
(

1 +
N−1∑

`=1

|ζ`|2
)

. (7)

Our concern will be thus to decide if, given the quanties ajk`, the inequality (7) is
true or not. Here we can assume that the form is normalized, so that (4) is fulfilled.
However, we will treat this question only in the binary case.

3. THE BINARY CASE. LITERAL NOTATION

It will be convenient to replace the tensor components ajk` by the numbers
d, a1, a2, a3, b1, b2, b3, c. This transition is given by the following table (cf. [5],
p. 512):

a000 d
a001 a3

a010 a2

a011 b1

a100 a1

a101 b2

a110 b3

a111 c

For the normalized case, d = 1, a1 = a2 = a3 = 0, we obtain from (2)

T = x0y0z0 + x0y1b1z
1 + x1y0b2z

1 + x1y1b3z
0 + x1y1cz1

= x0(y0z0 + y1b1z
1) + x1(y0b2z

1 + y1b3z
0 + y1cz1). (8)

Now we can turn to inhomogeneous coordinates. However, we make first a further
notational change: instead of the Greek letters η, ζ we use Roman y, z. Thus, we
end up with the following inequality:

|1 + yb1z|2 + |b2z + y(b3 + cz)|2 ≤ (1 + |y|2)(1 + |z|2). (9)

This is the inequality we are going to solve. Having eliminated x, we want to
eliminate also y, z.
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4. ELIMINATIONS

The eliminations can be carried out tracing the steps of [4] or, even better,
of [6] (see also the web page http://www.maths.lth.se/matematiklu/personal/jaak/
engJP.html). This leads to the following inequality:

M = M(z, t) =: At2 − 2ReB(z)t + C|z|2 − 2ReD(z) ≥ 0, (10)

where t is a real variable, z is a quaternion, with A,B, C,D given by

A = (1− | b1|2)(1− | b2|2)− |c|2,
B(z) = b1zb2c̄ + czb̄3, (11)

C = 1− | b1|2 − | b2|2 − | b3|2,
D(z) = b1zb2zb̄3 .

Here the function M is regarded as a quadratic form (homogeneous!) in the
space H × R, which we can identify with R5. Thus we have to decide when this
form is positive semidefinite. This is in principle easy, by just applying the classical
“Determinant Criterion” [7]. Recall that it gives as a necessary and sufficient
condition for a real n-dimensional quadratic form A with matrix (aik)0≤i,k≤n−1

to be positive semidefinite that all its principal minors are non-negative. The latter
are labelled by sequences of integers 0 ≤ i1 < i2 < . . . ip ≤ n− 1, p = 1, . . . , n.
The corresponding principal minor will be written A(i1i2 . . . ip). (Following our
above convention, we count the indices i, k from 0 to n − 1, not from 1 to n as
Gantmacher [7] did.)

In the case of the form A = M we have n = 5 and denote the matrix
(mik)0≤i,k≤4. The principal minors – 31 (= 25 − 1) in number – are written as

p = 1 : M(0), M(1),M(2),M(3),M(4) = A;

p = 2 : M(01),M(02),M(03),M(04),M(12),
M(13),M(14),M(23),M(24),M(34);

p = 3 : M(012),M(013),M(014),M(023), M(024),
M(034),M(123),M(124),M(134), M(223);

p = 4 : M(0123),M(0124), M(0134),M(0234),M(1234);

p = 5 : M(01234).

Here the last one, M(01234), the discriminant of the matrix M, in other words, the
determinant ∆ = det(mik)4i,k=0, is the most interesting.

We can now state our result as follows.
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Main Theorem 1. Let T be a normalized binary quaternion trilinear form as in
(8). Then its norm is less than or equal to unity, ‖T‖ ≤ 1, if and only if the
quadratic form M in (10) has all its principal minors M non-negative.

Unfortunately, it is not easy to compute these principal minors in terms of
the quaternions b1, b2, b3, c. Instead we use their real components bh

1 , bh
2 , bh

3 , ch

(h = 0, 1, 2, 3). We have found by hand the matrix components mik. With the
help of the program Mathematica it is easy (sic!) to compute all 31 determinants
needed. Writing them in TEX and/or printing the result on paper is less simple and
quite pointless.

There arises also the question of expressing the result in terms of the
quaternions themselves, rather than their components. This is easy, in principle, as
there are simple formulae for expressing the components of a quaternion in terms
of the quaternion itself, generalizing the formulae x = (z + z̄)/2; y = (z − z̄)/2
for the real part of a complex number z = x + iy in the case of C. But only in
principle, because the noncommutativity makes it impossible to use the expression
Expand in Mathematica.

Instead we apply now a somewhat different approach, which actually works as
well as it does in the commutative case.

5. A REAL VARIABLE APPROACH

Our main idea in this section is to keep b1, b2, b3 fixed and let c vary.

5.1. The case R

We recall ([4,8]) that in this case a normalized binary quaternion trilinear form
has norm unity if and only if

b2
1 + b2

2 + b2
3 + 2b1b2b3 + c2 ≤ 1. (12)

Thus the variable c ranges over a certain segment on the line R, symmetric with
respect to the origin, entirely determined by b1, b2, b3. In addition, three auxiliary
inequalities must be fulfilled:

|b1|, |b2|, |b3| ≤ 1. (13)

5.2. The case C

This time we have a condition quite analogous to (12) (see [4], and – in the
language of vector bilinear forms – [2]). (Note that, curiously enough, there is no
immediate analogue of (13).) We do not state this condition here, but present its
(real) geometric interpretation [5]: c ranges over a certain “elliptic disc”1 in the
Gaussian plane C or R2. Its axes are entirely determined by the two quantities
S = |b1|2 + |b2|2 + |b3|2 and P = |b1b2b3|.

1 The interior of an ellipse.
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5.3. The case H. Some conjectures

The above suggests that in the case of quaternions the point c must range over
the interior of an ellipsoid in the Hamiltonian plane H or R4, as before symmetric
with respect to the origin and entirely determined by b1, b2, b3. This would be
a form of the sought norm-one criterion, and constitutes our main object in this
research.

An obvious guess is that it is of the form ∆ ≥ 0, with the discriminant ∆ as
above (see Section 4). (In addition, we must have – corresponding to the conditions
(13) in the real case Subsection 5.1 – auxiliary inequalities given by the remaining
30 principal minors.)

Experiments using Mathematica point to that, indeed, ∆ is an (inhomogeneous)
quadratic form in the components of c. When expanded in Mathematica, it gives
some 200 000 terms.

However, it is not hard to give a formal proof. From the formulae for the matrix
elements mik referred to at the end of Section 4 one sees that

Lemma 1. The quantities ch (h = 0, 1, 2, 3) appear to the first degree in m04, m14,
m24, m34 and, by reflexion in the diagonal, also in m40, m41, m42, m43. Moreover,
by (10) and (11) m44 = A, so there we have them to degree 2. All other elements
mik contain only b1, b2, b3.

Lemma 2. The discriminant ∆ is an inhomogeneous quadratic form in c.

Proof. We use the rules about expanding determinants taught in any decent course
in linear algebra.
1. Indeed, let us take a look at the element m04. The corresponding comatrix is

3 × 3 and its lowest row contains only matrix elements which are of the first
degree in c. All the other elements contain only components of b1, b2, b3. As a
result we get quadratic expressions.

2. The remaing elements on the same column (with k = 4), except for the last one
m44, are treated in the same way.

3. On the other hand, m44 = A (see (10) and (11)) and so is of the second degree.
But the comatrix in question is now made up only by components of b1, b2, b3.
So, as a result we have again a quadratic expression.

Remark 1. It follows from Lemma 2 that ∆ can be written in the form

∆ = g +
∑

h=0,1,2,3

ehch +
∑

h,k=0,1,2,3

ehkc
hck,

where g is the constant term, and ehk is the coefficient of chck in ∆ with a similar
expression for eh.

Using Mathematica it was found that g consists of 10 682 terms. Incidentally,
this shows that ∆ is not symmetric, contradicting to what we said above.
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We examined more closely the coefficients eh and ehk. Below the results are
given in table form. The second column stands for the number of terms, the third
for the number of factors in the factorization of the coefficient under view:

e0 56 568 4
e1 56 568 4
e2 56 568 4
e3 56 568 4

e00 25 300 3
e11 25 300 2
e22 25 300 2
e33 25 300 2
e01 18 856 4
e02 18 856 4
e03 18 856 4
e12 18 856 4
e13 18 856 4
e23 18 856 4

Here the “periodic” recurrence of some numbers is quite curious, and ought to be
given a rational explanation.

We also verified that, for instance, e23 admits four factors; besides a trivial
factor −4, also three more of length 18, 22, and 96. (The presence of −4 is an
unwanted effect of Mathematica!)

5.4. Main result

We may summarize the result obtained in Lemmas 1 and 2 as follows.

Main Theorem 2. Let T be a binary quaternion trilinear form as in (8) of norm
unity. Let b1, b2, b3 be fixed. Then c moves on one side of the quadric Q in H
defined by the equation ∆ = 0.

5.5. A remaining question

The above leads us to the following conjecture: the only thing missing is
that Q is indeed the interior of an ellipsoid (possibly a degenerate one). For
this we must consider the homogeneous part of ∆ and prove that the matrix
(ehk)h,k=0,1,2,3 is positive semidefinite. To this end we must again apply the
Determinant Criterion [7], now in the 4-dimensional case, a difficult problem which
we have not yet attacked.

The full details of the present study will appear in a forthcoming paper based
on [3], hopefully with the above conjecture also settled.
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8. Gra. ślewicz, R. and John, K. Extreme elements of the unit ball of bilinear operators on `22.
Arch. Math. (Basel), 1988, 50, 264–269.

Ühiknormiga kvaternaarsetest binaarsetest
kolmlineaarsetest vormidest

Bo Bernhardsson, Fernando Cobos, Thomas Kühn, Daniel Mondoc
ja Jaak Peetre

Siiani on enamik trilineaarsete vormidega töödest olnud suunatud madala
dimensiooniga vormidele, eriti kahedimensionaalsele ehk binaarsele juhule. Ska-
laaride ring K on siin kas reaalsed numbrid R või kompleksnumbrid C. Põhi-
eesmärgiks on mõlemas situatsioonis otsustada, millal normaliseeritud vormi
norm on ühik. On vaadeldud kvaternioonide juhust K = H. Artiklis esi-
tatu on üsna ajutine ja osalt eksperimentaalne. Puudub täiuslik lõpptulemus,
kuid ajutiseks tulemuseks on see, et vorm on ühiknormiga parajasti siis, kui
teatud 5-dimensionaalse ruutvormi diskriminandi kõik peamiinorid osutuvad
mittenegatiivseteks. On avastatud ootamatu seos mittekommutatiivse juhu H ja
kommutatiivse juhu vahel. Viimasel juhul on skalaaride ring kas R või C.
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