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Abstract. The notion “two-based clone” on a pair of sets (universes) is defined. Some
properties of two-based duplicate-clones are proved. The lattice of all double-dually closed
duplicate-clones on a pair of 2-element sets is described.
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1. INTRODUCTION

The notion “clone onA” was introduced for classifying algebras on a fixed
universeA. Two algebras onA are term equivalent if and only if the clones
generated by all fundamental operations of them coincide. A review of the results
on clones is given by Sichler and Trnková ([1]). Under inclusion the set of all
clones onA forms the latticeLA. The structure of the latticeLA has been studied
in general (see, e.g., [2]) and for somek = |A|. The latticeLA is completely known
for Boolean functions, i.e. for|A| = 2 (see [3]). As for |A| > 3 the latticeLA is
uncountable, it seems hopeless to find a satisfactory description ofLA in general.
Special parts ofLA (with |A| = k > 2) are described, for example, by Burle [4]
and Hoa [5].

Let SA be the full symmetric group onA. The notion “SA-clone” was
introduced in [6]. From [6,7] we know that the lattice of allSA-clones is finite
if |A| = 2, 3. In the present paper we define the notion “two-based clone”. This
notion is justified by the fact that many algebraic structures (acts, modules, linear
spaces, etc.) are two-based (called also “two-sorted”). The set of all two-based
clones on a fixed pairA forms (with respect to the set inclusion) the latticeLA. As
expected, the latticeLA has a very complicated structure.
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In Section 3 we define the notions “two-based duplicate-clone”, “1-component”
and “2-component” of a two-based clone. We prove some properties of two-based
duplicate-clones and describe the1-component and2-component of a two-based
duplicate-clone.

In Section 4 we apply these results to the2-Boolean clones, i.e. to two-based
clones on a pair of 2-element sets. The first results in this direction were obtained
by Kudrjavcev and Burosch [8] who studied generating sets of closed classes of the
two-based full iterative algebra on a pair of 2-element sets. Here, for any double-
dually closed2-Boolean clone the subset of all unary functions is described (see
Proposition 3.3).

The main result of the present paper is a full description of the sublattice
consisting of all duplicate-dd′-clones inL2×2 (see Theorem 4.1).

2. NOTATIONS AND PRELIMINARIES

Let A := (A1, A2) be a pair of (finite) disjoint sets containing at least two
elements each. The setsA1, A2 will be called the firstand the second universe,
respectively. Let us denote

OA :=
{
f : Ai1 × . . .×Ain → Ain+1 | i1, . . . , in+1 ∈ {1, 2}, n ∈ N+

}
and letτ = (i1, . . . , in; in+1) be called thesignatureof the mappingf. We denote
by JA the set of all projections

ei1···in
k : Ai1 × . . .×Ain → Aik : (x1, . . . , xn) 7→ xk

with k ∈ {1, . . . , n}, i1, . . . , in ∈ {1, 2}. Let all five Mal′tsev’s operations (see
[9]) be acting onOA. Then superposition, composition, and linearized composition
of mappings are defined onOA too.

Definition 2.1. If a subsetF ⊆ OA containsJA and is closed under composition,
then we writeF 6 OA and callF a two-based clone onA. We denote by〈F 〉OA

(or simply by〈F 〉) the two-based clone generated byF ⊆ OA.

For any subsetF ⊆ OA and any signatureτ ∈ {1, 2}n+1 we introduce the set

F τ = {f τ ∈ F | f is of signatureτ} .

Functions with values inA1 (or in A2) are called1-functions (or 2-functions).
We denote byF1 and F2 the subsets of all1-functions and2-functions of a set
F ⊆ OA. LetOA1 andOA2 be the sets of all functions on the first universeA1 and
on the second universeA2, respectively. Then

FA1 := F
⋂

OA1 , FA2 := F
⋂

OA2

will be called the1-componentand the2-componentof F ⊆ OA, respectively.
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Example 2.1.Let both universes be2-element sets:

A1 = E2 := {0, 1}, A2 = E′
2 := {0′, 1′}.

The set of all functions on this pair will be denoted byO2×2. A two-based clone
F 6 O2×2 will be called a2-Boolean clone. The 1-component (2-component)
of a 2-Boolean clone is the clone of Boolean functions over{0, 1} (over{0′, 1′},
respectively).

Let ¬ be the negation onE2, i.e. ¬(0) = 1, ¬(1) = 0, and¬′ be the negation
onE′

2. Besides the identity functions and negations there are only four other unary
nonconstant functions

d1(0′) = 0, d1(1′) = 1; d2(0) = 0′, d2(1) = 1′

and their negations¬d1, ¬′d2. An nary function (n > 1) is calledessentially unary
if it depends only on one of the variables.

Kudrjavcev and Burosch [8] investigated closed under composition classes
of functions over a pair of 2-element sets. They found the subset of all unary
nonconstant functions for all closed classes. Let us remark that all closed classes
containingJA, and only such classes, are2-Boolean clones. The results about
2-Boolean clones contained in [8] can be systematized and represented as in the
next Proposition 2.1.

Proposition 2.1. There are19 2-Boolean clones generated by a subset of unary
nonconstant functions inO2×2:
JA = 〈G4〉 (projections),
〈¬〉 = 〈G2〉 (1-negations of projections),
〈¬′〉 = 〈G3〉 (2-negations of projections),
〈¬,¬′〉 = 〈G1〉 (negations of projections),
〈d1〉 = 〈F14〉 (1-duplicates of 2-projections),
〈d2〉 = 〈F12〉 (2-duplicates of 1-projections),
〈¬d1〉 = 〈F15〉 (neg-1-duplicates of 2-projections),
〈¬′d2〉 = 〈F13〉 (neg-2-duplicates of 1-projections),
〈d1,¬d1〉 = 〈F11〉 (1-duplicates and neg-1-duplicates of 2-projections),
〈d2,¬′d2〉 = 〈F10〉 (2-duplicates and neg-2-duplicates of 1-projections),
〈d1, d2〉 = 〈F8〉 (duplicates of projections),
〈¬d1,¬′d2〉 = 〈F9〉 (neg-duplicates of projections),
〈¬, d1, (¬d1)〉 = 〈F5〉 (all (essentially) unary 1-functions),
〈¬, d2, (¬′d2)〉 = 〈F4〉 (negations, 2-duplicates and neg-2-duplicates of

1-projections),
〈¬′, d2, (¬′d2)〉 = 〈F7〉 (all (essentially) unary 2-functions),
〈¬′, d1, (¬d1)〉 = 〈F6〉 (negations, 1-duplicates and neg-1-duplicates of

2-projections),
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〈¬,¬′, d1, (¬d1)〉 = 〈F3〉 (negations; all (essentially) unary 1-functions),
〈¬,¬′, d2, (¬′d2)〉 = 〈F2〉 (negations; all (essentially) unary 2-functions),
〈¬,¬′, d1, (¬d1), d2, (¬′d2)〉 = 〈F1〉 (all (essentially) unary functions).

Remark 2.1. Here the functions in round brackets may be omitted (for example,
the parts(¬d1) and(¬d2) in the last line).

3. DUPLICATE-CLONES AND dd′-CLONES

We define the notion of duplication over a pairA = (A1, A2) as follows.

Definition 3.1. Let both universes have the same power, i.e. |A1| = |A2| and
assume that a two-based cloneF contains bijectionsd1 : A2 → A1, d2 : A1 → A2

which are inverses of each other. Then we say thatF is a two-based duplicate-clone
(for short, d1d2-clone). The functionsd1 andd2 will be called1-duplicationand
2-duplication,respectively.

Proposition 3.1.The1-componentFA1 and the2-componentFA2 of ad1d2-clone
F 6 OA are clones onA1 andA2, respectively, and they are isomorphic.

Proof. The 1-componentFA1 and the2-componentFA2 are both closed under
composition. So they are clones onA1 and onA2, respectively. An isomorphism
from FA1 to FA2 can be given by the correspondence

f 7→ fd2 , where fd2(y1, . . . , yn) = d2(f(d1(y1), . . . , d1(yn))). (1)

Proposition 3.2.For any two signatures

τ1 = (i1, . . . , in; in+1), τ2 = (j1, . . . , jn; jn+1)

of the same length, and for anyd1d2-cloneF we have

|F τ1 | = |F τ2 |,

where both sets determine each other uniquely.

Proof. Let F be ad1d2-clone and let

τ1 = (i1, . . . , in; in+1), τ2 = (j1, . . . , jn; jn+1)

be signatures of the same length. Let

u =
{

idAl if ik+1 = jk+1 = l,
djk+1

if ik+1 6= jk+1;
v =

{
idAl if ik+1 = jk+1 = l,
dik+1

if ik+1 6= jk+1
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and for allk = 1, . . . , n let us have the mappings

uk =
{

idAl if ik = jk = l,
dik if ik 6= jk;

vk =
{

idAl if ik = jk = l,
djk

if ik 6= jk.

For anyf ∈ F τ1 and anyg ∈ F τ2 we define functionsf ′ ∈ F τ2 , g′ ∈ F τ1 as
follows:

f ′(y1, . . . , yn) = u(f(u1(y1), . . . , un(yn))), (2)

g′(x1, . . . , xn) = v(g(v1(x1), . . . , vn(xn))) (3)

for all y1 ∈ Aj1 , . . . , yn ∈ Ajn , x1 ∈ Ai1 , . . . , xn ∈ Ain .

The correspondencesf 7→ f ′ and g 7→ g′, defined by formulas (2) and (3),
respectively, are bijections between the setsF τ1 andF τ2 . �

Let F be again a2-Boolean clone and lets denote the pair of negations, i.e.
s := (¬,¬′). For the functions

f : Em
2 × E′

2
k → E2 and g : Em

2 × E′
2
k → E′

2

thes-dual functions are defined by the formulas

f s(x1, . . . , xn, y1, . . . , ym) := ¬f(¬x1, . . . ,¬xn,¬′y1, . . . ,¬′ym)

and

gs(x1, . . . , xn, y1, . . . , ym) := ¬′g(¬x1, . . . ,¬xn,¬′y1, . . . ,¬′ym).

For functionsf andg with a different order of variables the functionsf s andgs are
defined similarly. For a setF ⊆ O2×2, let F s := {f s | f ∈ F}.

Definition 3.2. A two-based cloneF 6 O2×2 is called adouble-dually closed
2-Boolean clone (in short, dd′-clone)if F s = F .

Proposition 3.3. The subset of all unary nonconstant functions of add′-clone has
one of the19 forms (Q1, . . . , Q4, F1, . . . , F15) listed in Proposition2.1. The
subset of all unary nonconstant functions of a duplicate-dd′-clone isF1, F8, or F9.

Proof. Any dd′-clone contains a minimal two-based clone listed in Proposition 2.1,
because any unary nonconstant function iss-dual to itself. It is easy to verify that
just the subsetF8 is closed under both duplications (d1 andd2), the subsetF9 is
closed under negations of both duplications (¬d1 and¬′d2), andF1 is closed under
all four of these functions.�
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4. LATTICE OF DUPLICATE- dd′-CLONES

Now we will focus on the most interesting part of the latticeL2×2 consisting
of all duplicate-dd′-clonesF . In such add′-cloneF the setF1 depends onF2 and
vice versa. Gorlov and Pöschel described in [6] the latticeL2,S2 of all dually closed
clones (i.e.S2-clones) of Boolean functions (on one universe). This lattice consists
of 14 elements and has the structure pictured in Fig. 1.

The list of clones shown in Fig. 1 and sets generating them (in notations of [10]
and [6]) is as follows:
O1 = JA (projections),
O4 = 〈¬〉 (projections and their negations),
O8 = 〈c0, c1〉 (constants),
O9 = 〈c0, c1,¬〉 (essentially unary functions),
L1 = 〈c1,+〉 (all linear functions),
L4 = 〈g〉 (linear idempotent functions (where

g(x, y, z) := x + y + z)),
L3 = 〈g,¬〉 (linear self-dual functions),
D2 = 〈h〉 (self-dual monotone functions (where

h(x, y, z) := (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x))),
D1 = 〈g, h〉 (self-dual idempotent functions),
D3 = 〈h,¬〉 (self-dual functions),
A4 = 〈∧,∨〉 (monotone idempotent functions),
A1 = 〈c0, c1,∧,∨〉 (monotone functions),
C4 = 〈g,∧,∨〉 (idempotent functions),
C1 = OA (all functions).

Theorem 4.1. There are exactly22 duplicate-dd′-clones inL2×2. Together with
the minimal2-Boolean cloneO1 they form a lattice pictured in Fig.2.

Proof. Let F be a duplicate-dd′-clone. There are three possibilities for the
duplication functions: 1)d1 andd2, 2) ¬d1 and¬′d2, 3) d1, d2, ¬d1, and¬′d2.
In case of 1, 2, or 3 we will say thatF has type 1, 2, or 3, respectively. By
Proposition 3.1 the1-componentFE2 and the2-componentFE′

2
of the duplicate-

dd′-cloneF are clones of Boolean functions onE2 andE′
2, respectively, and these

clones are isomorphic. It follows immediately from the definitions ofdd′-clones
and S2-clones thatFE2 and FE′

2
are S2-clones. The set of1-componentsFE2

(2-componentsFE′
2
) of all duplicate-dd′-clonesF of type 1 (or 2 or 3) under

inclusion forms a lattice which is isomorphic to a sublattice of the latticeL2,S2

(given in Fig. 1).
An immediate calculation shows that any of these14 clones onE2 is the

1-component for some duplicate-dd′-clone of type1. Namely, we get from a fixed
cloneC onE2 a duplicate-dd′-cloneF of type1 if we construct all subsetsF τ2 for
all signaturesτ2 ∈ {1, 2}n+1 by the formulas (2), (3) with the conditionFA1 = C.
The duplicate-dd′-clone of type1, just constructed, will be denoted byCd. It
follows from Proposition 3.2 thatCd is uniquely determined byC. It is easy to
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Fig. 1. The latticeL2,S2 of S2-clones.

Fig. 2. The lattice of duplicate-dd′-clones.
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verify thatCd is add′-clone. Hence the lattice of all duplicate-dd′-clones of type 1
is isomorphic to the latticeL2,S2 .

Similarly, in order to describe all duplicate-dd′-clones of type 2, we have to use
the functions¬d1 and¬′d2 instead of the functionsd1 andd2, respectively, in the
formulas (2), (3). ByCn we denote the duplicate-dd′-clone of type2, constructed
from a fixed cloneC on E2 in the same way asCd (but using¬d1 and¬′d2). We
see that the lattice of all duplicate-dd′-clones of type2 is also isomorphic to the
latticeL2,S2 .

Now we consider duplicate-dd′-clonesF of type3. First we notice that the set
of unary nonconstant functions ofF consists of all such functions. In particular it
contains the negation¬. Thus the1-component of a duplicate-dd′-clone of type 3
can be one of the following:O4, O9, L1, L3, D3, andC1. If we take all duplicates
(or all neg-duplicates) of all functions of these clones, then we get a uniquely
determined duplicate-dd′-clone of type 3. The duplicate-dd′-clone of type 3, just
constructed, we denote also byO4, O9, L1, L3, D3, andC1, respectively. Hence
they form the lattice of all duplicate-dd′-clones of type3, which is shown in Fig. 2
by bold lines.

By an easy checking we see that the equationsO4d = O4n = O4, O9d =
O9n = O9, L1d = L1n = L1, L3d = L3n = L3, D3d = D3n = D3, and
C1d = C1n = C1 hold. Altogether we got 22 different duplicate-dd′-clones.
We have to addO1 to the set of all duplicate-dd′-clones to get a lattice because
O1d ∩O1n = O1. But the minimal 2-Boolean cloneO1 = JA is not a duplicate-
clone. Hence we got the lattice graphed in Fig. 2. This completes our proof.�

Two-based clones that are not duplicate-clones will be considered in a
forthcoming paper.
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KAHEALUSELISED DUBLIKAATKLOONID

Ellen REDI

On defineeritud kahealuselise klooni mõiste ühisosata hulkade paaril, tehtud
kindlaks kahealuseliste dublikaatkloonide omadusi ja esitatud topeltduaalsete
dublikaatkloonide võre täielik kirjeldus.
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