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Abstract. Unlike the classical method, orthogonal transformations are used for computing
more precise simplex tables. These transformations are stored as products. With these
transformations the basic matrix is turned to the triangular form, which is used instead of the
reciprocal matrix. The values of initial and dual variables are found from the triangular system.
The performed algorithm MULT is appropriate for solving ill-conditioned problems and it is
more labour-consuming than the classical revised simplex method. Examples of solving the
ill-conditioned problems are given.

Key words: linear programming, least squares method, ill-conditioned problems.

1. USE OF THE REFLECTIONS OF HOUSEHOLDER IN THE
REVISED SIMPLEX METHOD

The simplex method is based on the Gauss elimination. If instead of this
elimination orthogonal transformations are used, then (analogously to solving a
linear system of equations) it is possible to solve problems precisely (see the
examples in Sec. 3). Highly developed techniques of the least squares method (see
[1]) are applied to solving problems of small size linear programming also in [2].
In the latter paper the algorithm VRMSIM is introduced to transform, analogously
to the standard simplex method, all elements of the matrixA at every step.

Another approach is presented in [3], where a system of orthogonal vectors is
formed for solving on computers. The classical revised simplex method is based on
computing the inverse matrix. In the present paper, instead of the inverse matrix,
the basic matrix in triangular form is used.
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Consider the problem of linear programming

z = cx → max,

Ax = b, x ≥ 0,
(1)

whereA is anm× n matrix,b is anm-vector,c andx aren-vectors.
Assume that the variablesx(1), x(2), ..., x(m) form an initial basis and denote

the basic matrix byB, B = (a(1), a(2), ..., a(m)). At every step of the revised
simplex method the following two systems are to be solved:

Bx = b, (2)

uB = c̄, (3)

where c̄ is the part of the vectorc corresponding to basic variables,u =
(u(1), u(2), ..., u(m)) (see [4]). Let Q be an orthogonalm ×m matrix such that
QB = R is an upper triangular matrix. It is possible to find the basic variables
from the system

Rx = Qb, (4)

whereR = QB. The dual variables are sought in the formu = tQ, wheret is an
m-vector. The vectort can be found from the system

tR = c̄. (5)

The matrixR has already been found by solving the system (4). After that compute
u = tQ or u = (Q−1tT )T .

It is important to stress that there is no need to compute the matrixQ; it will
be presented as a product ofm − 1 orthogonal transformations (see [1], Ch. 10,
11). The necessary information is stored under the main diagonal of the triangular
matrix R (instead of zeros) and in them-vectorW . Finding the inverse matrix
Q−1 is not necessary either. In order to find the dual variablesu = (Q−1tT )T ,
one has to fulfill thesem− 1 orthogonal transformations to the vectortT in reverse
order. The matrixB is transformed to the triangular form by using the reflections of
Householder. To nullify the elements of the first column under the main diagonal,
we need to find the hyperplane of the reflection, so that the second, third,...,mth
component of the reflection would be equal to zero. The first component of normal
Y of this kind of hyperplane is as follows:

Y (1) = b(1, 1) + σ
√

b2(1, 1) + ... + b2(m, 1),

whereσ = +1 if b(1, 1) ≥ 0, and in the opposite caseσ = −1. Remember
the first elements of the normals in them-vectorW : W (1) = Y (1). We should
prove that the other components of these normals areY (i) = b(i, 1), i = 2, ...,m.
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It means that as a result of the first reflection thesem−1 elements do not change in
the computer’s memory, only the meaning is changed (see Example 1 below). The
rest of the coefficients of the system (2) are transformed according to the formulas

β = − ‖ Y ‖2 /2, t(j) = β−1(Y, b(j)), b(j) = b(j) + t(j)Y, (6)

whereb(j) denotes a column of the matrixB or the right side of this system.
Analogously, the next reflection of Householder, performed with them − 1
dimensional columns, nullifies the elements of the second column under the main
diagonal, instead of zeros the normal of the second reflection is left, etc. After the
(m− 1)th reflection (the product of which is denoted byQ in the formula (4)), the
system (2) has the upper triangular matrixR. The values of the basic variables are
found by solving this system. The vectort can be found from the system (5) with
the matrixR . To compute the vectoru of dual variables, thesem − 1 reflections
of Householder are executed in reverse order.

Let us consider now the system
m∑

j=1

b(j)λ(j) = a(k), (7)

where the columna(k) is entered into the basis. As the triangular matrixR = QB
is above the matrixB, find first the vectorQa(k). For this purpose performm− 1
reflections of Householder for the columna(k) by using the under part of the main
diagonal of the matrixR. The vectorλ is found from the triangular system

Rλ = Qa(k), (8)

whereR = QB. The variablex(l) leaving the basis is determined as usual based
on the vectorsλ andx. In the triangular matrixR corresponding to the new basis
the columns1, 2, ..., l − 1 are not changed. The rest of the columns are replaced
with untransformed columnsA(l + 1), A(l + 2), ..., A(m) of the matrixA, then
the columnA(k) coming to the basis and finally the right sideb are added. Next
fulfill the first l − 1 reflections, determined by the part under the main diagonal of
the matrixR, to added columns. Finally transform the added part to the triangular
form and leave the normals under the main diagonal. From the triangular system
find a new basic solution, etc.

2. THE DESCRIPTION OF THE ALGORITHM MULT

This algorithm solves the problem of linear programming with the revised
simplex method. Them× n matrixA, them-vectorb, and then-vectorc are used
for storing the coefficients of the systems (2) and (3). In addition, them× (m + 1)
matrix R is used, where under the main diagonal and in them-vector W the
normals of reflections of Householder are stored. The values of the dual variables
and the solution of the system (8) are stored in then-vectoru. Two more vectors,
x andIJ (the index of basic variables), are used.
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2.1. The algorithm MULT( A, b, c, x, u, W, IJ, R, m, n, EP1)

1. Insertm,n,A, B, EP1 (the accuracy of calculations).
2. Insertm indexes of the initial basis to the arrayIJ (them columns of the

matrixA corresponding to the indexes must be linearly independent).
3. Write the columns ofA corresponding to basic variables to the matrixR and

the vectorb to the columnR(m + 1).
4. Assignl = 1.
5. Perform (m − l) transformations of Householder to columns

l, l + 1, ...,m, m + 1 of the matrixR, leave the normals of these transformations
under the main diagonal and in the arrayW .

6. Find the basic variables from the systemRx = Qb, transformed to the
triangular form in the last step.

7. Write to the columnR(m+1) the vector̄c corresponding to basic variables.
8. Solve the system (5), write the solution to the(m + 1)th column of the

matrix R.
9.Find the dual variablesu by performing(m − 1) transformations of House-

holder to the columnR(m + 1); the transformations are determined by the
(m− 1)th, (m− 2)th, ..., 2nd, 1st column of the matrixR.

10. Assignu(i) = R(i,m + 1), i = 1, ...,m.
11. FindRE = max [(u, A(j)) − c(j)] = ((u,A(k)) − c(k)), wherej is the

nonbasic index.
12. If−EP1 < RE, then go to step 23.
13. Enterx(k) into the basis,IJ(m + 1) = k.
14. AssignR(m + 1) = A(k).
15. Perform(m−1) reflections of Householder to the columnR(m+1) (these

reflections are determined by the part under the main diagonal of the matrixR and
the vectorW ).

16. Solve the triangular system (8), write the solution to the vectoru.
17. Foru(j) > 0 find min {x(j)/u(j)} = x(j1)/u(j1).
18. If all u(j) ≤ 0, then the goal function is unbounded. Stop.
19. Eliminate thelth variablex(j1) from the basis,x(j1) = 0.
20. AssignIJ(i) = IJ(i + 1), i = l, l + 1, ...,m.
21. Eliminate thelth column from the matrixR and replace the next columns:

R = (R(1), R(2), ..., R(l − 1), A(l + 1), ..., A(m), A(k), b).
22. Go to step 5.
23. The problem is solved.

2.2. Comments

The triangular systems (4) and (8) with the same matrixR for finding the
vectorsx andλ can be solved simultaneously.
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The algorithm has been worked out for solving the system of linear equations
with sparse matrixes, see [5]. However, we do not know whether it is possible to
guarantee that by changing the order of basic variables of the sparse matrixA the
matrixR will be sparse too. Finding an answer to this question is the task of further
investigations.

Example 1.
Let us solve the following example from [6], Ch. 4 with the algorithm MULT

by taking the accuracyEP1 = 10−15.

z = 4x(1) + 5x(2) + 9x(3) + 11x(4) → max,

x(1) + x(2) + x(3) + x(4) ≤ 15,

7x(1) + 5x(2) + 3x(3) + 2x(4) ≤ 120,

3x(1) + 5x(2) + 10x(3) + 15x(4) ≤ 100,

x ≥ 0.

The initial basis is formed by the additional variablesx(5), x(6), x(7).

Step 0

x(5) x(6) x(7) R(4)
1 0 0 15
0 1 0 120
0 0 1 100

Step 1

x(5) x(6) x(7) R(4) t u W x
–1 0 0 –15 0 0 1 15
0 –1 0 –120 0 0 1 120
0 0 1 100 0 0 0 100

Step 2

x(5) x(6) x(4) A(4) QA(4) λ
–1 0 0 1 –1 1
0 –1 0 2 –2 2
0 0 1 15 15 15

x(5) x(6) x(4) R(4)
–1 0 1 15
0 –1 2 120
0 0 15 100
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x(5) x(6) x(4) R(4) t u W x
–1 0 –1 –15 0 0 1 8.33
0 –1 –2 –120 0 0 1 106.67
0 0 15 100 0.73 0.73 0 6.67

Step 3

x(5) x(6) x(4) A(1) QA(1) λ
–1 0 –1 1 –1 0.8
0 –1 –2 7 –7 6.6
0 0 15 3 3 0.2

x(6) x(4) x(1) R(4)
0 1 1 15
1 2 7 120
0 15 3 100

x(6) x(4) x(1) R(4) t u W x
–1 –2 –7 –120 0 2.25 0 37.92
1 15.03 3.06 100.78 0.73 0 –1 4.58
0 15 –0.80 –8.31 –2.21 0.58 0 10.42

Step 4

x(6) x(4) x(1) A(3) QA(3) λ
–1 –2 –7 1 –3 –1.08
1 15.03 3.06 3 10.04 0.58
0 15 –0.80 10 –0.33 0.42

x(6) x(1) x(3) R(4)
–1 1 1 15
1 7 3 120
0 3 10 100

x(6) x(1) x(3) R(4) t u W x
–1 –7 –3 –120 0 –1.86 0 46.43
1 3.16 9.80 99.61 1.26 0 –1 7.14
0 3 2.21 17.39 –1.53 0.71 0 7.86

The optimal values of basic variables,x(6) = 325/7, x(1) = 50/7, x(3) =
55/7, are determined with an accuracy of10−13 from the system

−x(6)− 7x(1)− 3x(3) = −120,

3.16x(1) + 9.80x(3) = 99.61,

2.21x(3) = 17.39,
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whose coefficients are presented with an accuracy of 0.01. Exact solution of the
problem isx(1) = 50/7, x(2) = x(4) = 0, x(3) = 55/7.

3. THE RESULTS OF CALCULATIONS

All computations were performed on an IBM-4381 using FORTRAN codes.
For all variables double precision was used.

Example 2.
z = x(1) + x(2) + x(3) + x(4) → max,

(1 + t)x(1) + x(2) + x(3) + x(4) ≤ 4 + t,

x(1) + x(3) + x(4) ≤ 3,

x(1) + x(4) ≤ 2,

x ≥ 0.

The maximum value of objective functions isz = 4 + t, t > 0. The
algorithm MULT found in the case oft = 0.0000000001 the solutionx =
(0; 2.000000000100000; 0; 2). It should be noted that on the last step the estimate
of the nonbasic variable is equal to10−10.

Example 3.
Let us consider a linear problem with the Hilbert matrixH(m), see [2]. The

optimal solution was found form = 3 with the accuracyδ = 10−13, for m = 7
with the accuracyδ = 10−9, and form = 11 with the accuracyδ = 10−3. If
m ≥ 12, then in solving the systems (4) and (5) the pivot element is smaller than
computing accuracy and the algorithm does not reach the solution.
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ORTOGONAALSETE TEISENDUSTE KASUTAMINE
MODIFITSEERITUD SIMPLEKSMEETODIS

Evald ÜBI

On kirjeldatud simpleksmeetodi varianti, kus Gaussi elimineerimismeetodi
asemel kasutatakse ortogonaalseid teisendusi. Viimased on küll töömahukamad,
kuid võimaldavad ülesannet täpsemalt lahendada.
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