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Abstract. Parallel submanifolds in pseudo-Euclidean spaces are characterized locally by the

systemVh = 0. Submanifolds satisfying the integrability conditiddo h = 0 of this

system are called semiparallel; geometrically they are 2nd-order envelopes of the parallel
submanifolds. The existence and geometry of such two-dimensional Riemannian submanifolds
(surfaces) are investigated and their complete classification is given. Moreover, it is shown that

in £ with s > 0 do exist not totally geodesic minimal semiparallel space-like surfaces.

Key words: parallel surfaces, semiparallel surfaces, space-like surfaces, minimal surfaces.

1. INTRODUCTION

Let N7 (c) be a space form of constant curvatardf s = 0 (or s = n), itis
Riemannian and i < s < n, it is pseudo-Riemannia]} A submanifoldA/™
in N(c) is calledsemiparallel(or semisymmetricextrinsically) if R(X,Y)h = 0
(this is the integrability condition of the systeRih = 0 which characterizes a
parallel (or locally symmetric, extrinsically) submanifold). Hetes the curvature
operator of the van der Waerden—Bortolotti connecion(V = V @ V+) andh
is the second fundamental form.

Parallel submanifolds in the case= 0, ¢ = 0 are classified by Ferus][ His
results have been extended to the case0, ¢ # 0in [?] and [!], and to the case
of pseudo-Riemannian parallel submanifoldsNfi(c), s > 0, by Blomstrom }]
and Naitoh {]. Some special classes of parallel submanifold&fhand £ are
described by Magid"[.

Semiparallel submanifold3/™ in N7'(c) by s = 0 have been classified and
described in the following cases:

16



surfacegm = 2) if ¢ = 0 by Deprez{];

surfacegm = 2) if ¢ > 0 by Mercuri ['] (see also {°]);

three-dimensional submanifolds, two-codimensional submanifolds(i.e=
n — 2), and hypersurfacgsn = n — 1) if ¢ = 0in [!!], ['?], and [\%], respectively;

submanifolds)\/ ™ with flat normal connectioV " if ¢ = 0 in [**]and if¢ > 0
in [*°].

Note that semiparallel time-like surfaces in a Lorentzian spacetime form are
classified in [%]. A survey on parallel submanifolds and their generalizations is
givenin ['"].

The present paper deals with the classification and description of the
semiparallel surfaces which are space-like (i.e. have positive definite inner metric)
in pseudo-Euclidean spacé®’. In the first part of the paper all parallel surfaces
are determined, in the second part their 2nd-order envelopes are found.

Here the result by Lumiste!q] that every semiparallel submanifold is a
2nd-order envelope of parallel submanifolds can be used. The main result of the
present paper is as follows.

Theorem. Let M? be a semiparallel space-like surface Ef'. There exists an
open and dense patf of M? such that the connected componentg/adre of the
following types

(i) open parts of totally umbilicalM/? (in particular, of totally geodesidl/?)
in E7;

(i) surfaces with fla¥;

(iii) isotropic surfaces with nonflaZ - satisfying|| H H2 = 3K, whereK is
the Gaussian curvature andd is the mean curvature vector.

This Theorem has some analogy with the classification of the semiparallel
surfaces in Euclidean space (s&p.[

Geometric description of these semiparallel space-like surfatem E7 will
be given first for the particular case of parallel space-like surfaces, bearing in
mind that every semiparallel surface is a 2nd-order envelope of the parallel ones
(according to the result of{]). Here every semiparallél/? of type (i) is parallel
itself. The semiparallelM? of type (iii) is a 2nd-order envelope of the Veronese
surfaces studied in'{]. Therefore only the semiparalldl/? of type (ii) are to be
investigated more thoroughly.

The results for parallel space-likef? are formulated in Proposition 1, where
more detailed classification and description are given. Mostly Alifslies in
a semipseudo-Euclidean subspd&[éjd of E7, which has an orthogonal frame
consisting ofl vectors of imaginary lengthi vectors of zero length, and— [ — d
vectors of real length.

The problem of whether there exist semiparallel spacedlikein E7, which
are not parallel ones, is solved affirmatively in Proposition 2. Also the arbitrariness
of their existence is established.

It is known that in Euclidean spacg™ the semiparallel minimal surfaces
M? are trivial: planes or their open parts (s€é7]). The existence of minimal
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semiparallel time-like surfaces iA? different from planes is shown intq. In
Proposition 3 it will be established that nontrivial minimal semiparallel space-like
surfaces do exist ity with s > 0.

2. APPARATUS

Let {z,e;} (I = 1,2,...n) be the moving frame adapted to a space-
like submanifoldM? in E7, i.e. x € M?, e; € T,M?, en € T-M?, 4,5 =1,2;
a, 3 = 3,...,n. Then, denoting as usu@l;, e;) = g7, one obtaingy;, = 0 and
gij = 6;5 for orthonormak;, ez; moreover, notatiofe,, e,) = €, can be used. In
the well-known formulaele; = ejw{, dw! = w’ AW, dwl = W AWl there
hold

Wi =ws =0, wi=—wl, gaﬂwiﬁ +wh =0, (2.1)

9op = GyBWa + Gory W) (2:2)

Identifying the pointz with its radius vector, in the derivation formulae above and
in dz = e;w! one has (seé€{])

w® =0,
Wt = ki, (2.3)
Vhis(= dhgy — higwl — hiwh + hiwg) = hiswF, (2.4)
h% = h?i» %k = ?kj )
VhSy, Awh = —hg,QF — hg Ok + 1Jag (2.5)

where each of the formulae (2.3)—(2.5) can be obtained from the previous equations
by exterior differentiation and Cartan’s lemma. In (2.5)

O = du’

A 7

—WwFA W), = —Gapwi’ A wf, (2.6)

Qf = dwj —wi Awy = —Zgg,yw? A WSt (2.7)
i

are the curvature 2-forms of the Levi—Civita connectidh and the normal
connectionV+, respectively. Together they represent the curvature 2-forms of the
van der Waerden—Bortolotti connecti®dh If Q! = 0, orQ? =0, orQ = 0° =,
we have the flat connectid¥, or V+, or V, respectively.

Due to (2.4) and (2.5) the parallelity and semiparallelity conditions are,
respectively (se€']),

dh$; — hijwk — hiwh + hjwg =0, (2.8)
L+ hg0F — g =0. (2.9)
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If we denoteH;; j; = ga[;h%hfl andh;; = hiea, then (2.9) is equivalent to

Z(hiji[p,q]k + hikHjjp g — Hij kjphqi) = 0. (2.10)
i

3. TRANSFORMATION FORMULAE

The tangent pafe, e2} of the adapted frame can be transformed according to

€] = e cos ¢ + ey sin @, (3.1)
€y = —ey sin ¢ + ey cos ¢. (3.2)
Then
wi = w? + dg, (3.3)
w' =w' cosp —w? sing (3.4)
w? = w' sin ¢ + w? cos ¢ (3.5)

and forh = h;;w'w’ one obtains
/ 1 1 .
hy = §(h11 + ha2) + §(h11 — hag) cos2¢ + hizsin2¢ ,
/ 1 .
hyy = 5(}1,22 — h11)sin2¢ + hja cos2¢ ,

/ 1 1 .
hoy = §(h11 + ha2) + §(h22 — h11) cos 2¢ — hi2sin2¢ .

Therefore spafhii, hoo, h12} IS an invariant vector subspace ?ﬁﬁM2 at an
arbitrary fixed pointz € M?, called the first normal subspace 812 at x

and denoted byNél)MQ. Let us denote%(hn — hge) =A, hi2 =B, and
%(hu + hgg) = H; thenA’ = Acos2¢ + Bsin2¢, B’ = —Asin2¢ + B cos 24,

H' = H. Itis seen thatH is an invariant vector, called the mean curvature
vector, and that spdnl, B} is an invariant vector subspace @&t denoted by
I,M?; the latter is the plane of the indicatrix of normal curvature determined as
{y:y—x=h;X'XI,X € T,M? | X || =1}. Since

(A", B"Y = (A, B) cos 4¢) + %(B2 — A?)sin 46,
there existspy such that A’, B’) = 0. So it can be made thatl, B) = 0. Taking

now¢ = 7 givesA’' = B, B’ = —A, and(4’, B') = 0, so that the roles ofl and
B can be interchanged, if this is not obstructed by the metric.
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4. PROOF OF THEOREM
4.1. The caselimI,M? =0

In the case of dimi,AM/2 = 0, the indicatrix of normal curvature degenerates
into a point, i.e.A = B = 0. If here dimZ\fggl)M2 = 1, thenH # 0 andes can
be taken so thall = de3 and the components of the second fundamental form
can be written as followsh;; = hoy = des, hio = 0. ThusM? is totally umbilic.

For the case dirz?‘fa(;l)M2 = 0 one has = 0 and the considered surface is totally
geodesic. This leads to case (i) of the Theorem.

4.2. The caselimI,M? =1

Here the mutually orthogonal and B are collinear and at least one of them is
nonzero. Sincel and B can be interchangeable, it is always assumedAhgt 0.
Then the frame vectar; can be taken so that

A =aes, a >0, B=bes.

Let dimNa(Tl)M2 = 2. The next frame vectar; can be taken so th&f = des+oey
(if dimNJ(,,l)M2 = 1, one hagr = 0). The Pfaff system (2.3) can be written as

W= (04 a)w! +b?, Wi =ouwt, wf =0, (4.1)

wi = bw! 4 (6 — a)w?, wy = ow?, wg =0, (4.2)

whereé¢ = 5, ..., n. Hence
0F = Q) = [e30® + e3b® — Hw! A w?, (4.3)

whereH? = e562 + 402 + 2g3460, and allQ> are zero.

With respect to the metric in subspacgsV/? and Nggl)M2 there are the
following possibilities.

If the metric of I, M? is regular, thers = 41, andb = 0. Thus the vectoe,
can be taken so that either

€4 75 0, gsq4 = 0 (4.4)

or
€4=0, g34 =0; (4.5)

moreover, in the last case the vectgrcan be taken so that = 0, g45 = 1. So

(4.4) and (4.5) mean that the metric]&Iﬁl)M2 is regular or singular nonvanishing,
respectively.
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If the metric of I, M? is vanishing, thems = 0 (and b # 0 or b = 0) and the

metric onggl)M2 is either regular, or singular nonvanishing, or vanishing. This
means that the vectey can be taken so that either

€4 = 0, gsq4 = 1, (4.6)
or

€4 #0, gsa =0, (4.7)
(moreover, in (4.7) the vecteg can be taken so that = 0, g35 = 1), or

€4 =0, g34=0. (4.8)

In the last case the frame vectars eg can be chosen so thag = ¢4 = 0,

935 = ga6 = 1, g36 = ga5s = gs6 = 0, n > 6.
For all these cases the semiparallelity condition (2.9) reduces to

bQ? =0, aQ? =0.

Sincea > 0, one ha$2? = 0. This result together witfl = 0 gives thafV is flat,
i.e. leads to case (ii) of the Theorem.

4.3. The caselimI M? = 2

In this case the mutually orthogonal vectotsand B are noncollinear. Then
the indicatrix of normal curvaturéy : y — x = H + Acos2y + Bsin2¢} is an
ellipse. The orthogonal frame vectarsande, (i.e. with gz, = 0) in I, M? can be
taken so that

A=ae3, B=bey, a>b>0.

The dimension of the sub:spaﬁél)M2 is either 3 or 2.

Let dimNél)M2 = 3, thus the next frame vectars can be taken so that
H = de3 + oeq + Tes. Here the components; can be written as follows:

hi1 = (0 + a)es + oeyq, hos = (0 — a)es + geyq, hia = bey.

ThusM? is determined by the Pfaff system

W= (0 +aw!, wf=ow +b? W) =Tw!, W=

2 2 5 2 '3

ws = (0 —a)w? wy=bw! +ou? Wi=r1w? W§=0,

whereé = 6, ..., n. Hence the curvature 2-forms are: in (2.6)

Q=03 =0, O3 = —Q) = (e30® + e4b® — H*)w' A W2, (4.9)



where
H? = 63(52 + 6402 + 85’7’2 + 293507 + 2g450T,

andin (2.7)
Qg = —2e3abw! A Ww?, Qi = 2e4abw’ A W2,
03 —9 bl 2 o4 _ 1 2,
5 = 2gs4abw” A w?, Q5 = —2g35w° A w”;

all otherQ? are zero. Thus the semiparallelity condition (2.9) transforms into

ab(eqo + g457) = 0, b(2e3a? + e4b? — H? + £3a6 + g3sat) = 0,
a(eza® +2e4b? — H?) =0, b(2e30® + 4b> — H? — £3a6 — g3sa7) = 0.

Consideration of this system gives, dueito- # 0, thates = ¢4 = 5, having the
valuesl, —1 or O.

Inthe last case the metric NQEI)M2 vanishes completely and the frame vectors
can be taken so that

e3=e4=¢65=0, eg=e7=e8=0, g6 =gar =g58 =1, n>8. (4.10)

It can be obtained by the appropriate choice of remaining frame vectors so that
all otherg,g, o # 3, are zero.

If dimNggl)M2 = 2, thent = 0 and the semiparallelity condition leads to
e3 = g4 = 0. Here the vectorss, eg can be taken so that

es=e6=0, g35 =946 = 1, gs6 =0, n > 6. (4.11)

Note that in the cases of this section the choice of all athetepends on the value
of sin E7.

Let us consider the cases (4.10), (4.11) in more detall, denotingfﬁi)rlM2 =
ni (n1 = 3,2) anda,b = {3,...,n1 + 2}, a,b = {n1 +3,...,2n1 + 2}. Thenin
(2.1), (2.2) one has

Wit + Wl =0, W™ 4wk =0, (4.12)
Wit wl=0, w'=wi=0, (4.13)
Wl + Wl =0, Wi+ wl =0, w)+w?=0. (4.14)

Substitution from (4.12)—(4.14) into (2.6), (2.7) gives tkwet= 0 =0,ie.Vis
flat. This leads to case (ii) of the Theorem.

In the case where the first normal subspace has a regular metric (i.e.
€3 = ¢4 = €5, equalling tol or —1), the semiparallelity condition leads to
§=0=0, a=b, T=aV3. It follows that the normal curvature vector has a
constant scalar square at every paint M?, i.e. the considered surface is an
isotropic surface anél?> = 3K. It gives case (iii) of the Theorem.
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5. DESCRIPTION OF PARALLEL CURVES AND SURFACES
5.1. Parallel curves

For the principal normal of the curnv& ! in pseudo-Euclidean spaces there are
three possibilities: it can be space-like, time-like, or light-like.

In the first two cases one hag = +1. The parallel curve can be treated like
in [7]. It is a straight line or a circle; the latter can be of either real or imaginary
radius.

If the principal normal is light-like, theas = 0 and the next frame vectesg
can be taken so that = 0, g235 = 1. Thus the Bartels—Frenet formulae can be
written as

dr = e1ds, de; = kieads, des = —dInkiesds.

The parallelity condition leads th; = const, thusles = 0. After integration it
givesz = %csz + c18 + co, where all coefficients are constant vectors. Therefore
the parallel curve of this case is a parabola.

5.2. Parallel surfaces

As is noted in Introduction, for the geometric description of the surfaces of
Theorem more detailed classification and characterization of the surfaces of type
(i) are needed. First, the same must be done for the corresponding parallel surfaces.

Proposition 1. Let M? be a space-like parallel surface ii” with flat v, which
lies essentially in an affine subspace of fife. Such anM/? is either

(iiy ) translation surface of two parallel curvesr

(iiz) surface inEjl on its isotropic coneC?, with a fixed vertexthe mean
curvature vector of this surface is isotropic afigh /12 goes through the generator
of the coneor

(ii3) surface inEj ;, Ej ,, or Ej 5 with two families of parabola generators
(one of them can degenerate into a family of straight linéehis surface can be
represented by the equation= h11(u)? + 3hoo(v)? + higuv + cru+ cov, where
all coefficients are some constant vectors and the first three of them are isotropic
(no matter whether this degeneration occurs or)not

Proof. For the full classification of parallel surfaces with flat there must be
considered the frame possibilities (4.4)—(4.8), (4.10), (4.11).

The subspacé, M? has dimensiori. Let, at first, the frame vectors be taken
as shown in (4.4). If here # 0, then from the parallelity condition one has
wh = w? = w§ = w§ = da = do = dd = 0. Thus the derivation formulae are

dzr = eqw! + eaw?,
de; = [(6 + a)es + oeq|w?,
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dey = [(6 — a)es + oeq)w?,
dez = —e3[(8 + a)erw! + (5 — a)eaw?],

dey = —e4loerw! + geaw?].

If 3 = &4, then the considered parallel surface lies i s is 0 or 2 (it depends

on the signature of the metric). Sinde! = 0, dw? = 0, at least locally

w! = du, w? = dv. The geodesic lines = const and: = const are circles. Hence
the parallel surface is a translation surface of two circles on the totally orthogonal
E?, sisOor1.

If e5 # ¢4, the considered parallel surface is a translation surface of two lines;
one of them is a circle with real radius &* and the other is a circle with imaginary
radius onFE?.

On suppositionr = 0, from (4.3) one has that’> = 6 and the vectoe; can
be directed so that = ¢, thus one of the geodesic lines degenerates into a straight
line.

In the case Wheré\fa(cl)M2 has the metric (4.5), the equality (4.3) leads to
a? = 6%. Then the vectoez can be taken so that= ¢ and the parallelity condition
givesw? = w} = wi = w§ = w§ = 0, w! = —%2, 4 = const and the derivation
formulae can be written agr = ejw! + esw?, de; = (2ae3 + oeq)w?t, des =
geqw?, dez = —2e3ae1w', d(oes) = 0. So the considered surface lies in &),
(orin Efl) if e3 = 1 (ores = —1, respectively), which is spanned by the paint
and mutually orthogonal vectoes, es, e3, oes. Investigation of geodesic lines
gives that parallel/? is a translation surface of circles and parabolas.

On suppositions = 0, it is easy to see that geometry of the corresponding
parallel surface is the same as in the previous case on analogous supposition.

In the case wheré, M2 has a vanishing metric and the frame is described by
the equalities (4.6), one hd&¥ = 0; thendw? = 0, i.e. w} = di. Thus the
formulae (3.1)—(3.5) lead Izoff = 0 andh,; transform into

/11 =(0+ a’)eg + oey, hl22 =(6— al)63 + oey, h/12 =Ves,
wherea’ = acos2vy) + bsin2¢y andb’ = —asin21) + bcos21). ThusA = d'es3, B =
bes, H = des + oey.

The parallelity condition leads tof = w§ = 0, wj = —4a" = —d' — _dd _

‘{7", ie. b = kid', 6 = kod/, 0 = ’;—%‘ wherek;, ko, ks are some constants.
Moreover, from (4.3) and the semiparallelity condition one fras= 0 and either

1) 0=0, 0 #0,(ky =0),o0r

2)§#0, 0 =0,(ks =0),0r

3)d=0=0,(ke =k3=0).
Note that in the last cas#/2 is a minimal surface and will be considered in
Section 7.

24



Since dw! =0, dw? =0, at least locallyw! = du, w? = dv, and the
derivation formulae in subcase 1) by 0 can be written so that

dx = €} du + ehdv,

de}) = (d’es + %q)du + k1d’esdv,

dely = kid'esdu + (—d'eg + %m)dv,

d(d'es) = —ksdz,

d(%q) = —ks[(e] + k1eh)du + (ki€ — €)dv].
It is seen that this surface lies in &, spanned by the point and vectors
e}, e, d'es, e, The pointz € Ef with the radius vector = z + ,%3@’@3 is
fixed for the surface sinaéz = 0, thus there is an isotropic cog# with a vertex at
the pointz. The considered surface lies on the cone, its normal plan&/> goes

through the generator of the cone (collineaeipand the mean curvature vector is
isotropic (noncollinear tes).

On suppositiort’ = 0, the derivation formulae for the considered paralét
from subcase 1) can be written as

dz = e\ du + e5dv,

de| = (d'eg + %@)du,

del, = (—d'es + %m)dv,
d(d'es + %64) = —2kse)du,

d(—ad'es + %64) = 2ksehdv.

Since(a'es + £3e4)? = 2k and (—d’es + %e4)? = —2k;, this surface lies in
an E{, spanned by the point and mutually orthogonal vectoed, e}, a’es +
%64, —d'e3+ %64. Investigation of its geodesics gives that the considered parallel
surface is a translation surface of two plane lines of constant curvature.

In subcase 2), whek; = 0 on suppositionk; # 0 (i.e. v # 0), in the
derivation formulae one has

dx = €} du + ehdv,
de| = [(k2 + 1)du + kirdv]d’es,
del, = [k1du + (ko — 1)dv]d’es,
d(a'es) = 0.
The considered surface lies in Eﬁl C Ef, spanned by the pointand mutually

orthogonal vectors), ¢, a’es. Denoting the partial derivatives afby z,,, z,,
etc., one has
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Loy = €1, Ty = €2,
/ / /
Lyu = (k2 + 1)(], €3, Tuv = kia €3, Tyv = (kQ - 1)(1 €3,

Tyuu = Tuuy = Tovu = Tyoy = 0.

Since for this C&Sékg + 1)&’63 = hi1, (kz — 1)(1/63 = hoo, kla’eg = hq9, then
parallelM? can be represented by the equatios A1 (u)? 41 hoo (v)?+hi2uv+
ci1u + cov, where all coefficients are some constant vectors; the absolute term can
be made zero by exchanging the initial point. It is seen that the geodesic lines on
this parallel surface are parabolas (one of them can degenerate into a straight line).
On suppositiork; = 0, the considered surface lies in Ejl C Ef andis a
translation surface of either two parabolas, or of a parabola and a straight line.
If the frame vectors are taken as shown in (4.7), then geometry of the
corresponding parallel surface is the same as in the previous case, subcase 2).

Finally, if (4.8) holds, then the parallelity condition implies = —db—ffl =
—da—“,' = —? (i.,e. V' = kid', & = kod, wherek;, ko are some constants),
wi = —%“, andwj = wj = wg = wi =0.

Since dw' = dw? =0, then at least locallyw! = du, w?> =dv and the
derivation formulae can be written so that

dz = e\ du + ehdv,

de| = [(k2 + 1)d'es + oeq)du + kid ezdv,
dely = kid'esdu + [(ke — 1)d’es + oeq)dv,
d(d'es) =0, d(oeq) =0.

On suppositiornr = 0, the considered surface Iies]i’g,1 spanned by the point
and mutually orthogonal vector$, €, a’es, and geometry of thid/? coincides
with geometry in the case with (4.6), subcase 2).

If o # 0 andb’ # 0, thenM? lies in E , spanned by the point and mutually
orthogonal vectorse), e}, a’es, oeqs and is determined by the equation
xr = %hu(u)Q + %hQQ(U)Q + hiouv + c1u + cov, whereh;; = (k2+1)a/€3+064,
hia = kid'es, haa = (k2 — 1)d’es 4+ oeq (all coefficients are constant vectors),
and has two families of parabola generators.

Finally, if o # 0, butd’ = 0, then the considered parallel surface Iiesﬂa‘y2
and is a translation surface of two geodesic lines, each of which is a parabola.

The subspacé,M? has dimensior2. Here the metric inv{" Ar2 vanishes
completely and is described either by (4.10) or (4.11).

In the first case the subspam‘}égl)M2 has a maximal dimension. Then the
frame can be adapted to the considered surface soithats;, B = ¢4, H = e5,
i,e.a =b=7=1andd = ¢ = 0. Thus the Pfaff system can be written as
follows:
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Wi =wl, wi =w?, WP =W, w?:wﬁzo, (5.1)

ws =w?, Wi =w!, Wi =w? Wi = wg = 0. (5.2)
Herea = 6,7,8; £ = 9,...,n, and substitution into the parallelity condition leads
0w =wf =w? =w) =wj) = g’:w?j:O, 2w? = wi = —wi. Dueto

e3 +e5 = h11, eq = h1a, es5 — e3 = haoo, the derivation formulae can be written
as

_ 1 2
dr = eqw" + eqw?,

de1 = w%eg + hnwl + h12w2,

dey = —w%e1 + hlgwl + h22w2,
dhi1 = wihyz,
dhas = —w?hia,

dhi2 = —wi(h11 — ha2).

SinceQ? = 0, due to (2.6) her@w? = 0, i.e. w? = dy. Using transformation
formulae (3.1)-(3.5), one hag, = 0, dw!’ = 0, dw? = 0. The last two equalities
imply, at least locally, that!” = du, w? = dv, thus

dz = e\ du + ehdv,

del = Wy du + hljydv,
dely = hiydu + hbydv,
dh, = di'y = dhby = 0.

So the considered parallel space-lik& lies in anEg’,3 spanned by the point

and mutually orthogonal vectoes, es, h),, hb,, hi,, the last three of which are
light-like, two others space-like. This surface can be represented by the equation
x = $hl;(u)? + Lhhy(v)% + Ryuv + hj u+ hj,v, where all coefficients are some
constant vectors. It is seen that the geodesic linesconst andy = const on this
parallel surface are parabolas.

For the parallel space-like surfadé?, with dimN VA2 = 2, i.e. when the
frame vectors are taken as shown in (4.11) and the frame can be adaptédsto
that A = e3, B = ¢4, i.e.a = b = 1. Moreover, if the mean curvature vectar
is nonzero, themd and B can be taken so that | H and thusH = jes. Now the
Pfaff system can be written as

Wi = (0 + D!, Wi =w? W= wf =0, (5.3)
ws = (0 —1Duw?, wy=w!, Wi= wg = 0. (5.4)
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Herea = 5,6; ¢ = 7,....,n and from the parallelity condition (2.8) one has
Wi = wj = w) = w§ = w! =wj =w} =ds = 0. Thus the derivation

formulae

_ 1 2
dr = ejw" + eaw?,

dep = (6 + 1)ezw! + eqw?,
des = eqw' + (6 — 1)esw?,
d63 = d64 =0

give that the considered surface lies inl%é‘}2 spanned by the pointand mutually
orthogonal vectors,, es, es, ey.

Sincehi; = (0+1)es, hoa = (0 —1)es, hi2 = ey, the considered surface can
be represented by the equation= h11(u)? + $h2(v)? + hiouv + c1u + cov.
Herew! = du, w? = dv; theu- andv-lines are geodesics of this surface and if
5% —1 # 0, then they are parabolas, buf— 1 = 0, then one of them degenerates
into a straight line.

This completes the proof of Proposition 1.

6. EXISTENCE OF SEMIPARALLEL SURFACES

Now there arises the problem of the existence of a nontrivial 2nd-order envelope
of parallel surfaces from (i)—(iii) of the Theorem.

It is known that parallel surfaces of (i) of the Theorem have only trivial
2nd-order envelopes (i.e. they are umbilic-like in the sens&’{ |

For case (jii) it is established inq] that in ES, (s is 0, 3, or 4) there exists
the most general semiparallel surfak€’ with some arbitrariness and it is the
2nd-order envelope of a 2-parameter family of mutually noncongruent Veronese
orbits. Moreover, these results can be usedsfhby s = 1, taking e, so that

e3=e4=¢c5=1, ¢¢ = —1, €7 = ... = &, = 1. Thus the difference from'{]
will be in (2.1), wherew$, = —eewl, K = 1,...,5 but it does not influence the
final result.

In case (ii) Proposition 1 can be used. In the latter for subgiage when the
parallel surfacé/? is a translation surface, the existence of the nontrivial 2nd-order
envelope of these surfaces is obvious. Thus it remains to consider subigases
and(iiz) of Proposition 1.

Proposition 2. Let M2 be a nonminimal parallel surface of subcase) or (iis).
There exists their nontrivial 2nd-order envelope with some arbitrariness.

Proof. Without a loss of generality only the frame possibilities (4.6) witk 0,
(4.10), (4.11) can be considered.

In the first of them, taking into account thaf = wj = 0 andw3 = —w}, the
Pfaff system (4.1), (4.2) after exterior differentiation gives
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[d(0+a)+ (0 +a)w 3—2bw%]/\w1—|—(db+bw§—|—2aw%)/\w2IO,
(db + bw3 + 2aw1) Awt +[d(6 —a) + (6 — a)ws + 2bw?] A w? =0,
[do — ow3] Aw! =0,

[do — owi] Aw? =0,

[(5+a)w3+0w4]/\w +bw3/\w =0,

bw3/\w —|—[(5—a)w§—|—aw§]/\w =0.

1) Leto # 0,6 = 0. Itis easy to see that thelr = ow3. Sinceb # 0, the basis
of secondary forms consistséf, db, 2w?, w3, wg, wﬁ and the ranks of the polar
systems; = 2+2(n—4) andse = 2. Thus Cartan’s numbé&p = 6+2(n—4). On
the other hand, due to Cartan’s lemma the number of the independent coefficients is
6+2(n—4). Thus Cartan’s criterion is satisfied and this Pfaff system is compatible
and determines the considergff for subcasedii,) with arbitrariness of two real
holomorphic functions of two variables.

2) Lets # 0, o = 0. If hered? — a® # 0, then due to Cartan’s lemma for
the first two equalities one hasindependent coefficients. Consideration of the
last two equalities gives$ = rfw! + rSw?, whereas: = re; andry = rSe, are
either both zero or linearly dependent vectors. The common number of independent
coefficients is eithes or8+(n—4), respectively In both casé€s= N andss = 3.

If 62 — a® = 0 (for examples = a), thenr1 = 7“2 =0, N = @Q = 6, where
S1 = 2, So = 2.

Thus the semiparallel surface of subcasg) in E&l exists either with
arbitrariness of three real holomorphic functions of two variables (it has two
families of parabola generators), or with arbitrariness of two real holomorphic
functions of two variables (this occurs when parabola degenerates into a straight
line).

In the case (4.10) the Pfaff system (5.1), (5.2) gives by exterior differentiation

w3—|—w5)/\w + (2w + W) Aw? =0, (2w? +wd) Aw! + (W —wd) Aw? =0,

(
(

2w —wH AW —wiAWE =0, wiAw?+ (2w —wi+wi)Aw?=0,
(w3—|—w5)/\w1+wi/\w2:0, wi Aw + (w2 —wl) Aw? =0,

wi AW +wi Aw?=0, wi AW +w AW =0,

(Wi +wi) Aw! =0, (w! —wh) Aw? =0,
wg/\u}l—l—wg/\wz:07 w4/\w —w3/\w =0,

(W5 +w) Aw! +wf Aw? =0, Wi AWl 4 (W5 — W) Aw? =0,

whereé¢ = 9,...,n. Using here Cartan’s Iemma and also relations (4.12)—(4.14),
one hasJs§ = wg = wf =w§ = wl = wd = 0. The common number of
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coefficients on the right side¥ = 14 + 4(n — 8) = 4n — 18. On the other hand,
first, the basis of the secondary forms consist@wf, w3, wi, wi, wi, wi,
wh Wl Wl Wi, Wf, WS, Wi second, the ranks of the polar systems are:
s1 = 6 4+ 2(n — 8) ands; + s9, wheress = n — 4, thus Cartan’s number
Q = s1+2s9 = 4n — 18. Hence Cartan’s criterion is satisfied and the semiparallel
surface of subcas@is) in Ef 5 exists with arbitrariness of — 4 real holomorphic
functions of two variables.

For the case (4.11) the first eight equations of the Pfaff system (5.3), (5.4) lead

by exterior differentiation to

[d6 + (6 + Vws + owi] Aw! + 20 + W] Aw? =0, Ww]A (ow! +w?) =0,
20?2 + Wi Awh +[d6 + (§ — Dwsd + owd] Aw? =0, Wi A (W +ow?) =0,
[do — 2w + (0 + 1)ws + owf] Aw! +wi Aw? =0, (§+1w§Aw! =0,
wi Awh +[do + 202 + (6 — Dwi +owi] Aw? =0, (§—1wSAw?=0.

This system together with (4.12)—(4.14) give$ = w§ = 0. After exterior
differentiation the equationsf =0,&£=17,..,n, give

[(6+ 1)w§ —|—ow§] Aw! —|—wf1 Aw? =0,

wi Aw! + (6 — 1)w§ +0w§] Aw? = 0.

Now the basis of secondary forms consist@of, w3, do, w3, wi, wi, uf, uf.
Let§2—1 # 0; thens; = 4+2(n—6) andsy = 6+2(n—6)—4—2(n—6) = 2,
Cartan’s number i8 + 2(n — 6) and it is equal to the number of independent

coefficients.

In the case$? — 1 = 0 (for examples = 1), s; = 4 +2(n — 6), s, = 1, and
Q=N =6+2(n—06).

Cartan’s criterion is satisfied and the semiparallel surface of suljtigsén
Ej ., exists either with arbitrariness of two real holomorphic functions of two
variables, or with arbitrariness of one real holomorphic function of two variables
(depending on the occurrence of degeneration).

This completes the proof of Proposition 2.

7. MINIMAL SEMIPARALLEL SPACE-LIKE SURFACES

It is known that in E™ every minimal semiparallel submanifold is totally
geodesic (se€’] and [\]), but in E7 there exist minimal semiparallel time-like
surfaces (strings), which are not totally geodesic (3€R.[It can be shown that
among surfaces of type (ii) i&7 with s > 0 there do exist not totally geodesic
minimal semiparallel space-like surfaces.
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Proposition 3. In E” with s > 0 a minimal semiparallel space-like surfadé?,
which is not totally geodesibas flatV and is either

1) a surface inEg ; or in Ej ,, which has two families of parabola generators
and can be represented by the equation h11((u)?—(v)?)+hizuv+ciu+cov,
where all coefficients are some constant vegtarsreoverthe first two of them are
isotropic or

2) a hyperbolic paraboloid in&3 ;, or

3) a 2nd-order envelope of a i‘amjlyonsisting of the surfaces of one of the
previous classes iV}

Proof. Due to Proposition 1 here the cases when it? is either 1 (subcases
(4.5)—(4.8)) or 2 (subcase (4.11)) are to be considered with the additional condition
H=0(.e.0 =0=0).

Let dimZ, M? = 1; then Pfaff system (4.1), (4.2) transforms into

wil)’ = w! + bw?, wg = bw! + w?, wy :wg =0,¢&=4,...,n.

Exterior differentiation leads to

(w3 — 20w3) A w' + (db + bwi + 2w?) Aw? =0, wg A (W' + bw?) =0,
(db + bwi + 2w3) Aw! — (wi — 2bw) Aw? =0, w§ A (bw! —w?) = 0.

For all cases (4.5)—(4.8) on suppositibnZ 0, due to Cartan’s lemma one has
w§ = 0 and the number of independent coefficientstjssince the basis of
secondary forms consists @b, w3, 2wi and the ranks of the polar systems
s1 = 2, s3 = 1, Cartan’s numbef) = 4. The considered minimal surface exists
with arbitrariness of one real function of two variables.

If b =0, then it is easy to see that = 2, sy = 0; hereQ = N = 2 and the
minimal surface for this case exists with arbitrariness of two real functions of one
variable.

Investigation of geometry gives the derivation formulae= ¢} du + e,dv,
de| = d'ezdu + kia'esdv, dely = kia'ezdu — a’ezdv, d(a’e3) = 0. ThusM? lies
in E&l and due tohsy = —hq1 either is determined by the equatian =
$hi1((u)? = (v)?) + hi2uwv + c1u + cav, where all coefficients are some constant
vectors, and thus has two families of parabola generators, or is a hyperbolic
paraboloid.

For the case dith, M? = 2, the minimalM? occurs in (4.11). The Pfaff system
now transforms into

wi)’ :wé =wl, wg = —w% = —w?, wf :wg =0, &=5,..,n.
After exterior differentiation it gives

wi Aw! + [20F + Wi Aw? =0, 2w} + Wi Aw! —wd Aw? =0,
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[—2w? +wil Awt +wi Aw? =0, wiAw!+ 202 —wiAw?=0,

wg/\w1:0, wg/\wQZO.

Due to Cartan’s lemma allzg are zero; the other equalities givé = 4 + 2 = 6;
the basis on the left sides consists2f?, w3, wj, w3, wi and the ranks of
the polar systems; = 4, sy = 1. So Cartan’s number is equal to the number
of independent coefficients and Cartan’s criterion is satisfied. The extended Pfaff
system determine&/? with arbitrariness of one real holomorphic function of two
variables. For this surfacér = ejw! + esw?, der = esw! + eqw?, dey =
eqw' — e3w?, dez = dey = 0, thus the considered minimal? lies in £, and
can be represented by the equatios 171 ((u)? — (v)?) + higuv + c1u + cov,
where all coefficients are constant vectors. Thi$ has two families of parabola
generators.

This completes the proof of Proposition 3.
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PARALLEELSED JA SEMIPARALLEELSED RUUMISARNASED
PINNAD PSEUDOEUKLEIDILISTES RUUMIDES

Elena SAFIULINA

AlammuutkondaM? (pinda) ruumisE” nimetataksesemiparalleelsekskui
R(X,Y)h=0, kus X ja Y on suvalised puutujavektoridR on van der
Waerdeni—Bortolotti seostusé (V = V @ V1) kdverusoperaator ja on teine
fundamentaalvorm. Semiparalleelsete pindade klassis on olemas alamklass,
mille kdik pinnad on paralleelse vormiga Neid pindu iseloomustab tingimus
Vh =0 ja neid nimetataksgaralleelsetekspindadeks. Siinses t66s on antud
semiparalleelsete ruumisarnaste pindade klassifikatsioon ja naidatud nende olemas-
olu ning suva ruumisE™. On tdestatud, et ruumisarnane pind? on semi-
paralleelne siis ja ainult siis, kui see on totaalselt ombiline (erijuhul totaalselt
geodeetiline) vGi selle seostd& on kdveruseta vdi see on isotroopne pind, mida
iseloomustab tingimu$ H ||> = 3K, kus H on keskmise kéveruse vektor j&
on Gaussi kdverus. Lisaks sellele on antud vaadeldavate pind&deetailsem
klassifikatsioon juhul, kui seostdg on kdveruseta, kasutades asjaolu, et igaiiks
neist on paralleelsete pindade teist jarku méhkija, ning tbestatud, et eksisteerivad
seda laadi minimaalsed pinnad, mis pole totaalselt geodeetilised.
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