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Abstract. Parallel submanifolds in pseudo-Euclidean spaces are characterized locally by the
system∇h = 0. Submanifolds satisfying the integrability conditionR ◦ h = 0 of this
system are called semiparallel; geometrically they are 2nd-order envelopes of the parallel
submanifolds. The existence and geometry of such two-dimensional Riemannian submanifolds
(surfaces) are investigated and their complete classification is given. Moreover, it is shown that
in En

s with s > 0 do exist not totally geodesic minimal semiparallel space-like surfaces.
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1. INTRODUCTION

Let Nn
s (c) be a space form of constant curvaturec. If s = 0 (or s = n), it is

Riemannian and if0 < s < n, it is pseudo-Riemannian [1]. A submanifoldMm

in Nn
s (c) is calledsemiparallel(or semisymmetric, extrinsically) ifR(X,Y )h = 0

(this is the integrability condition of the system∇h = 0 which characterizes a
parallel (or locally symmetric, extrinsically) submanifold). HereR is the curvature
operator of the van der Waerden–Bortolotti connection∇ (∇ = ∇ ⊕∇⊥) andh
is the second fundamental form.

Parallel submanifolds in the cases = 0, c = 0 are classified by Ferus [2]. His
results have been extended to the cases = 0, c 6= 0 in [3] and [4], and to the case
of pseudo-Riemannian parallel submanifolds inNn

s (c), s > 0, by Blomstrom [5]
and Naitoh [6]. Some special classes of parallel submanifolds inEn

1 andEn
2 are

described by Magid [7].
Semiparallel submanifoldsMm in Nn

s (c) by s = 0 have been classified and
described in the following cases:
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surfaces(m = 2) if c = 0 by Deprez [8];
surfaces(m = 2) if c > 0 by Mercuri [9] (see also [10]);
three-dimensional submanifolds, two-codimensional submanifolds (i.e.m =

n− 2), and hypersurfaces(m = n− 1) if c = 0 in [11], [12], and [13], respectively;
submanifoldsMm with flat normal connection∇⊥ if c = 0 in [14] and if c > 0

in [15].
Note that semiparallel time-like surfaces in a Lorentzian spacetime form are

classified in [16]. A survey on parallel submanifolds and their generalizations is
given in [17].

The present paper deals with the classification and description of the
semiparallel surfaces which are space-like (i.e. have positive definite inner metric)
in pseudo-Euclidean spacesEn

s . In the first part of the paper all parallel surfaces
are determined, in the second part their 2nd-order envelopes are found.

Here the result by Lumiste [18] that every semiparallel submanifold is a
2nd-order envelope of parallel submanifolds can be used. The main result of the
present paper is as follows.

Theorem. Let M2 be a semiparallel space-like surface inEn
s . There exists an

open and dense partU ofM2 such that the connected components ofU are of the
following types:

(i) open parts of totally umbilicalM2 (in particular, of totally geodesicM2)
in En

s ;
(ii) surfaces with flat∇;
(iii) isotropic surfaces with nonflat∇⊥ satisfying‖ H ‖2 = 3K, whereK is

the Gaussian curvature andH is the mean curvature vector.

This Theorem has some analogy with the classification of the semiparallel
surfaces in Euclidean space (see [8]).

Geometric description of these semiparallel space-like surfacesM2 in En
s will

be given first for the particular case of parallel space-like surfaces, bearing in
mind that every semiparallel surface is a 2nd-order envelope of the parallel ones
(according to the result of [18]). Here every semiparallelM2 of type (i) is parallel
itself. The semiparallelM2 of type (iii) is a 2nd-order envelope of the Veronese
surfaces studied in [19]. Therefore only the semiparallelM2 of type (ii) are to be
investigated more thoroughly.

The results for parallel space-likeM2 are formulated in Proposition 1, where
more detailed classification and description are given. Mostly thisM2 lies in
a semipseudo-Euclidean subspaceEk

l,d of En
s , which has an orthogonal frame

consisting ofl vectors of imaginary length,d vectors of zero length, andk − l − d
vectors of real length.

The problem of whether there exist semiparallel space-likeM2 in En
s , which

are not parallel ones, is solved affirmatively in Proposition 2. Also the arbitrariness
of their existence is established.

It is known that in Euclidean spaceEn the semiparallel minimal surfaces
M2 are trivial: planes or their open parts (see [8,17]). The existence of minimal
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semiparallel time-like surfaces inEn
1 different from planes is shown in [16]. In

Proposition 3 it will be established that nontrivial minimal semiparallel space-like
surfaces do exist inEn

s with s > 0.

2. APPARATUS

Let {x, eI} (I = 1, 2, ..., n) be the moving frame adapted to a space-
like submanifoldM2 in En

s , i.e. x ∈M2, ei ∈ TxM
2, eα ∈ T⊥x M2, i, j = 1, 2;

α, β = 3, ..., n. Then, denoting as usual〈eI , eJ〉 = gIJ , one obtainsgia = 0 and
gij = δij for orthonormale1, e2; moreover, notation〈eα, eα〉 = εα can be used. In
the well-known formulaedeI = eJω

J
I , dωI = ωJ ∧ ωI

J , dωI
J = ωK

J ∧ ωI
K there

hold
ω1

1 = ω2
2 = 0, ω2

1 = −ω1
2, gαβω

β
i + ωi

α = 0, (2.1)

dgαβ = gγβω
γ
α + gαγω

γ
β . (2.2)

Identifying the pointx with its radius vector, in the derivation formulae above and
in dx = eIω

I one has (see [17])
ωα = 0,

ωα
i = hα

ijω
j , (2.3)

∇hα
ij(≡ dhα

ij − hα
kjω

k
i − hα

ikω
k
j + hβ

ijω
α
β ) = hα

ijkω
k, (2.4)

hα
ij = hα

ji, hα
ijk = hα

ikj ,

∇hα
ijk ∧ ωk = −hα

kjΩ
k
i − hα

ikΩ
k
j + hβ

ijΩ
α
β , (2.5)

where each of the formulae (2.3)–(2.5) can be obtained from the previous equations
by exterior differentiation and Cartan’s lemma. In (2.5)

Ωj
i = dωj

i − ωk
i ∧ ω

j
k = −gαβω

α
i ∧ ω

β
j , (2.6)

Ωα
β = dωα

β − ωγ
β ∧ ω

α
γ = −

∑
i

gβγω
γ
i ∧ ω

α
i (2.7)

are the curvature 2-forms of the Levi–Civita connection∇ and the normal
connection∇⊥, respectively. Together they represent the curvature 2-forms of the
van der Waerden–Bortolotti connection∇. If Ωj

i = 0, orΩβ
α = 0, orΩj

i = Ωβ
α = 0,

we have the flat connection∇, or∇⊥, or∇, respectively.
Due to (2.4) and (2.5) the parallelity and semiparallelity conditions are,

respectively (see [17]),

dhα
ij − hα

kjω
k
i − hα

ikω
k
j + hβ

ijω
α
β = 0 , (2.8)

hα
kjΩ

k
i + hα

ikΩ
k
j − hβ

ijΩ
α
β = 0 . (2.9)
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If we denoteHij,kl = gαβh
α
ijh

β
kl andhij = hα

ijeα, then (2.9) is equivalent to∑
k

(hkjHi[p,q]k + hikHj[p,q]k −Hij,k[phq]k) = 0. (2.10)

3. TRANSFORMATION FORMULAE

The tangent part{e1, e2} of the adapted frame can be transformed according to

e
′
1 = e1 cosφ+ e2 sinφ, (3.1)

e
′
2 = −e1 sinφ+ e2 cosφ. (3.2)

Then
ω2′

1′ = ω2
1 + dφ, (3.3)

ω1 = ω1′
cosφ− ω2′

sinφ , (3.4)

ω2 = ω1′
sinφ+ ω2′

cosφ (3.5)

and forh = hijω
iωj one obtains

h
′
11 =

1
2
(h11 + h22) +

1
2
(h11 − h22) cos 2φ+ h12 sin 2φ ,

h
′
12 =

1
2
(h22 − h11) sin 2φ+ h12 cos 2φ ,

h
′
22 =

1
2
(h11 + h22) +

1
2
(h22 − h11) cos 2φ− h12 sin 2φ .

Therefore span{h11, h22, h12} is an invariant vector subspace ofT⊥x M
2 at an

arbitrary fixed pointx ∈ M2, called the first normal subspace ofM2 at x
and denoted byN (1)

x M2. Let us denote1
2(h11 − h22) = A , h12 = B, and

1
2(h11 + h22) = H; thenA′ = A cos 2φ+B sin 2φ, B′ = −A sin 2φ+B cos 2φ,
H ′ = H. It is seen thatH is an invariant vector, called the mean curvature
vector, and that span{A,B} is an invariant vector subspace atx, denoted by
IxM

2; the latter is the plane of the indicatrix of normal curvature determined as
{y : y − x = hijX

iXj , X ∈ TxM
2, ‖ X ‖ = 1}. Since

〈A′, B′〉 = 〈A,B〉 cos 4φ+
1
2
(B2 −A2) sin 4φ,

there existsφ0 such that〈A′, B′〉 = 0. So it can be made that〈A,B〉 = 0. Taking
nowφ = π

4 givesA′ = B , B′ = −A, and〈A′, B′〉 = 0, so that the roles ofA and
B can be interchanged, if this is not obstructed by the metric.
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4. PROOF OF THEOREM

4.1. The casedimIxM2 = 0

In the case of dimIxM2 = 0, the indicatrix of normal curvature degenerates
into a point, i.e.A = B = 0. If here dimN (1)

x M2 = 1, thenH 6= 0 ande3 can
be taken so thatH = δe3 and the components of the second fundamental formhij

can be written as follows:h11 = h22 = δe3, h12 = 0. ThusM2 is totally umbilic.
For the case dimN (1)

x M2 = 0 one hasδ = 0 and the considered surface is totally
geodesic. This leads to case (i) of the Theorem.

4.2. The casedimIxM2 = 1

Here the mutually orthogonalA andB are collinear and at least one of them is
nonzero. SinceA andB can be interchangeable, it is always assumed thatA 6= 0.
Then the frame vectore3 can be taken so that

A = ae3, a > 0, B = be3.

Let dimN (1)
x M2 = 2. The next frame vectore4 can be taken so thatH = δe3+σe4

(if dimN
(1)
x M2 = 1, one hasσ = 0). The Pfaff system (2.3) can be written as

ω3
1 = (δ + a)ω1 + bω2, ω4

1 = σω1, ωξ
1 = 0, (4.1)

ω3
2 = bω1 + (δ − a)ω2, ω4

2 = σω2, ωξ
2 = 0, (4.2)

whereξ = 5, ..., n. Hence

Ω2
1 = −Ω1

2 = [ε3a2 + ε3b
2 −H2]ω1 ∧ ω2, (4.3)

whereH2 = ε3δ
2 + ε4σ

2 + 2g34δσ, and allΩβ
α are zero.

With respect to the metric in subspacesIxM2 and N (1)
x M2 there are the

following possibilities.
If the metric ofIxM2 is regular, thenε3 = ±1, andb = 0. Thus the vectore4

can be taken so that either
ε4 6= 0, g34 = 0 (4.4)

or
ε4 = 0, g34 = 0; (4.5)

moreover, in the last case the vectore5 can be taken so thatε5 = 0, g45 = 1. So
(4.4) and (4.5) mean that the metric ofN (1)

x M2 is regular or singular nonvanishing,
respectively.
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If the metric ofIxM2 is vanishing, thenε3 = 0 (and b 6= 0 or b = 0) and the

metric ofN (1)
x M2 is either regular, or singular nonvanishing, or vanishing. This

means that the vectore4 can be taken so that either

ε4 = 0, g34 = 1, (4.6)

or
ε4 6= 0, g34 = 0, (4.7)

(moreover, in (4.7) the vectore5 can be taken so thatε5 = 0, g35 = 1), or

ε4 = 0, g34 = 0. (4.8)

In the last case the frame vectorse5, e6 can be chosen so thatε5 = ε6 = 0,
g35 = g46 = 1, g36 = g45 = g56 = 0, n ≥ 6.

For all these cases the semiparallelity condition (2.9) reduces to

bΩ2
1 = 0, aΩ2

1 = 0.

Sincea > 0, one hasΩ2
1 = 0. This result together withΩβ

α = 0 gives that∇ is flat,
i.e. leads to case (ii) of the Theorem.

4.3. The casedimIxM2 = 2

In this case the mutually orthogonal vectorsA andB are noncollinear. Then
the indicatrix of normal curvature{y : y − x = H + Acos2ψ + Bsin2ψ} is an
ellipse. The orthogonal frame vectorse3 ande4 (i.e. withg34 = 0) in IxM2 can be
taken so that

A = ae3, B = be4, a ≥ b > 0.

The dimension of the subspaceN (1)
x M2 is either 3 or 2.

Let dimN (1)
x M2 = 3, thus the next frame vectore5 can be taken so that

H = δe3 + σe4 + τe5. Here the componentshij can be written as follows:

h11 = (δ + a)e3 + σe4, h22 = (δ − a)e3 + σe4, h12 = be4.

ThusM2 is determined by the Pfaff system

ω3
1 = (δ + a)ω1, ω4

1 = σω1 + bω2, ω5
1 = τω1, ωξ

1 = 0,

ω3
2 = (δ − a)ω2, ω4

2 = bω1 + σω2, ω5
2 = τω2, ωξ

2 = 0,

whereξ = 6, ..., n. Hence the curvature 2-forms are: in (2.6)

Ω1
1 = Ω2

2 = 0, Ω2
1 = −Ω1

2 = (ε3a2 + ε4b
2 −H2)ω1 ∧ ω2, (4.9)
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where
H2 = ε3δ

2 + ε4σ
2 + ε5τ

2 + 2g35δτ + 2g45στ,

and in (2.7)
Ω4

3 = −2ε3abω1 ∧ ω2, Ω3
4 = 2ε4abω1 ∧ ω2,

Ω3
5 = 2g54abω

1 ∧ ω2, Ω4
5 = −2g35ω1 ∧ ω2;

all otherΩβ
α are zero. Thus the semiparallelity condition (2.9) transforms into

ab(ε4σ + g45τ) = 0, b(2ε3a2 + ε4b
2 −H2 + ε3aδ + g35aτ) = 0,

a(ε3a2 + 2ε4b2 −H2) = 0, b(2ε3a2 + ε4b
2 −H2 − ε3aδ − g35aτ) = 0.

Consideration of this system gives, due toabτ 6= 0, thatε3 = ε4 = ε5, having the
values1, −1 or 0.

In the last case the metric ofN (1)
x M2 vanishes completely and the frame vectors

can be taken so that

ε3 = ε4 = ε5 = 0, ε6 = ε7 = ε8 = 0, g36 = g47 = g58 = 1, n ≥ 8. (4.10)

It can be obtained by the appropriate choice of remaining frame vectors so that
all othergαβ , α 6= β, are zero.

If dimN
(1)
x M2 = 2, thenτ = 0 and the semiparallelity condition leads to

ε3 = ε4 = 0. Here the vectorse5, e6 can be taken so that

ε5 = ε6 = 0, g35 = g46 = 1, g56 = 0, n ≥ 6. (4.11)

Note that in the cases of this section the choice of all othereα depends on the value
of s in En

s .

Let us consider the cases (4.10), (4.11) in more detail, denoting dimN
(1)
x M2 =

n1 (n1 = 3, 2) anda, b = {3, ..., n1 + 2}, a, b = {n1 + 3, ..., 2n1 + 2}. Then in
(2.1), (2.2) one has

ωa+n1
i + ωi

a = 0, ωa−n1
i + ωi

a = 0, (4.12)

ωa
a + ωa

a = 0, ωa
a = ωa

a = 0, (4.13)

ωb
a + ωa

b = 0, ωb
a + ωa

b
= 0, ωb

a + ωa
b

= 0. (4.14)

Substitution from (4.12)–(4.14) into (2.6), (2.7) gives thatΩj
i = Ωβ

α = 0, i.e.∇ is
flat. This leads to case (ii) of the Theorem.

In the case where the first normal subspace has a regular metric (i.e.
ε3 = ε4 = ε5, equalling to 1 or −1), the semiparallelity condition leads to
δ = σ = 0, a = b, τ = a

√
3. It follows that the normal curvature vector has a

constant scalar square at every pointx ∈ M2, i.e. the considered surface is an
isotropic surface andH2 = 3K. It gives case (iii) of the Theorem.
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5. DESCRIPTION OF PARALLEL CURVES AND SURFACES

5.1. Parallel curves

For the principal normal of the curveM1 in pseudo-Euclidean spaces there are
three possibilities: it can be space-like, time-like, or light-like.

In the first two cases one hasε2 = ±1. The parallel curve can be treated like
in [17]. It is a straight line or a circle; the latter can be of either real or imaginary
radius.

If the principal normal is light-like, thenε2 = 0 and the next frame vectore3
can be taken so thatε3 = 0, g23 = 1. Thus the Bartels–Frenet formulae can be
written as

dx = e1ds, de1 = k1e2ds, de2 = −dlnk1e2ds.

The parallelity condition leads tok1 = const, thusde2 = 0. After integration it
givesx = 1

2cs
2 + c1s + c2, where all coefficients are constant vectors. Therefore

the parallel curve of this case is a parabola.

5.2. Parallel surfaces

As is noted in Introduction, for the geometric description of the surfaces of
Theorem more detailed classification and characterization of the surfaces of type
(ii) are needed. First, the same must be done for the corresponding parallel surfaces.

Proposition 1. LetM2 be a space-like parallel surface inEn
s with flat∇, which

lies essentially in an affine subspace of theEn
s . Such anM2 is either

(ii1) translation surface of two parallel curves, or
(ii2) surface inE4

1 on its isotropic coneC3, with a fixed vertex; the mean
curvature vector of this surface is isotropic andT⊥x M

2 goes through the generator
of the cone, or

(ii3) surface inE3
0,1, E4

0,2, or E5
0,3 with two families of parabola generators

(one of them can degenerate into a family of straight lines). This surface can be
represented by the equationx = 1

2h11(u)2 + 1
2h22(v)2 +h12uv+c1u+c2v, where

all coefficients are some constant vectors and the first three of them are isotropic
(no matter whether this degeneration occurs or not).

Proof. For the full classification of parallel surfaces with flat∇ there must be
considered the frame possibilities (4.4)–(4.8), (4.10), (4.11).

The subspaceIxM2 has dimension1. Let, at first, the frame vectors be taken
as shown in (4.4). If hereσ 6= 0, then from the parallelity condition one has
ω4

3 = ω2
1 = ωξ

3 = ωξ
4 = da = dσ = dδ = 0. Thus the derivation formulae are

dx = e1ω
1 + e2ω

2,

de1 = [(δ + a)e3 + σe4]ω1,
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de2 = [(δ − a)e3 + σe4]ω2,

de3 = −ε3[(δ + a)e1ω1 + (δ − a)e2ω2],

de4 = −ε4[σe1ω1 + σe2ω
2].

If ε3 = ε4, then the considered parallel surface lies in anE4
s , s is 0 or 2 (it depends

on the signature of the metric). Sincedω1 = 0, dω2 = 0, at least locally
ω1 = du, ω2 = dv. The geodesic linesv = const andu = const are circles. Hence
the parallel surface is a translation surface of two circles on the totally orthogonal
E2

s , s is 0 or 1.

If ε3 6= ε4, the considered parallel surface is a translation surface of two lines;
one of them is a circle with real radius onE2 and the other is a circle with imaginary
radius onE2

1 .
On suppositionσ = 0, from (4.3) one has thata2 = δ2 and the vectore3 can

be directed so thata = δ, thus one of the geodesic lines degenerates into a straight
line.

In the case whereN (1)
x M2 has the metric (4.5), the equality (4.3) leads to

a2 = δ2. Then the vectore3 can be taken so thata = δ and the parallelity condition
givesω2

1 = ω3
4 = ω4

3 = ωξ
3 = ωξ

4 = 0, ω4
4 = −dσ

σ , a = const and the derivation
formulae can be written asdx = e1ω

1 + e2ω
2, de1 = (2ae3 + σe4)ω1, de2 =

σe4ω
2, de3 = −2ε3ae1ω1, d(σe4) = 0. So the considered surface lies in anE4

0,1

(or inE4
1,1) if ε3 = 1 (or ε3 = −1, respectively), which is spanned by the pointx

and mutually orthogonal vectorse1, e2, e3, σe4. Investigation of geodesic lines
gives that parallelM2 is a translation surface of circles and parabolas.

On suppositionσ = 0, it is easy to see that geometry of the corresponding
parallel surface is the same as in the previous case on analogous supposition.

In the case whereIxM2 has a vanishing metric and the frame is described by
the equalities (4.6), one hasΩ2

1 = 0; thendω2
1 = 0, i.e. ω2

1 = dψ. Thus the
formulae (3.1)–(3.5) lead toω2′

1′ = 0 andhij transform into

h′11 = (δ + a′)e3 + σe4, h
′
22 = (δ − a′)e3 + σe4, h

′
12 = b′e3,

wherea′ = acos2ψ + bsin2ψ andb′ = −asin2ψ + bcos2ψ. ThusA = a′e3, B =
b′e3, H = δe3 + σe4.

The parallelity condition leads toωξ
3 = ωξ

4 = 0, ω3
3 = −da′

a′ = −db′

b′ = −dδ
δ =

dσ
σ , i.e. b′ = k1a

′, δ = k2a
′, σ = k3

a′ , wherek1, k2, k3 are some constants.
Moreover, from (4.3) and the semiparallelity condition one hasδσ = 0 and either

1) δ = 0, σ 6= 0, (k2 = 0), or
2) δ 6= 0, σ = 0, (k3 = 0), or
3) δ = σ = 0, (k2 = k3 = 0).

Note that in the last caseM2 is a minimal surface and will be considered in
Section 7.
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Since dω1′
= 0, dω2′

= 0, at least locallyω1′
= du, ω2′

= dv, and the
derivation formulae in subcase 1) byb′ 6= 0 can be written so that

dx = e′1du+ e′2dv,

de′1 = (a′e3 + k3
a′ e4)du+ k1a

′e3dv,

de′2 = k1a
′e3du+ (−a′e3 + k3

a′ e4)dv,

d(a′e3) = −k3dx,

d(k3
a′ e4) = −k3[(e′1 + k1e

′
2)du+ (k1e

′
1 − e′2)dv].

It is seen that this surface lies in anE4
1 , spanned by the pointx and vectors

e′1, e
′
2, a

′e3,
k3
a′ e4. The pointz ∈ E4

1 with the radius vectorz = x + 1
k3
a′e3 is

fixed for the surface sincedz = 0, thus there is an isotropic coneC3 with a vertex at
the pointz. The considered surface lies on the cone, its normal planeT⊥x M

2 goes
through the generator of the cone (collinear toe3) and the mean curvature vector is
isotropic (noncollinear toe3).

On suppositionb′ = 0, the derivation formulae for the considered parallelM2

from subcase 1) can be written as

dx = e′1du+ e′2dv,

de′1 = (a′e3 + k3
a′ e4)du,

de′2 = (−a′e3 + k3
a′ e4)dv,

d(a′e3 + k3
a′ e4) = −2k3e

′
1du,

d(−a′e3 + k3
a′ e4) = 2k3e

′
2dv.

Since(a′e3 + k3
a′ e4)2 = 2k3 and (−a′e3 + k3

a′ e4)2 = −2k3, this surface lies in
anE4

1 , spanned by the pointx and mutually orthogonal vectorse′1, e
′
2, a

′e3 +
k3
a′ e4, −a′e3+ k3

a′ e4. Investigation of its geodesics gives that the considered parallel
surface is a translation surface of two plane lines of constant curvature.

In subcase 2), whenk3 = 0 on suppositionk1 6= 0 (i.e. b′ 6= 0), in the
derivation formulae one has

dx = e′1du+ e′2dv,

de′1 = [(k2 + 1)du+ k1dv]a′e3,

de′2 = [k1du+ (k2 − 1)dv]a′e3,

d(a′e3) = 0.

The considered surface lies in anE3
0,1 ⊂ E4

1 , spanned by the pointx and mutually
orthogonal vectorse′1, e

′
2, a

′e3. Denoting the partial derivatives ofx by xu, xv,
etc., one has
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xu = e1, xv = e2,

xuu = (k2 + 1)a′e3, xuv = k1a
′e3, xvv = (k2 − 1)a′e3,

xuuu = xuuv = xvvu = xvvv = 0.

Since for this case(k2 + 1)a′e3 = h11, (k2 − 1)a′e3 = h22, k1a
′e3 = h12, then

parallelM2 can be represented by the equationx = 1
2h11(u)2+ 1

2h22(v)2+h12uv+
c1u + c2v, where all coefficients are some constant vectors; the absolute term can
be made zero by exchanging the initial point. It is seen that the geodesic lines on
this parallel surface are parabolas (one of them can degenerate into a straight line).

On suppositionk1 = 0, the considered surface lies in anE3
0,1 ⊂ E4

1 and is a
translation surface of either two parabolas, or of a parabola and a straight line.

If the frame vectors are taken as shown in (4.7), then geometry of the
corresponding parallel surface is the same as in the previous case, subcase 2).

Finally, if (4.8) holds, then the parallelity condition impliesω3
3 = −db′

b′ =
−da′

a′ = −dδ
δ (i.e. b′ = k1a

′, δ = k2a
′, wherek1, k2 are some constants),

ω4
4 = −dσ

σ , andω4
3 = ω3

4 = ωξ
3 = ωξ

4 = 0.
Since dω1 = dω2 = 0, then at least locallyω1 = du, ω2 = dv and the

derivation formulae can be written so that

dx = e′1du+ e′2dv,

de′1 = [(k2 + 1)a′e3 + σe4]du+ k1a
′e3dv,

de′2 = k1a
′e3du+ [(k2 − 1)a′e3 + σe4]dv,

d(a′e3) = 0, d(σe4) = 0.

On suppositionσ = 0, the considered surface lies inE3
0,1 spanned by the pointx

and mutually orthogonal vectorse′1, e
′
2, a

′e3, and geometry of thisM2 coincides
with geometry in the case with (4.6), subcase 2).

If σ 6= 0 andb′ 6= 0, thenM2 lies inE4
0,2 spanned by the pointx and mutually

orthogonal vectorse′1, e
′
2, a

′e3, σe4 and is determined by the equation
x = 1

2h11(u)2 + 1
2h22(v)2 + h12uv + c1u+ c2v,whereh11 = (k2+1)a′e3+σe4,

h12 = k1a
′e3, h22 = (k2 − 1)a′e3 + σe4 (all coefficients are constant vectors),

and has two families of parabola generators.
Finally, if σ 6= 0, but b′ = 0, then the considered parallel surface lies inE4

0,2

and is a translation surface of two geodesic lines, each of which is a parabola.
The subspaceIxM2 has dimension2. Here the metric inN (1)

x M2 vanishes
completely and is described either by (4.10) or (4.11).

In the first case the subspaceN (1)
x M2 has a maximal dimension. Then the

frame can be adapted to the considered surface so thatA = e3, B = e4, H = e5,
i.e. a = b = τ = 1 andδ = σ = 0. Thus the Pfaff system can be written as
follows:
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ω3
1 = ω1, ω4

1 = ω2, ω5
1 = ω1, ωa

1 = ωξ
1 = 0, (5.1)

ω3
2 = ω2, ω4

2 = ω1, ω5
2 = ω2, ωa

2 = ωξ
2 = 0. (5.2)

Herea = 6, 7, 8; ξ = 9, ..., n, and substitution into the parallelity condition leads
to ω3

3 = ω4
4 = ω5

5 = ω5
3 = ω5

4 = ω3
5 = ω4

5 = 0, 2ω2
1 = ω4

3 = −ω4
3. Due to

e3 + e5 = h11, e4 = h12, e5 − e3 = h22, the derivation formulae can be written
as

dx = e1ω
1 + e2ω

2,

de1 = ω2
1e2 + h11ω

1 + h12ω
2,

de2 = −ω2
1e1 + h12ω

1 + h22ω
2,

dh11 = ω2
1h12,

dh22 = −ω2
1h12,

dh12 = −ω2
1(h11 − h22).

SinceΩ2
1 = 0, due to (2.6) heredω2

1 = 0, i.e. ω2
1 = dψ. Using transformation

formulae (3.1)–(3.5), one hasω2′
1′ = 0, dω1′

= 0, dω2′
= 0. The last two equalities

imply, at least locally, thatω1′
= du, ω2′

= dv, thus

dx = e′1du+ e′2dv,

de′1 = h′11du+ h′12dv,

de′2 = h′12du+ h′22dv,

dh′11 = dh′12 = dh′22 = 0.

So the considered parallel space-likeM2 lies in anE5
0,3 spanned by the pointx

and mutually orthogonal vectorse1, e2, h′11, h
′
22, h

′
12, the last three of which are

light-like, two others space-like. This surface can be represented by the equation
x = 1

2h
′
11(u)

2 + 1
2h

′
22(v)

2 +h′12uv+h′01u+h′02v, where all coefficients are some
constant vectors. It is seen that the geodesic linesu = const andv = const on this
parallel surface are parabolas.

For the parallel space-like surfaceM2, with dimN (1)
x M2 = 2, i.e. when the

frame vectors are taken as shown in (4.11) and the frame can be adapted toM2 so
thatA = e3, B = e4, i.e. a = b = 1. Moreover, if the mean curvature vectorH
is nonzero, thenA andB can be taken so thatA ‖ H and thusH = δe3. Now the
Pfaff system can be written as

ω3
1 = (δ + 1)ω1, ω4

1 = ω2, ωa
1 = ωξ

1 = 0, (5.3)

ω3
2 = (δ − 1)ω2, ω4

2 = ω1, ωa
2 = ωξ

2 = 0. (5.4)
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Here a = 5, 6; ξ = 7, ..., n and from the parallelity condition (2.8) one has
ω3

3 = ω4
4 = ω5

4 = ω6
3 = ω2

1 = ω4
3 = ω3

4 = dδ = 0. Thus the derivation
formulae

dx = e1ω
1 + e2ω

2,

de1 = (δ + 1)e3ω1 + e4ω
2,

de2 = e4ω
1 + (δ − 1)e3ω2,

de3 = de4 = 0

give that the considered surface lies in anE4
0,2 spanned by the pointx and mutually

orthogonal vectorse1, e2, e3, e4.
Sinceh11 = (δ+1)e3, h22 = (δ−1)e3, h12 = e4, the considered surface can

be represented by the equationx = 1
2h11(u)2 + 1

2h22(v)2 + h12uv + c1u + c2v.
Hereω1 = du, ω2 = dv; theu- andv-lines are geodesics of this surface and if
δ2−1 6= 0, then they are parabolas, but ifδ2−1 = 0, then one of them degenerates
into a straight line.

This completes the proof of Proposition 1.

6. EXISTENCE OF SEMIPARALLEL SURFACES

Now there arises the problem of the existence of a nontrivial 2nd-order envelope
of parallel surfaces from (i)–(iii) of the Theorem.

It is known that parallel surfaces of (i) of the Theorem have only trivial
2nd-order envelopes (i.e. they are umbilic-like in the sense of [17]).

For case (iii) it is established in [19] that in E6
s , (s is 0, 3, or 4) there exists

the most general semiparallel surfaceM2 with some arbitrariness and it is the
2nd-order envelope of a 2-parameter family of mutually noncongruent Veronese
orbits. Moreover, these results can be used inE6

s by s = 1, taking eα so that
ε3 = ε4 = ε5 = 1, ε6 = −1, ε7 = ... = εn = 1. Thus the difference from [19]
will be in (2.1), whereω6

K = −ε6ωK
6 , K = 1, ..., 5 but it does not influence the

final result.
In case (ii) Proposition 1 can be used. In the latter for subcase(ii1), when the

parallel surfaceM2 is a translation surface, the existence of the nontrivial 2nd-order
envelope of these surfaces is obvious. Thus it remains to consider subcases(ii2)
and(ii3) of Proposition 1.

Proposition 2. LetM2 be a nonminimal parallel surface of subcase(ii2) or (ii3).
There exists their nontrivial 2nd-order envelope with some arbitrariness.

Proof. Without a loss of generality only the frame possibilities (4.6) withb 6= 0,
(4.10), (4.11) can be considered.

In the first of them, taking into account thatω4
3 = ω3

4 = 0 andω3
3 = −ω4

4, the
Pfaff system (4.1), (4.2) after exterior differentiation gives
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[d(δ + a) + (δ + a)ω3
3 − 2bω2

1] ∧ ω1 + (db+ bω3
3 + 2aω2

1) ∧ ω2 = 0,

(db+ bω3
3 + 2aω2

1) ∧ ω1 + [d(δ − a) + (δ − a)ω3
3 + 2bω2

1] ∧ ω2 = 0,

[dσ − σω3
3] ∧ ω1 = 0,

[dσ − σω3
3] ∧ ω2 = 0,

[(δ + a)ωξ
3 + σωξ

4] ∧ ω1 + bωξ
3 ∧ ω2 = 0,

bωξ
3 ∧ ω1 + [(δ − a)ωξ

3 + σωξ
4] ∧ ω2 = 0.

1) Letσ 6= 0, δ = 0. It is easy to see that thendσ = σω3
3. Sinceb 6= 0, the basis

of secondary forms consists ofda, db, 2ω2
1, ω

3
3, ω

ξ
3, ω

ξ
4 and the ranks of the polar

systemss1 = 2+2(n−4) ands2 = 2. Thus Cartan’s numberQ = 6+2(n−4). On
the other hand, due to Cartan’s lemma the number of the independent coefficients is
6+2(n−4). Thus Cartan’s criterion is satisfied and this Pfaff system is compatible
and determines the consideredM2 for subcase(ii2) with arbitrariness of two real
holomorphic functions of two variables.

2) Let δ 6= 0, σ = 0. If hereδ2 − a2 6= 0, then due to Cartan’s lemma for
the first two equalities one has8 independent coefficients. Consideration of the
last two equalities givesωξ

3 = rξ
1ω

1 + rξ
2ω

2, whereasr1 = rξ
1eξ andr2 = rξ

2eξ are
either both zero or linearly dependent vectors. The common number of independent
coefficients is either8 or8+(n−4), respectively. In both casesQ = N ands2 = 3.

If δ2 − a2 = 0 (for exampleδ = a), thenrξ
1 = rξ

2 = 0, N = Q = 6, where
s1 = 2, s2 = 2.

Thus the semiparallel surface of subcase(ii3) in E3
0,1 exists either with

arbitrariness of three real holomorphic functions of two variables (it has two
families of parabola generators), or with arbitrariness of two real holomorphic
functions of two variables (this occurs when parabola degenerates into a straight
line).

In the case (4.10) the Pfaff system (5.1), (5.2) gives by exterior differentiation

(ω3
3 + ω3

5) ∧ ω1 + (2ω2
1 + ω3

4) ∧ ω2 = 0, (2ω2
1 + ω3

4) ∧ ω1 + (ω3
5 − ω3

3) ∧ ω2 = 0,

(2ω2
1 − ω4

3 − ω4
5) ∧ ω1 − ω4

4 ∧ ω2 = 0, ω4
4 ∧ ω2 + (2ω2

1 − ω4
3 + ω4

5) ∧ ω2 = 0,

(ω5
3 + ω5

5) ∧ ω1 + ω5
4 ∧ ω2 = 0, ω5

4 ∧ ω1 + (ω5
5 − ω5

3) ∧ ω2 = 0,

ω6
5 ∧ ω1 + ω6

4 ∧ ω2 = 0, ω6
4 ∧ ω1 + ω6

5 ∧ ω2 = 0,

(ω7
3 + ω7

5) ∧ ω1 = 0, (ω7
5 − ω7

3) ∧ ω2 = 0,

ω8
3 ∧ ω1 + ω8

4 ∧ ω2 = 0, ω8
4 ∧ ω1 − ω8

3 ∧ ω2 = 0,

(ωξ
3 + ωξ

5) ∧ ω1 + ωξ
4 ∧ ω2 = 0, ωξ

4 ∧ ω1 + (ωξ
5 − ωξ

3) ∧ ω2 = 0,

whereξ = 9, ..., n. Using here Cartan’s lemma and also relations (4.12)–(4.14),
one hasω8

3 = ω7
3 = ω8

4 = ω6
4 = ω7

5 = ω6
5 = 0. The common number of
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coefficients on the right sidesN = 14 + 4(n− 8) = 4n− 18. On the other hand,
first, the basis of the secondary forms consists of2ω2

1, ω3
3, ω3

4, ω
3
5, ω4

3, ω4
4,

ω4
5, ω5

3, ω5
4, ω

5
5, ωξ

3, ωξ
4, ω

ξ
5; second, the ranks of the polar systems are:

s1 = 6 + 2(n − 8) and s1 + s2, wheres2 = n − 4, thus Cartan’s number
Q = s1 +2s2 = 4n− 18. Hence Cartan’s criterion is satisfied and the semiparallel
surface of subcase(ii3) in E5

0,3 exists with arbitrariness ofn− 4 real holomorphic
functions of two variables.

For the case (4.11) the first eight equations of the Pfaff system (5.3), (5.4) lead
by exterior differentiation to

[dδ + (δ + 1)ω3
3 + σω3

4] ∧ ω1 + [2ω2
1 + ω3

4] ∧ ω2 = 0, ω5
4 ∧ (σω1 + ω2) = 0,

[2ω2
1 + ω4

4] ∧ ω1 + [dδ + (δ − 1)ω3
3 + σω3

4] ∧ ω2 = 0, ω5
4 ∧ (ω1 + σω2) = 0,

[dσ − 2ω2
1 + (δ + 1)ω4

3 + σω4
4] ∧ ω1 + ω4

4 ∧ ω2 = 0, (δ + 1)ω6
3 ∧ ω1 = 0,

ω4
4 ∧ ω1 + [dσ + 2ω2

1 + (δ − 1)ω4
3 + σω4

4] ∧ ω2 = 0, (δ − 1)ω6
3 ∧ ω2 = 0.

This system together with (4.12)–(4.14) givesω5
4 = ω6

3 = 0. After exterior
differentiation the equationsωξ

i = 0, ξ = 7, ..., n, give

[(δ + 1)ωξ
3 + σωξ

4] ∧ ω
1 + ωξ

4 ∧ ω
2 = 0,

ωξ
4 ∧ ω

1 + [(δ − 1)ωξ
3 + σωξ

4] ∧ ω
2 = 0.

Now the basis of secondary forms consists of2ω2
1, ω

3
3, dδ, ω

3
4, ω

4
3, ω

4
4, ω

ξ
3, ω

ξ
4.

Let δ2−1 6= 0; thens1 = 4+2(n−6) ands2 = 6+2(n−6)−4−2(n−6) = 2,
Cartan’s number is8 + 2(n − 6) and it is equal to the number of independent
coefficients.

In the caseδ2 − 1 = 0 (for exampleδ = 1), s1 = 4 + 2(n − 6), s2 = 1, and
Q = N = 6 + 2(n− 6).

Cartan’s criterion is satisfied and the semiparallel surface of subcase(ii3) in
E4

0,2 exists either with arbitrariness of two real holomorphic functions of two
variables, or with arbitrariness of one real holomorphic function of two variables
(depending on the occurrence of degeneration).

This completes the proof of Proposition 2.

7. MINIMAL SEMIPARALLEL SPACE-LIKE SURFACES

It is known that inEn every minimal semiparallel submanifold is totally
geodesic (see [8] and [17]), but in En

1 there exist minimal semiparallel time-like
surfaces (strings), which are not totally geodesic (see [16]). It can be shown that
among surfaces of type (ii) inEn

s with s > 0 there do exist not totally geodesic
minimal semiparallel space-like surfaces.
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Proposition 3. In En
s with s > 0 a minimal semiparallel space-like surfaceM2,

which is not totally geodesic, has flat∇ and is either
1) a surface inE3

0,1 or in E4
0,2, which has two families of parabola generators

and can be represented by the equationx = 1
2h11((u)2−(v)2)+h12uv+c1u+c2v,

where all coefficients are some constant vectors, moreover, the first two of them are
isotropic, or

2) a hyperbolic paraboloid inE3
0,1, or

3) a 2nd-order envelope of a family, consisting of the surfaces of one of the
previous classes inEn

s .

Proof. Due to Proposition 1 here the cases when dimIxM
2 is either 1 (subcases

(4.5)–(4.8)) or 2 (subcase (4.11)) are to be considered with the additional condition
H = 0 (i.e. δ = σ = 0).

Let dimIxM2 = 1; then Pfaff system (4.1), (4.2) transforms into

ω3
1 = ω1 + bω2, ω3

2 = bω1 + ω2, ωξ
1 = ωξ

2 = 0, ξ = 4, ..., n.

Exterior differentiation leads to

(ω3
3 − 2bω2

1) ∧ ω1 + (db+ bω3
3 + 2ω2

1) ∧ ω2 = 0, ωξ
3 ∧ (ω1 + bω2) = 0,

(db+ bω3
3 + 2ω2

1) ∧ ω1 − (ω3
3 − 2bω2

1) ∧ ω2 = 0, ωξ
3 ∧ (bω1 − ω2) = 0.

For all cases (4.5)–(4.8) on suppositionb 6= 0, due to Cartan’s lemma one has
ωξ

3 = 0 and the number of independent coefficients is4; since the basis of
secondary forms consists ofdb, ω3

3, 2ω2
1 and the ranks of the polar systems

s1 = 2, s2 = 1, Cartan’s numberQ = 4. The considered minimal surface exists
with arbitrariness of one real function of two variables.

If b = 0, then it is easy to see thats1 = 2, s2 = 0; hereQ = N = 2 and the
minimal surface for this case exists with arbitrariness of two real functions of one
variable.

Investigation of geometry gives the derivation formulaedx = e′1du+ e′2dv,
de′1 = a′e3du+ k1a

′e3dv, de
′
2 = k1a

′e3du− a′e3dv, d(a′e3) = 0. ThusM2 lies
in E3

0,1 and due toh22 = −h11 either is determined by the equationx =
1
2h11((u)2 − (v)2) + h12uv + c1u+ c2v, where all coefficients are some constant
vectors, and thus has two families of parabola generators, or is a hyperbolic
paraboloid.

For the case dimIxM2 = 2, the minimalM2 occurs in (4.11). The Pfaff system
now transforms into

ω3
1 = ω4

2 = ω1, ω3
2 = −ω4

1 = −ω2, ωξ
1 = ωξ

2 = 0, ξ = 5, ..., n.

After exterior differentiation it gives

ω3
3 ∧ ω1 + [2ω2

1 + ω3
4] ∧ ω2 = 0, [2ω2

1 + ω3
4] ∧ ω1 − ω3

3 ∧ ω2 = 0,

31



[−2ω2
1 + ω4

3] ∧ ω1 + ω4
4 ∧ ω2 = 0, ω4

4 ∧ ω1 + [2ω2
1 − ω4

3] ∧ ω2 = 0,

ωξ
3 ∧ ω1 = 0, ωξ

3 ∧ ω2 = 0.

Due to Cartan’s lemma allωξ
3 are zero; the other equalities giveN = 4 + 2 = 6;

the basis on the left sides consists of2ω2
1, ω3

3, ω3
4, ω4

3, ω4
4 and the ranks of

the polar systemss1 = 4, s2 = 1. So Cartan’s number is equal to the number
of independent coefficients and Cartan’s criterion is satisfied. The extended Pfaff
system determinesM2 with arbitrariness of one real holomorphic function of two
variables. For this surfacedx = e1ω

1 + e2ω
2, de1 = e3ω

1 + e4ω
2, de2 =

e4ω
1 − e3ω

2, de3 = de4 = 0, thus the considered minimalM2 lies inE4
0,2 and

can be represented by the equationx = 1
2h11((u)2 − (v)2) + h12uv + c1u + c2v,

where all coefficients are constant vectors. ThisM2 has two families of parabola
generators.

This completes the proof of Proposition 3.
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PARALLEELSED JA SEMIPARALLEELSED RUUMISARNASED
PINNAD PSEUDOEUKLEIDILISTES RUUMIDES

Elena SAFIULINA

AlammuutkondaM2 (pinda) ruumisEn
s nimetataksesemiparalleelseks, kui

R(X,Y )h = 0, kus X ja Y on suvalised puutujavektorid,R on van der
Waerdeni–Bortolotti seostuse∇ (∇ = ∇⊕∇⊥) kõverusoperaator jah on teine
fundamentaalvorm. Semiparalleelsete pindadeM2 klassis on olemas alamklass,
mille kõik pinnad on paralleelse vormigah. Neid pindu iseloomustab tingimus
∇h = 0 ja neid nimetatakseparalleelsetekspindadeks. Siinses töös on antud
semiparalleelsete ruumisarnaste pindade klassifikatsioon ja näidatud nende olemas-
olu ning suva ruumisEn

s . On tõestatud, et ruumisarnane pindM2 on semi-
paralleelne siis ja ainult siis, kui see on totaalselt ombiline (erijuhul totaalselt
geodeetiline) või selle seostus∇ on kõveruseta või see on isotroopne pind, mida
iseloomustab tingimus‖ H ‖2 = 3K, kusH on keskmise kõveruse vektor jaK
on Gaussi kõverus. Lisaks sellele on antud vaadeldavate pindadeM2 detailsem
klassifikatsioon juhul, kui seostus∇ on kõveruseta, kasutades asjaolu, et igaüks
neist on paralleelsete pindade teist järku mähkija, ning tõestatud, et eksisteerivad
seda laadi minimaalsed pinnad, mis pole totaalselt geodeetilised.
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