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1. INTRODUCTION

The aim of this paper is to investigate the order of approximation by some
new-type summation methods of trigonometric Fourier series. These methods are
introduced in 2] for constructing some approximation processes for functions in
the disc algebra in uniform norm. The definition of the summation methods is
based on the Zak transform.

We introduce some notations. LM, Z, R, C denote the sets of all naturals,
all integers, all real, and all complex numbers, respectively. Let us consider the
triangulary-means (or summation methods)

“~ [k
Un(f,z) = % + Z © <n> (ay cos kx + by, sin kx) (1)
k=1

of the real Fourier series of Zr-periodic continuous functiorf € Cs; with
Fourier coefficientsiy, b;. Severalp-means can be defined by the continuous
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functiony € Cjg 1), which satisfies the boundary conditiopf)) = 1, p(1) = 0.

Our new summation methods are constructed as follows. The Zak transform
Z1¢ : R x R—C (cf. [?], pp. 164, 166;1], pp. 109-110) of a functiop : R—C

is formally defined by

Zp(u,v) ==Y Yu+)e” (w0 €R).
leZ

SinceZy is a quasi-periodic function, i.e.
Zp(u+1,0) = e Zp(u,v), Z(u,v +21) = Zp(u,v)  (u,v € R),

it is reasonable to consider the variablesv) € [0, 1] x R only. We are interested
in the Zak transform of a real-valued and even functiomhen it will be convenient
to define

Z0(u,v) = ZO(U +1) coslv (u€0,1], v € R). 2
leZ

Obviously, the (real even) Zak transform (2) of an even function is even in both
variablesu andwv. The simplest condition for the Zak transfor#9 to be well-

defined is
> 10(u+1)| < oo. (3)
I€Z

Actually, we shall use only one part of the Zak transform defined by

Z0(u,v) = Zﬂ(u + 1) cos v (ue0,1], v e R). 4)
=0

Now our new-type summation methé ([!], p. 312) is defined by (1), where
instead of the matriXy(k/n))k=0.1,...n; neNn We use the functional matrix with
entries

k k
) <n,n:c> =710 (n,nx> (k=0,1,...,n; neN, z€R), (5

explicitly,

. k
Us(f,z) == % + o <n,nx> (ay cos kx + by sin kx). (6)
k=1

First we remark that/’ is non-polynomial, i.e. in contrast with (1)} f is not a
trigonometric polynomial. Denote

Ao(f,x) :=ao/2, Ar(f,z):= acoskx + by sin kz (keN). (7



Then, under the condition (3) we may write

Ui(f,x) = Z (ZQ (l + i) Ag(f, m)) coslnz. (8)
k=0

=0

Now it is clear thatU; forms linear transformation o'y, into Ca,. We also see
that the first summand df in (8) is the ordinary summation method (1) defined
by 6.

We must choose the functiagh so that, like fory in (1), ®(0,v) = 1 and
®(1,v) = 0 for all v € R. Moreover, under some additional conditions ®n
we shall find the order of approximation by the method (6). It turns out that the
approximation properties df;; depend on the Fourier-cosine transformfain a
discrete set of points. To understand the situation better, we recall an earlier result
[°] which we call the subordination principle via the Rogosinski-type summation
methods.

2. SUBORDINATION PRINCIPLE VIA ROGOSINSKI-TYPE
SUMMATION METHODS

The Rogosinski-type summation methods (or means), denotdd,hy were
introduced by Rogosinskf]in the form (j € N)

Ry i(f @) = % + ZCOS ((J — ;) k;:) (ag coskx + by sinkx).  (9)
k=1

It is remarkable that here the generating functigngt) := cos(j — 3)7t

(j € N) constitute an orthogonal systedp;} on [0,1] and the boundary
conditionsy;(0) = 1, ¢;(1) = 0 are valid for allj € N. This circumstance
inspired us to represent the function (5) by a Fourier series using the system
{¢;}. To simplify the notations, letr; := (j — %)w. Let us evaluate the Fourier
coefficients of® by the systen{,}. We have

1
dj(v) = 2/ P (u, v) cos(mju)du (10)
0
and formally
O(u,v) =D d;(v)p;(u). (11)
j=1

Now our subordination principle (seg]| Theorem 1’) reads as follows.
Theorem A. Let the sequence of coefficie(ii®) satisfy

> ldj(v)] < oo,
j=1



where the series is converging uniformly forc R. If the function® in (5)
generates the summation meth@gl by (6), then we have

Ui(f,x) = Zdnm R, ;(f,x),

f( ) UZ fa Zd TLQS ‘T ij(f»x))'

By Theorem A we see that the generalized Rogosinski means are very useful
for the investigation of methods;;. Therefore we continue with a theorem for
the generalized Rogosinski meaRs ; [°]. Let wi(f,d) be thekth modulus of
continuity (see ]) of the functionf € Cos.

Theorem B.Forall j e N
4 .
sup || Ry ;|| = — logj 4+ O(1). (12)
neN ™

Moreover, there exist two positive absolute constavits(¢ = 1 or ¢ = 2) such
that the generalized Rogosinski means have the order of approximation

1
IF = Rusflle.. < Myt (1.7 (13)

for ¢ = 1 or ¢ = 2, respectively.

As a straightforward consequence of Theorems A and B we formulate two
theorems (cf. T]) that we shall apply to the new summation mettiggintroduced

in['.
Theorem 1. Let for the sequence of coefficients(it0) there exist an absolute
(independent of € R) constantn such that

Z|d )| logj < mg < oo. (14)

If the function® in (5) generates the summation methadgl by (6), thenU; forms
a uniformly bounded linear transformation @ry,; into Cs..

Theorem 2. Let for the sequence of coefficients(itD) there exist an absolute
(independent of € R) constantmn, (¢ = 1 or ¢ = 2) such that

Z]q|d )| < my < 0. (15)

Then, for anyf € Cy,, we have the order of approximation

> 1
1 = Uz fllca, < Mymawq (£,

whereq = 1 or ¢ = 2, respectivelyand the constants/,, m, are from Theorem
B and from(15), respectively.
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3. APPLICATIONS TO SOME EXAMPLES OF APPROXIMATION
METHODS

We are looking for some examples of the functiim (5) so that the condition
(15) would be valid.

Example 1. One of the simplest choices féris the sinc function defined by the

equality .
. Sin Tx €T 7é 0
— T ?
SINC T : { 1’ z = 0.

Sincesinc! = 0 forl € Z \ {0}, itis clear that for
1 (u,v) := Z* sinc(u,v)
in (5) we have
®,(0,v) =1, P1(1,0) =0 (veR). (16)

Unfortunately, the sinc function decreases too slowly to quarantee that the condition
(15) is satisfied. But here is another interesting feature.
First, we can find the Zak transform (2) explicitly, i.e.

Z sinc(u,v) = Zsine(u + 1) coslv = Z sinc(u — 1) cos lv = cos(uv)
1€Z I€Z

foru € R, v € (—m, ) (see f], pp. 62-63). Here the last equality says that the
Zak transform of the sinc function is the Fourier series of the funetietuv). This

case is interesting also because here the Zak transform does exist, but the condition
(3) is not valid.

Second, in the case of the sinc function the first summand in (8) is the famous
Lanczos' filter (see, e.g.)], Ch. 22, Sec. 22.6). We shall consider the Lanczos’
filter in our last section.

The functionsinc? z has better decay thasincz and preserves all nice
properties okinc . Therefore, in the following we shall usenc? z.

Example 2. Let the summation methad;* be defined by (6), where instead ®f
we have
By (u,v) := Z T sinc?(u, v).

Obviously, the conditions (16) are valid also f@,. We need some technical
lemmas to check (15). Since by (4)

Do (u,v) = Zsinez(u + 1) coslv (u€[0,1], v € R),
1=0



we first find estimations for shifted Fourier-cosine transforrsiné? z, i.e. for
1
01 = / sinc?(1 + t) cos(mjt)dt (1=0,1,...; jeN). a7
0

As before;m; := (j — 3). Integration by parts in (17) gives

Lemma 1. Let g ber-times differentiable ofp, 1]. Then

1 1 1
/0 g(t) cos(at)dt = (—1)”6”/0 g (t) cos (at— g) dt
r—1 1
1 (k+1)
+ Z(—l)kak+lg(k)(t) cos <at - (2>
k=0 0
To simplify notations, let
sp(t) :==sinc®t  (k=1,2,3,4). (18)
To use Lemma 1, we must evaluate several derivatives.
Lemma 2. We have
$(0) =s7(0) =0, s{(0)=—7%/3, si"(0)=n/5, (19)
and forl ¢ N
(-1 (-1 2
sl) =0, i) === () =—5—,
(20)

0= (- p) L= (7).

Proof. We get the derivatives in (19) from the power series of the sinc function. For
(20) we write
mtsi(t) = sint, (21)

which by Leibniz’s rule for thexth derivative yields

tsgn) (t) + nsgn_l) (t) = 7" Lsin(nt + nw/2). (22)

Puttingt = I € N, we get step by step the equalities (20).

Lemma3. Foralll=0,1,..; j € N the shifted cosine transform eifnc? ¢
in (17) has the estimation

d;=0(+1)7%7%).
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Proof. If in Lemma 1 we takg(t) = sa2(l+t),r = 3,a = m; := (j —1/2)m, then
we obtain

sl +1 1
O = — 2t (=1 2 3 ) +—
m; M m;

1
3/ sy (I +t) sinm;tdt. (23)
0
Since by (18), = s?, we get
sh=2s18y, sy =2(s1)*+2s18], sy =6ss] 4+ 2515 (24)

Now (20) yields forl € N
1)=s5()=0 o) = 72 25
82() 52() ’ 52() 12 (25)

and for (23) we may write

(—1)7 2 1
;=
T )ms

1
3/ sy (I +t) sinmtdt. (26)
0

Since by definition (18)%:(t) = O(t™') (¢t > 0), it follows from (22) that
si(t) = O(t™"), s{(t) = O(t™"), s{'(t) = O(t™") (t > 1). Therefore, by
(24) si'(t) = O(t2 ) (t > 1) and for (26) we have for alle N

2 M (v dt

64| < + =0((1+1)7%7%),
WIS g P Jy e T

asm; = (j — 1/2)r. Since by (24) and by LemmasgZ’ is bounded o0, co), the
equality (26) impliesyy ; = O(j~3). The proof is complete.

Now it is easy to check [see (10), (5), (4), and (17)] that for

1
dja(v): = 2/0 ZTsinc? (u + v) cos(mju)du

o0 1
= 2 Z cos lv / sinc? (u + 1) cos(mju)du
1=0 0

Lemma 3 yields
di2(v)=0("") (jEN,veR). (27)

Therefore, the condition (15) is valid fgr = 1 and by Theorem 2 we obtain as
follows.
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Theorem 3. The summation method

UZ2(f,x) Z (Zsmc (l + ) Ak(f,a:)> coslnzx, (28)

=0 =

generated by the Zak transform of tkiac? function, forms a uniformly bounded
linear transformation oy, into Cs,.. Moreover there exists an absolute constant
M > 0 such that for allf € Cs,;

1
I = Ui fles, < Mo (£

Proceeding from Example 2, in the following we could attempt witle3¢. In
this case we will have the same order of approximation as in Theorem 3'{(3ee [
This observation fits well with the Fourier-cosine transform of the funcgidn
the definition of ordinary summation methods (1). Let us define the Fourier-cosine
transform by

1
¢"(s) 12/0 (u) cos(msu)du.

Then, fore; (t) := 1 (Fourier partial sums) we have(s) = sinc s, for @a(t) :=

1 — t (Fejér means) we havg) (s) = 3 sinc?(s/2), for p3(t) := 1 — 6t + 613

if 0 <t < 1andps(t) = 2(1 —1t)3if 1 <t < 1 (Jackson—-de La Vallée
Poussin means) we hayg (s) = 2 sinc*(s/4). It is known that in spacé€’s, the
Fourier partial sums may diverge, but the Fejér means and the Jackson—de La Vallée
Poussin means have the order of approximatieqf,1//n) and ws(f,1/n),
respectively (see'l], pp. 77, 205). Let us remark that we can find this order of
approximation by the Jackson—de La Vallée Poussin means also by using Theorem
2. Indeed, herel; = 2¢%(m;) = O(j;~*) and the condition (15) is valid with

q = 2. After this discussion we continue withnc?t.

Example 3. Let the summation methdd:* be defined by (6), where instead ®f
we have
Dy (u,v) == Z sinct(u,v).

Obviously, the conditions (16) are valid also fbg. This example is quite similar
to Example 2. Therefore we only sketch the proofs. We deduce now from Lemma 1
that

(~1)7+! 0

o ; = m; s4(l+1) — my? + (—1)j m3 m,

SU+1) | s
+ 4

1
+/ (4)(l+t) cos(myt)dt.
m;= Jo
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If in (24) we replaces; by s, andss by s4, then we have by (25) for alle N

sall) = (1) = (1) = ${/1) = 0.

This already yields

1 [t
05 = mj4/0 sfl )(l +t) cos(m;t)dt.

Using

)

3514) = 6(s5)? + 8shsh + 28285 )
gives step by step the estimati@fﬁ) (r) = O(x~*) for all z > 1. Hence,
514 O((Z + 1) 4 _4)

and for

1
dja(v) = 2/0 ZFsinct (u + v) cos(mju)du

o0 1
= 2 Z cos lv / sinc*(u + 1) cos(m;ju)du
1=0 0

it follows that
dja(v) =0(")  (j €N, veR)

The condition (15) is fulfilled foy = 2 and by Theorem 2 we obtain as follows.
Theorem 4.The summation method

U f,z) == Z <Zsmc < >Ak(f, )) coslnz, (29)

=0

generated by the Zak transform of tkiac* function, forms a uniformly bounded
linear transformation oy, into Cy.. Moreover there exists an absolute constant
M > 0 such that for allf € Cs,

~ 1
I = Ui Flles. < Mn (£
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4. LANCZOS’ FILTER
Lanczos'’ filter is important for reducing the effect of the Gibbs phenomenon

(see P'12]). In ['3], pp. 332-333, we find the order of approximation by Lanczos’
method, defined by

- k
L,(f,x) = % + Zsinc <n> (ax cos kx + by sin k),
k=1

as follows: _
I = Luflles, <30 (1.7)
Here
h
1
p(ri) =5 | [ 140 =0l >0 (30)
h Cor

So far we have not found any references to the order of approximatidn, lwa

the modulus of continuity. We present here a simple order of approximatidn by

For the consideration we need our earlier result (here only a special case is given)
as follows ([“]; cf. also [%], p. 312).

Theorem C. Let the summation methdd, be defined byl), where the functiorp
has for some € N the representation

oo o0
olu)=1-— chUQj, Z ;] < 0. (31)
j=r j=r
Then there exists a constahf(r) > 0 such that

I = Unflles. < MCryeur (£:7)

forall f € Co,.
The condition (31) is valid for the sinc function due to the expansion

. T .
sinc(u) =1 — Z(—1)7+1.7|u29.
st (25 +1)!

Now by Theorem C we have the order of approximation of Lanczos’ method.

Theorem 5. For someM > 0 and for all f € Cs, we have the estimation
1
”f - Lnf”CQﬂ- S MWQ f, E .
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akw

ZAKI TEISENDUSEGA DEFINEERITUD TRIGONOMEETRILISTE
FOURIER' RIDADE SUMMEERIMISMEETODID

On leitud Zaki teisendusega defineeritud trigonomeetriliste Fourier’ ridade
summeerimismeetodite koonduvuskiirused. Nimetatud meetodid on vdetud kasu-
tusele artiklis ], kus neid rakendati teatud funktsioonialgebra baasi konstruee-
rimiseks.
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