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Abstract. Possible theoretical frameworks for measurement of (arrival) time in nonrelativistic
quantum mechanics are reviewed. It is argued that the ambiguity between indirect
measurements by a suitably introduced time operator and direct measurements by a physical
clock particle has a counterpart in the corresponding classical framework of measurement of
the Newtonian time based on the Hamiltonian mechanics.
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1. INTRODUCTION

The problem of time in nonrelativistic quantum mechanics consists in the
following dichotomy: a measurement of time can be described as a statistical
distribution of measurement outcomes given by a suitable time operator (or by the
corresponding spectral measure) canonically conjugate to the energy operator, or
the time flow can be visualized by the change in the position (or in the momentum)
observable of a physical clock particle which interacts with other parts of the system
under consideration and the total wave function must be determined by a quantum
evolution equation (e.g. by a Schrödinger equation). It is not clear whether these
two possibilities can be formally identified. The problem was discussed in the
classical paper by Aharonov and Bohm [1], but has recently received considerable
attention [2,3]. Our aim here is to clarify some aspects of the quantum theory by
analysing in more detail the corresponding classical theory of measurement of time.

In fact, the above-mentioned dichotomy exists already in the classical theory:
time can be understood as a parameter along a classical trajectory or as a record
of change in the spatial position of a special clock particle. Although these two
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possibilities are classically equivalent, their precise mathematical description in
the framework of the Hamiltonian formalism is not identical and upon canonical
quantization they can give rise to quantum theories of time which need not be
equivalent. The key to the understanding of the problem of time in quantum
mechanics may lie in the classical theory; so we can conclude with Lévy-Leblond
[4]: ‘nobody has ever constructed a complete “classical theory of measurement”’
(p. 4) and ‘To the initial question “where is the problem (...)?”, I would therefore
venture the paradoxical answer: “in classical theory”...’ (p. 6).

2. THE QUANTUM THEORY

2.1. Operators of position and time

Nonrelativistic quantum mechanics is a theory of (quantized) matter in the
background of a nonrelativistic spacetime with the Newtonian space coordinates
(xi) and the Newtonian time coordinatet [5−7]. The symmetry group of the
background coordinates is the Galilei group

(xi)′ = xi − ξi − V it , t′ = t− τ .

Hereξi, V i, τ are the group parameters; we have not included the group of spatial
rotations.

The Galilei group has a (projective irreducible) representation acting on
density matricesρ (states of quantized matter). For simplicity, let us consider
one-dimensional space, then the two-dimensional subgroup of the Galilei group
with parameters (ξ, V ) can be represented by unitary operatorsexp(imV Q),
exp(−iξP ), m = const. Self-adjoint operatorsQ and P satisfy the canonical
commutation relations

[Q,P ] = iI,

whereI is the unit operator and the Planck constant is taken to be~ = 1. These
operators can be given in terms of the corresponding spectral measuresEQ(x),
EP (p):

Q =
∫

R
xEQ(dx), P = m

∫
R
pEP (dp).

They can be interpreted as the position and the momentum operators if they satisfy
covariance conditions under the action of the Galilei group, e.g.

eiξPEQ(x)e−iξP = EQ(x− ξ), ξ ∈ (−∞,+∞). (1)

This means that if the device for registration of the position (spectral measureEQ)
undergoes a spatial shift in the amount ofξ, then the measured values (spectrum)
change by(−ξ).
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If the same scheme is applied in the case of canonically conjugate operators of
timeT and energyH, [T,H] = −iI, then the operatorT , for its interpretation as an
operator which establishes a relation between a quantum state and the Newtonian
time, must satisfy the covariance property

e−iτHET (t)eiτH = ET (t− τ), τ ∈ (−∞,+∞). (2)

It can be proved that if the time operator is self-adjoint, then this condition implies
an unbounded continuous energy spectrum (Pauli’s theorem) [5]. It follows that in
the cases of bounded, semi-bounded, or discrete energy spectra the covariant time
operator cannot be self-adjoint, i.e. its spectral measureET (t) cannot be given
by projection operators. However, it can be given as a positive operator-valued
measure (POVM) [5,7]. There can also be non-covariant self-adjoint operators
canonically conjugate to the energy operator [8]. But if the covariance condition
(2) is not satisfied, their interpretation as time operators is problematic.

If the notion of time in quantum mechanics is understood as a record of a
quantum measurement, then it can depend on the measurement scheme and need
not be unique. Indeed, several types of times corresponding to several types of
measurements have been proposed, e.g. the time of arrival, the tunnelling time, and
the time of a quantum clock given by a phase variable [3]. In what follows, we shall
consider only the simplest case, the time of arrival of a free particle.

2.2. Observables and measurements

In general, the physical meaning of a POVM is given by the probability
postulate: if an observableA is represented by its spectral measureEA(a), then
the probabilitypA

ρ (a) of getting a resulta at measuring a quantum stateρ is

pA
ρ (a) = Tr[ρEA(a)]. (3)

In the quantum theory of measurement [9], the probability postulate (3) is
explained in terms of a measurement interaction between the measured system and
an apparatus (a pointer), which introduces suitable correlations between them. It
can be given in the form of a unitary transformation [9]

U = eiλA⊗B, λ = const, (4)

which transforms an initial (e.g. factorized pure) state of the system and the pointer
φ⊗ ψ into the final state

U |φ⊗ ψ >=
∫

R
EA(da)φ⊗ eiλaBψ.

The pointer operatorB must be chosen so that the transformation (4) can be
interpreted as describing a measurement, i.e. the final state must contain a record
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of the measurement (eigenvaluesa of the operatorA). In the simplest case, the
record is supposed to be a shift in the positionz of the pointer particle. Then the
corresponding operatorB in the measurement interaction can be chosen to be its
canonically conjugate momentumπz and the measurement reads [9] (z0 denotes
the initial position of the pointer)

U |φ⊗ ψ >=
∫

R
EA(da)φ⊗ ψ(z0 − λa). (5)

For getting a distinct (classical) record the pointer states must consist of mutually
disjoint sets and after a measurement a possible superposition of states must be
reduced to a single reading. These problems (which are far from being clear)
include clarifying the boundary between the quantum and the classical world; we
do not go into details here and refer to, e.g., [9,10].

Measurements which are mathematically described by a POVM and the
probability postulate only, without reference to details of measuring apparatus, are
called indirect or ideal measurements.

2.3. The Aharonov–Bohm time operator

An operator corresponding to the time of arrival of a free particle moving in
one-dimensional space has been proposed already long ago by Aharonov and Bohm
[1]

T = −m
2

(qp−1 + p−1q) ≡ −m 1
√
p
q

1
√
p
. (6)

Its eigenvalue problem can be solved in the momentum representation [11−13]:

−im
√
p

d

dp

1
√
p
ΦT (p) = TΦT (p), (7)

ΦTα(p) = Θ(αp)

√
|p|
m

exp
(
iTp2

2m

)
, (8)

whereα = ±1, T ∈ (−∞,+∞).
The Aharonov–Bohm operator (6) is not self-adjoint and its eigenfunctions (8)

are not orthonormal:∫ +∞

−∞
Φ∗Tα(p)ΦT ′α′(p)dp = δαα′

1
2

(
δ(T − T ′) + iP

1
π(T − T ′)

)
.

The corresponding measurement statistics is given in terms of the POVM [5,7,11,12]

ET (∆T ) =
∑
α

∫
∆T

Φ∗Tα(p′)ΦTα(p)dT ≡
∑
α

∫
∆T
|Tα >< Tα|dT. (9)
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Let us consider a quantum system in a pure state characterized by a density
matrix ρ(t) = |φ(t) >< φ(t)|. Here t must be understood as a Newtonian
time parameter which enumerates successive states. According to the probability
postulate (3), the probability of arrival during an interval∆T reads

pT
ρ (∆T ; t) = Tr[ρ(t)ET (∆T )] =

∑
α

∫
∆T
| < φ(t)|Tα > |2dT. (10)

As in the case of a measurement of other continuous variables, e.g. the position,
here the measured quantity is not an eigenvalue but an interval of eigenvalues∆T .
However, as distinct from the measurement of the position, eigenfunctions|Tα >
are not only non-normalizable, but also non-orthogonal and a general state|φ >
cannot be uniquely given as their linear combination (integral).

Muga et al. [14] have computed probability distributions for normalized and
approximately orthogonal Gaussian wave packets (centred atT and with widthδT )
of Newtonian-time-dependent eigenfunctions|T ′, α; t >= exp(−iHt)|T ′, α >.
They found that the probability distribution of a wave packetψ(t, x;T, δT ) is
peaked around the pointx = 0, t = T and the peaking is inversely proportional
to the widthδT . Hence in this case the time of arrival atx = 0, t = T , can be
determined with arbitrary accuracy depending on the width of the wave packet.

2.4. Measurement dynamics

We may ask whether the final state (5) of a system and an apparatus can
also be obtained from a suitably constructed Schrödinger equation, i.e. whether
the measurement can be considered as a dynamical process given by a suitably
constructed Hamiltonian [15]. Formally, we can write a two-body Schrödinger
equation for a physical system(Q,P ) and a free particle(z, πz) acting as a pointer
(apparatus) together with an interaction Hamiltonian which depends explicitly on
the Newtonian time parametert, e.g. in the form of an instantaneous measurement
interaction for recording the value of an observableA(Q,P ):

i
∂

∂t
Ψ = H(Q,P, z, πz, t)Ψ, (11)

H(Q,P, z, πz, t) = Hsys(Q,P ) +
π2

z

2M
− δ(t)λA(Q,P )πz. (12)

A direct calculation confirms that if the pointer is massive (in comparison with
the measured quantum system), i.e.M → ∞ and the pointer dynamics can be
neglected, the solution of the Schrödinger equation (11) is consistent with the final
state (5).

Measurement dynamics (11), (12) can be considered also for the Aharonov–
Bohm time operator,A(P,Q) = T (P,Q), Hsys(P,Q) = P 2/2m. Detailed
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calculations have been presented for an operational model consisting in
simultaneous measurements of the position and momentum in the phase space
[16,17]. The connection between the operational model and the Aharonov–Bohm
POVM (9) has been established [18].

However, as indicated by Busch et al. [9], time dependent Hamiltonian (12) is
not allowed in a mathematically rigorous theory.

2.5. Direct measurement of time

For investigating a complete quantum dynamics of a measurement process,
Aharonov and Bohm [1] proposed to consider a quantum system consisting of
three parts: a physical system, an apparatus (a pointer), and an additional physical
particle acting as a clock. The time of interaction is determined by a physical
observable of the clock particle. The corresponding three-body Schrödinger
equation contains a general Hamiltonian which includes free Hamiltonians of a
physical systemHsys(Q,P ), a pointerHa(z, πz), and a clockHcl(x, p) together
with an interaction HamiltonianHi(Q,P, x, p, z, πz):

i
∂

∂t
Ψ = H(Q,P, x, p, z, πz)Ψ, (13)

H(Q,P, x, p, z, πz) = Hsys(Q,P )+Ha(z, πz)+Hcl(x, p)+Hi(Q,P, x, p, z, πz).
(14)

The above-mentioned interpretation of the three parts of the Hamiltonian,Hsys,
Ha, andHcl, must follow from the form of the interaction Hamiltonian. So the
specification ofHi is crucial in analysing the measurement dynamics.

Aharonov and Bohm [1] considered a free massive particle as a clock,Hcl =
p2/2m. They demonstrated that if the wave function of the total system is
factorized, e.g.Ψ = ψ(x, t)⊗ φ(Q, z, t) and the clock stateψ(x, t) is determined
from an approximate Schrödinger equation as a free-wave packet, then the general
Hamiltonian (14) can approximately be reduced to a two-body Hamiltonian (12)
with an interaction Hamiltonian which depends explicitly on the Newtonian time
parametert. They also concluded that since the time observable belongs to the
clock and necessarily commutes with any observable of the physical system, there
are no constraints to the accuracy of a record of the time of interaction by a clock
at measuring the energy of a physical system.

Aharonov and Bohm [1] investigated the time of arrival from the point of view
of determining the exact time of measurement of some other physical observable,
e.g. the energy of a quantum system. But there can be different measurement
arrangements which can be interpreted as direct measurements of the time of arrival
itself. The first model proposed by Allcock [19] consisted of a free (arriving)
particle(x, p) and an interaction Hamiltonian in the form of a complex potential
Hi = iVΘ(x), V = const (Θ(x) denotes the step function). The question under
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investigation was: what is the probability that the particle in an initial state, with
support inx < 0, enters the regionx > 0 during a finite time interval[0, t]? The
solutionφ(x, t) of the corresponding Schrödinger equation revealed a restriction
to the accuracy of the record of timet, V δt ∼ 1 which is not in the form of the
Heisenberg uncertainty relation.

From the point of view of the general three-body Hamiltonian (14), a direct
measurement of the time of arrival can be described by a two-body system which
consists of a pointer and an arriving free particle acting also as a clock. A model
whose classical analogue (which is in more detail considered in Sec. 3.2) gives a
distinct record of the time of arrival was presented by Aharonov et al. [20]:

H(x, p, z, πz) =
p2

2m
+ Θ(−x)πz. (15)

Here (x, p) specifies a free particle and(z, πz) specifies an infinitely massive
pointer which records the time of arrival of the particle atx = 0. They
demonstrated that the solution of the corresponding Schrödinger equation implies
an uncertainty relation between the kinetic energy of the particleE(p) and the
accuracy of the pointer which records the time of arrival,∆z ' ∆t,

E(p)∆t > 1. (16)

This is not a standard quantum mechanical uncertainty because the corresponding
operators belong to different particles and hence commute. Analogous restrictions
were found also for several improved model Hamiltonians [20].

According to Muga et al. [14], such restrictions are not present in the indirect
measurement of the time of arrival as given by the Aharonov–Bohm POVM (9).
Baute et al. [21] argued that a restriction to the accuracy of an indirect measurement
of the time of arrival of a free particle and its mean energy< E > can be obtained
if we consider a nonstandard uncertainty relation introduced by Wigner [22]. In
more detail: the second momentτ (in respect of an arbitrary reference timet0) of
the probability distribution of the time of arrival and its mean energy< E > satisfy

τ >
~

< E >
. (17)

Sinceτ depends on an arbitrary reference timet0, it cannot be identified with
a usual spread of measurement results around the mean value and the Wigner
uncertainty relation (17) in general does not coincide with the Heisenberg one,
although both quantities,τ and< E > characterize the same quantum particle.
This makes the relation between the conditions (16) and (17) obscure, since the
first one concerns two quantum particles and the second one only one particle.
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2.6. Measurements in a closed system

The Hamiltonian (14) does not depend explicitly on the time parametert, and a
general three-part measurement scheme (13), (14) can be considered as describing
a measurement in a closed system (cf. [23,24]).

In [1], the clock particle was approximately described by a wave packetψ(x, t)
and the general Hamiltonian (14) was reduced to a two-body Hamiltonian with an
interaction Hamiltonian depending (viaψ(x, t)) explicitly on the time parametert,
e.g. in a form of the von Neumann measurement dynamics (12). Casher and Reznik
[25] introduced another approximation for determining the time variableτ by the
state of the clock particle:τ = mx/ < px >. They argued that if the measurement
interaction is determined by quantized clock timeτ , then there arises a constraint
on the accuracy∆J of a measurement of an observableJ

∆J
J
≥ ~

(Ecl − E0)δT
. (18)

HereEcl is the clock energy which is bounded below byE0 (i.e. its Hamiltonian
is quadratic in the momentum; such a device is called a real clock) andδT is
the duration of the measurement. In the von Neumann measurement theory, the
only fundamental restriction to the measurement is the Heisenberg uncertainty
relation for noncommuting observables and there are no restrictions on the accuracy
of the measurement of a single observable. Hence the general three-body
quantum measurement scheme (13), (14) contains the von Neumann theory in
some approximation [1], but leads to results which contradict to it in some other
approximations [25].

Aharonov and Reznik [26] considered in more detail a measurement of the
total energy of a system consisting of a box, an ideal clock (i.e. a device with
the Hamiltonian which is linear in the momentum), and a pointer:

H = Hbox +Hcl +
1
2
[g(τ)Hcl +Hclg(τ) + 2g(τ)Hbox]z, (19)

whereHcl = −i~∂/∂τ is the Hamiltonian of the clock, the Hamiltonian of
the pointerπ2

z/2M vanishes (M → ∞), and g(τ) is an interaction function
normalized as

∫
g(τ)dτ = 1. They demonstrated that the solution of the

corresponding Schrödinger equation describes a measurement only ifg(τ) and the
pointer coordinatez satisfy a constraint

g(τ)z � 1. (20)

Introducing an approximationg(τ) ∼ 1/τ0 (τ0 is the duration of the measurement)
and taking into account that the accuracy of the measured value of the total energy
∆E0 is given by the record of the pointerπz, we see that the Heisenberg uncertainty
relation for the pointer implies a constraint

τ0∆E0 � 1. (21)
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This uncertainty relation between the duration of the measurementτ0 and accuracy
of the measurement record∆E0 is analogous to the relation (16) obtained for a
model of a direct measurement of the time of arrival and it cannot be considered as
the Heisenberg uncertainty relation.

We see that, at present, the quantum theory of the time of arrival leaves without
an answer at least the following questions:

1. Is indirect measurement of the time of arrival by the Aharonov–Bohm time
operator mathematically and conceptually adequate?

2. If the time of arrival is described as a direct measurement, which is the
corresponding Schrödinger equation?

3. Which is the status of non-Heisenberg uncertainty relations between time
and energy in direct and indirect measurements?

We argue that some of these questions arise already in the classical theory of
measurement of time.

3. THE CLASSICAL THEORY

3.1. External time and internal time

Classical canonical (Hamiltonian) mechanics is formulated in a phase space
(p, q) and the dynamics is determined by a HamiltonianH(p, q, t). Numerically,
the Hamiltonian is equal to the total energyE of the physical system under
consideration. Equations of motion can be derived from the canonical integral

S =
∫

(pq̇ −H(p, q, t))dt , q̇ ≡ dq(t)
dt

, (22)

as the Euler–Lagrange equations. Timet is a parameter along trajectories,
p = p(t), q = q(t).

Observable properties are represented by canonical coordinates and their
functions. For introducing an observable of time,t must be on an equal footing
with space coordinatesq. There are two possible ways to achieve this.

1. In the parametrized form of Hamiltonian dynamics [27], the parameter
t is considered as an additional canonical time coordinate. The corresponding
canonically conjugate momentum can be shown to be the total energy,pt = −H,
and the canonical integral takes a symmetric form

S =
∫

(pq̇ + ptṫ)dτ . (23)

The Euler–Lagrange equations are parametrized with an arbitrary parameterτ and
hold on a constraint surfacept + H(p, q, t) = 0. Alternatively, we can take the
totally parametrized canonical integral (23) as a starting-point; then the physics
is determined by the constraint equation which must be added. If we add the
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conventional constraint equation which is linear inpt, we get the conventional
mechanics (energy mechanics). But in general we are free to choose the constraint
equation as we please. In this way we get unconventional mechanics, interpretation
of which must be deduced from the equations. An example of an unconventional
mechanics is the so-called time mechanics [28,29], which follows from a constraint
equation which is linear int.

2. In the internal time approach by Rovelli [30], the parametert is eliminated
from the equations of motion and trajectories are parametrized by one of the
canonical coordinates, e.g. byq1, which describes the position of a physical clock
particle. The procedure is in general possible if the Hamiltonian does not depend
on timet explicitly. Then it is equivalent to the standard procedure of the lowering
of the dimension of the phase space using the Hamiltonian as the first integral,
H(pi, qi) = h = const [31]. Let us solve the last relation in respect of, e.g.,p1:

p1 = K(pj , qj , q1, h), j 6= 1.

According to the Arnol’d theorem [31], on a surface of constant energy,
H(pi, qi) = h, the trajectories can be parametrized by the corresponding coordinate
q1 and their equations are

dpj

dq1
=
∂K

∂qj
,

dqj
dq1

= −∂K
∂pj

. (24)

As an example, let us consider four-dimensional phase space(Px, x, pt, t).
If we introduce the usual energy constraintpt + H1(Px, x, t) = 0, we get the
conventional canonical equations for a particle in one-dimensionalx-space, whose
trajectories are parametrized by timet

dPx

dt
= −∂H1

∂x
,

dx

dt
=
∂H1

∂Px
. (25)

Alternatively, we can consider the constraint as a general Hamiltonian
H2(Px, x, pt, t), which does not depend explicitly on the external time parameter
τ , and use the Arnol’d theorem for lowering the dimension of the phase space. If
H2 is linear in the momentumpt, i.e. H2 = pt + H1, then equations of motion
in x-space (24) and (25) coincide (this statement is evidently true also in a general
2n-dimensional case).

However, there is a difference in the interpretation. In the former case, we
are considering the dynamics of a particle with the HamiltonianH1(Px, x, t). In
the latter case, both canonical coordinatesx, t are at first considered as possible
trajectories of physical particles, positions of which are measurable. The particle
which can move in thet-space only is a physical clock and the particle which
can move in thex-space only is a physical system under investigation. Let us
interpret the total HamiltonianH2(Px, x, pt, t) as a sum of the corresponding
free Hamiltonians plus an interaction term. Then the usual energy constraint
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pt + H1(Px, x, t) = H2 describes a clock particle with a linear free Hamiltonian
Hcl = pt. It determines the trajectory of a free clock particle aspt = const,
t = τ + τ0, whereτ is a parameter along the trajectory. Such a device is known
as an ideal clock. It is different from a real clock described by a free Hamiltonian
which is quadratic in its momentum,Hcl = p2

t /2M , and the trajectory of which
readspt = p0

t = const, t = p0
t τ + τ0.

Finally, let us note that since a trajectory(p(t), q(t)) is a mapR → R2n, i.e.
canonical coordinates and the time parameter are both real numbers, equations of
typex = t are mathematically meaningful.

3.2. Classical measurement of time

The measurement of the Newtonian timet can be realized as a measurement
of the position of a pointer particle with massM which is moving freely with a
constant momentumP 0

y :

y(t) =
P 0

y

M
t+ y(0). (26)

We can achieve alsoy = t by choosing suitable values of constants.
Let us consider a physical system given by the HamiltonianH0(p, q) and

let A(p, q) be a variable we want to measure at a timet0. Let us describe the
measurement dynamics by the same Hamiltonian (12) as in the quantum theory
[32]

H = H0(p, q) +
P 2

y

2M
+ δ(t− t0)A(p, q)Py. (27)

The trajectory of the pointer is

y(t) =
P 0

y

M
t+ y(0) +A(t0). (28)

We see that now the pointer is recording two distinct physical quantities: the
Newtonian timet (as in the previous example) and the valueA(t0). The latter can
be read out as a constant shift in the position of the pointer att > t0 in comparison
with the unperturbed trajectory att < t0. We see that the measurement of a quantity
A at a timet0 is a nonlocal procedure in timet in the sense that at first we must
determine the undisturbed trajectory of the pointer and only then we can read out
the shift proportional to the measured quantity. Usually the nonlocality in time is
eliminated by an assumption that the mass of the pointer is very big and in the limit
of an infinite mass (M → ∞) the position of the pointer att > t0 records only a
constant shifty(t)− y(t0) = A(t0).

Let the physical system under consideration be a freely moving particle with
the HamiltonianH0(Px, x) = (Px)2/2m. The property we want to measure
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is its time of arrival from the initial positionx0 = x(0) to the pointx, i.e.
A(Px, x) = (x− x0)m/Px. The trajectory of the pointer reads

y(t) =
P 0

y

M
t+ y(0) + (x(t0)− x0)

m

Px
=
P 0

y

M
t+ y(0) + t0. (29)

However, in such a measurement arrangement, the timet0 has a double meaning:
it is the time of the measurement as prescribed by the Hamiltonian (27) and
the quantity we want to measure. The time of switching on the measurement
interactiont0 equals to the measured quantity and cannot be prescribed arbitrarily.

An interaction Hamiltonian which does not fix the time of the measurementt0
in advance was proposed by Aharonov et al. [20]

H(Px, x;Py, y) =
P 2

x

2m
+
P 2

y

2M
+ Θ(−x)Py. (30)

The equations of motion of the pointer are

Ṗy = 0, ẏ =
Py

M
+ Θ(−x) (31)

and its trajectory is

y(t) =
P 0

y

M
t+ y(0) +

∫ t

0
Θ(−x(τ))dτ, Py = P 0

y = const. (32)

The pointer is moving from its initial positiony(0) with a constant velocity
ẏ = P 0

y /M + 1 till the arrival of the particle atx = 0 and after that begins to
move undisturbed. If the pointer is infinitely massive, it moves with a unit velocity
ẏ = 1 and stops at the momentt0 when the particle arrives at the pointx = 0 from
its initial positionx(0) = x0 < 0. The situation is different in comparison with that
considered in the previous example (29): the interaction between the pointer and
the particle takes place before the measurement, not just at the time of measurement
t0. This means that here we do not measure the time of arrival of a freely moving
particle but of a particle in an interaction with the pointer. The backreaction of the
interaction to the particle can be seen from the conservation of energy

(Px(x))2

2m
+

(P 0
y )2

2M
+ Θ(−x)P 0

y = E = const. (33)

Aharonov et al. [20] argue that we can takeP 0
y = 0; then the particle moves freely

and the motion of the pointer consists only of a constant shiftt0. But such a pointer
has neither kinetic nor potential energy and clearly is not a generic case.
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3.3. A general model for a real clock and a pointer

Let us now consider the Hamiltonian (30) with a general interaction function
g(x) instead ofΘ(−x):

H(Px, x;Py, y) =
P 2

x

2m
+
P 2

y

2M
+ g(x)Py. (34)

The equations of motion generated by (34) read

Ṗy = 0, ẏ =
Py

M
+ g(x), (35)

Ṗx =
dg

dx
Py, ẋ =

Px

m
. (36)

Forx(t) we get the following equation

ẍ = −
P 0

y

m

dg

dx
, P 0

y = const = Py. (37)

Its general solution establishes a relation between the internal clock timex and the
external timet

C2 ± t =
∫

dx√
C1 − 2P 0

y g(x)/m
. (38)

HereC1 andC2 are constants of integration.
The equation of motion of the pointer in respect to the internal timex now

reads:
ẏ

ẋ
≡ dy

dx
=

P 0
y /M + g(x)

±
√
C1 − 2P 0

y g(x)/m
. (39)

In the case of an infinitely massive pointer (M → ∞) the first term in the
numerator vanishes, but a dependence on the pointer momentumP 0

y remains in
the denominator. A pointer with an exactly vanishing momentum is an additional
and unrealistic condition. The influence of a small but nonvanishingP 0

y is a
multiplicative error in the shift of the pointer position

dy

dx
=

g(x)
±
√
C1

(
1 +

P 0
y g(x)
mC1

+ . . .

)
. (40)

If P 0
y = 0, thenPx = P 0

x = const. Now the constant of integrationC1 can be
given in terms ofP 0

x as±
√
C1 = P 0

x/m and the position of the pointer is

y
∣∣∣
P 0

y =0
=

m

P 0
x

∫
g(x)dx+ C.
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In the case of the interaction considered by Aharonov et al. [20], g(x) =
Θ(−x), the equation of the pointer can be integrated as

y =
∫ ∞

x0

m

P 0
x

Θ(−x)dx =
m

P 0
x

(−x0) = t0. (41)

The pointer stops and indicates the external timet0 necessary for the free particle
with constant momentumP 0

x to move from the initial positionx0 < 0, t = 0 to the
detector at the pointx = 0.

However, this “good measurement” takes place only ifP 0
y = 0. If P 0

y ≡
∆P 0

y 6= 0, then the condition for an “approximately good measurement” reads

g(x)∆P 0
y

mC1
� 1. (42)

The measurement arrangement (27), (28) of an observableA(p, q) can also be
reformulated in terms of the internal timex:

H = H0(p, q) +
P 2

y

2M
+
P 2

x

2m
+ g(x)A(p, q)Py. (43)

The equation of motion of an infinitely massive pointer (M →∞) reads

dy

dx
=

g(x)A

±
√
C − 2AP 0

y g(x)/m
, (44)

whereC is a constant of integration. The condition for a “good measurement”
reads

AP 0
y g(x)
mC

� 1 . (45)

If we approximateg(x) = δ(x) ∼ 1/x0, where x0 is the duration of the
measurement interaction in the internal time, and take into account that in the best
caseP 0

y = 0 + ∆P 0
y and an error∆y in the pointer position is proportional to

the measurement error∆A, ∆y = ∆A/
√
C, then from the condition for a “good

measurement” (45) it follows that

∆y∆P 0
y �

√
Cmx0

∆A
A

. (46)

We know that in the quantum theory the left-hand side has a lower limit
1� ∆y∆P 0

y (in the units when~ = 1). In the classical theory, it has no absolute
lower limit, but still its vanishing is unrealistic. Note that the first factor on the
right-hand side depends on the clock particle and the second one on the measured
system.
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3.4. Measurement of total energy in internal time

In Sec. 2.6, we considered a quantum measurement of the total energy of a
closed system with an ideal clock as investigated by Aharonov and Reznik [26]. Let
us now consider the corresponding classical model given by the same Hamiltonian
(19)

H = Hbox + Px +
P 2

z

2M
+ g(x)

(
Hbox + Px +

P 2
z

2M

)
z. (47)

We can take the pointer to be infinitely massive,M → ∞, and ignore its kinetic
energy terms. The measurement outcome is recorded by a change in the momentum
of the pointer; its position remains constant,z = z0. Let the energy of the box be
a constant of motion,Hbox = H0. Now the following equation of motion for the
pointer momentumPz in respect of the internal timex can be derived:

dPz

dx
= −g(x)(H

0 + C)
(1 + g(x)z0)2

, C = H −H0, (48)

whereC is a constant of integration. The condition for a “good measurement” is

g(x)z0 � 1. (49)

If we take the interaction function to be inversely proportional to the duration of
the measurement,g ∼ 1/x0, and the pointer position isz0 = 0 + ∆z, then the
condition (49) reads

∆z � x0. (50)

But sincePz records the measured energyH, the measurement error is∆Pz =
∆H. As a result we get a relation between the duration of the measurement in
respect of the internal clock time and measured total energy:

∆z∆Pz � x0H. (51)

This can be considered as a classical analogue of the quantum relation (21). If
there is a lower limit for the l.h.s., then there is a lower limit for the product
of measurement duration in internal clock time and measured total energy of the
system.

The problem can be solved mathematically also in the case of a real clock with
a quadratic HamiltonianHcl = P 2

x/2m. The equation of motion of the pointer in
respect of the internal time showed by the real clock is

dPz

dx
= − g(x)

(1 + gz0)3/2

C + 2mH0

2
√
C − 2mH0z0g

, C = 2m(H −H0), (52)

whereC is a constant of integration. The condition of a “good measurement” (49)
must now be supplemented with a second condition

√
C − 2mH0z0g ∼ m, from
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which a condition for the clockPx ∼ m follows. It amounts to an assumption
that the clock particle must move with a unit velocity,dx/dt = 1. We see that
in this case the model with a real clock does not add anything essentially new in
comparison with the model with an ideal clock.

4. DISCUSSION AND CONCLUSIONS

It seems that the problem of time has its beginning in the classical mechanics.
If we use the Hamiltonian formalism and agree that canonical coordinates (and
canonical momenta) are the only measurable quantities, then there are two distinct
possibilities for introducing the measurement of time: either we allow direct
measurements of time coordinatet in an extended phase space, or we visualize the
time flow by a change in the positionx of a clock particle given in an unextended
phase space.

As a result, there are two distinct ways of introducing the notion of a nontrivial
quantum mechanical time.

1. In the parametrized Hamiltonian dynamics the energy and time are
canonically conjugate coordinates and in a canonical quantization procedure they
are replaced by a pair of canonically conjugate operators. Their dependence on
the other canonical operators follows from the constraint equation, e.g.pt +
H(p, q, t) = 0 determines the energy operatorE(p, q, t) ≡ −pt = H(p, q, t)
and the corresponding time operatorT (p, q) must be found from the canonical
commutation relation[T,H] = −iI. (Or alternatively, a constraint equation linear
in t, t+T (p, q, pt) = 0, determines the time operator, and the energy operator must
be found from the canonical commutation relation; see [28,29].)

2. In lowering the dimension of the phase space using the Hamiltonian as the
first integral, the resulting trajectories are parametrized by a canonical coordinateq1
which corresponds to the internal time recorded by the position of a clock particle.
In the canonical quantization procedure we identify the canonical position operator
q1 with the internal time operator. Now we can perform general investigations in the
Heisenberg representation [30], but this has given us only very general insights. If
we use the Schrödinger representation, we can identify eigenvalues of the position
operatorq1 with the time parameter which occurs in the Schrödinger equation,
q1 = t, and determine probabilities from the total wave function [20,25]. Here
the results depend crucially on our choice of the Hamiltonian in the corresponding
Schrödinger equation.

These two possibilities of introducing a quantum mechanical time differ in
several aspects. In the first case the time is an operator canonically conjugate to
the energy, in the second case it is a position operator canonically conjugate to
a momentum operator. In the first case the classical counterpart of the operator
algebra is an extended phase space where canonical variables(t, pt) are assumed
to describe an ideal clock, in the second case it is an unextended phase space
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where a pair of canonical variables(q, p) are assigned to a real clock particle. The
distinction in the interpretation of clock variables results in the choice of clock
Hamiltonians: in the first case the usual constraint equation entails a Hamiltonian
which is linear in the momentumpt (an ideal clock), in the second case it is natural
to choose a Hamiltonian which is quadratic in the clock momentump (a real clock).

Is it possible to find a correct Hamiltonian and a well-defined measurement
interaction for describing a quantum measurement of the time of arrival? The
corresponding classical theory gives us the following hints.

1. It is not reasonable to apply the conventional measurement theory with an
instantaneous measurement interaction in the case of a measurement of the time of
arrival. However, it is less problematic in the quantum theory, where the measured
observable is given by the Aharonov–Bohm time operator and the measurement
interaction depends on the time parameter; in the classical theory both types of
time coincide and this leads to the above statement.

2. It is not clear how to build an ideal clock with a Hamiltonian which is linear
in the momentum.

3. If we use a real clock particle with a quadratic Hamiltonian, its interaction
with a pointer particle gives rise to measurement records which are reasonable only
if certain “good measurement” conditions hold (e.g. (46) or (49)).
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AJA MÕÕTMINE MITTERELATIVISTLIKUS KVANTMEHAANIKAS
JA KLASSIKALISES MEHAANIKAS

Piret KUUSK ja Madis KÕIV

Mitterelativistlikus kvantmehaanikas on kaks võimalikku viisi vaba osakese
detektorisse saabumise aja mõõtmiseks: kaudne mõõtmine sobivalt valitud aja-
operaatoriga ja otsene mõõtmine füüsikalise kellaosuti näidu abil. Nende kahe
mõõtmisviisi vahekord ei ole selge. Siinses kirjutises on väidetud, et nende
omavahelise vahekorra probleemil on analoogia klassikalises mehaanikas, ja vaa-
deldud, milliseid nõuandeid saab klassikaline mehaanika selles küsimuses anda
kvantmehaanikale.
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