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Abstract. Possible theoretical frameworks for measurement of (arrival) time in nonrelativistic
guantum mechanics are reviewed. It is argued that the ambiguity between indirect
measurements by a suitably introduced time operator and direct measurements by a physical
clock particle has a counterpart in the corresponding classical framework of measurement of
the Newtonian time based on the Hamiltonian mechanics.
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1. INTRODUCTION

The problem of time in nonrelativistic quantum mechanics consists in the
following dichotomy: a measurement of time can be described as a statistical
distribution of measurement outcomes given by a suitable time operator (or by the
corresponding spectral measure) canonically conjugate to the energy operator, or
the time flow can be visualized by the change in the position (or in the momentum)
observable of a physical clock particle which interacts with other parts of the system
under consideration and the total wave function must be determined by a quantum
evolution equation (e.g. by a Schrodinger equation). It is not clear whether these
two possibilities can be formally identified. The problem was discussed in the
classical paper by Aharonov and BohHj, put has recently received considerable
attention f3]. Our aim here is to clarify some aspects of the quantum theory by
analysing in more detail the corresponding classical theory of measurement of time.

In fact, the above-mentioned dichotomy exists already in the classical theory:
time can be understood as a parameter along a classical trajectory or as a record
of change in the spatial position of a special clock particle. Although these two
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possibilities are classically equivalent, their precise mathematical description in
the framework of the Hamiltonian formalism is not identical and upon canonical
guantization they can give rise to quantum theories of time which need not be
equivalent. The key to the understanding of the problem of time in quantum
mechanics may lie in the classical theory; so we can conclude with Lévy-Leblond
[*]: ‘nobody has ever constructed a complete “classical theory of measurement”
(p. 4) and ‘To the initial question “where is the problem (...)?”, | would therefore
venture the paradoxical answer: “in classical theory”...’ (p. 6).

2. THE QUANTUM THEORY
2.1. Operators of position and time

Nonrelativistic quantum mechanics is a theory of (quantized) matter in the
background of a nonrelativistic spacetime with the Newtonian space coordinates
(%) and the Newtonian time coordinate[>~7]. The symmetry group of the
background coordinates is the Galilei group

(%) =a' — € —V't, t=t—r.

Here¢?, Vi, T are the group parameters; we have not included the group of spatial
rotations.

The Galilei group has a (projective irreducible) representation acting on
density matrices (states of quantized matter). For simplicity, let us consider
one-dimensional space, then the two-dimensional subgroup of the Galilei group
with parameters (V) can be represented by unitary operatexp(imV Q),
exp(—i&P), m = const. Self-adjoint operator@ and P satisfy the canonical
commutation relations

Q. P) =,

where! is the unit operator and the Planck constant is taken th bel. These
operators can be given in terms of the corresponding spectral medst(es,

EF(p):
= x Q X =m P .
Q /R E€(dz), P /RpE (dp)

They can be interpreted as the position and the momentum operators if they satisfy
covariance conditions under the action of the Galilei group, e.g.

P EQ(z)e %P = EQ(z — ¢), £ € (—00, +00). (1)
This means that if the device for registration of the position (spectral me&&ire
undergoes a spatial shift in the amountothen the measured values (spectrum)

change by —¢).
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If the same scheme is applied in the case of canonically conjugate operators of
timeT and energy, [T, H] = —il, then the operatdF, for its interpretation as an
operator which establishes a relation between a quantum state and the Newtonian
time, must satisfy the covariance property

e THET ()™ = ET(t — 1), T € (—00, +00). 2

It can be proved that if the time operator is self-adjoint, then this condition implies
an unbounded continuous energy spectrum (Pauli’s theorfdmj follows that in

the cases of bounded, semi-bounded, or discrete energy spectra the covariant time
operator cannot be self-adjoint, i.e. its spectral meagiirét) cannot be given

by projection operators. However, it can be given as a positive operator-valued
measure (POVM)’]. There can also be non-covariant self-adjoint operators
canonically conjugate to the energy operatijr But if the covariance condition

(2) is not satisfied, their interpretation as time operators is problematic.

If the notion of time in quantum mechanics is understood as a record of a
guantum measurement, then it can depend on the measurement scheme and need
not be unique. Indeed, several types of times corresponding to several types of
measurements have been proposed, e.g. the time of arrival, the tunnelling time, and
the time of a quantum clock given by a phase variatjlelp what follows, we shall
consider only the simplest case, the time of arrival of a free patrticle.

2.2. Observables and measurements

In general, the physical meaning of a POVM is given by the probability
postulate: if an observablé is represented by its spectral meastiré(a), then
the probabilityp‘;‘(a) of getting a result. at measuring a quantum statés

P (a) = Tr[pE*(a)). 3

In the quantum theory of measuremefl}, [the probability postulate (3) is
explained in terms of a measurement interaction between the measured system and
an apparatus (a pointer), which introduces suitable correlations between them. It
can be given in the form of a unitary transformatidh [

U = MO8, A = const, (4)

which transforms an initial (e.g. factorized pure) state of the system and the pointer
¢ ® 1 into the final state

Ulp ® 1) >:/EA(da)¢®eWBw.

R

The pointer operato3 must be chosen so that the transformation (4) can be
interpreted as describing a measurement, i.e. the final state must contain a record
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of the measurement (eigenvalue®f the operatord). In the simplest case, the
record is supposed to be a shift in the positioaf the pointer particle. Then the
corresponding operatds in the measurement interaction can be chosen to be its
canonically conjugate momentum and the measurement read$ (z, denotes

the initial position of the pointer)

Ulp @ >= /R EA(da)é ® (20 — Aa). (5)

For getting a distinct (classical) record the pointer states must consist of mutually
disjoint sets and after a measurement a possible superposition of states must be
reduced to a single reading. These problems (which are far from being clear)
include clarifying the boundary between the quantum and the classical world; we
do not go into details here and refer to, ..

Measurements which are mathematically described by a POVM and the
probability postulate only, without reference to details of measuring apparatus, are
called indirect or ideal measurements.

2.3. The Aharonov—-Bohm time operator

An operator corresponding to the time of arrival of a free particle moving in
one-dimensional space has been proposed already long ago by Aharonov and Bohm
[']

m 1 1

T=-——(gp ' +p 'g)=—-m—q—. 6
5 lar™ +p7q) NN (6)
Its eigenvalue problem can be solved in the momentum representation]|
—im d 1
—— =T®r(p), 7
NN 7(p) 7(p) (7)
_ Ip| iTp?
Cra(p) =Oap)\/ exp (4 ), (8)

wherea = +1, T € (—o0, +00).
The Aharonov—Bohm operator (6) is not self-adjoint and its eigenfunctions (8)
are not orthonormal:

The corresponding measurement statistics is given in terms of the POVNt{?]

+o00 1
/ ©70(P)Prer (P)dp = dacr (6(T —T) + iP-

T _ * / = o o .
Bl =3 /A Bl Bra)T = 3 /A [Ta><TaldT. (9)
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Let us consider a quantum system in a pure state characterized by a density
matrix p(t) = |¢(t) >< ¢(t)|. Heret must be understood as a Newtonian
time parameter which enumerates successive states. According to the probability
postulate (3), the probability of arrival during an intervdl” reads

T(AT-#) — Tr T _ o> 24T
Py (AT31) = T (AT)) = 3 /A <ot > Par. (10)

As in the case of a measurement of other continuous variables, e.g. the position,
here the measured quantity is not an eigenvalue but an interval of eigenxiues
However, as distinct from the measurement of the position, eigenfundfiens-
are not only non-normalizable, but also non-orthogonal and a general tate
cannot be uniguely given as their linear combination (integral).

Muga et al. [] have computed probability distributions for normalized and
approximately orthogonal Gaussian wave packets (centfBéat with widthdT)
of Newtonian-time-dependent eigenfunctidfi®, o;t >= exp(—iHt)|T',a >.
They found that the probability distribution of a wave packet,x;T,0T) is
peaked around the point = 0, ¢ = T and the peaking is inversely proportional
to the widthéT. Hence in this case the time of arrivalat= 0, ¢t = T, can be
determined with arbitrary accuracy depending on the width of the wave packet.

2.4. Measurement dynamics

We may ask whether the final state (5) of a system and an apparatus can
also be obtained from a suitably constructed Schrodinger equation, i.e. whether
the measurement can be considered as a dynamical process given by a suitably
constructed Hamiltonian'{]. Formally, we can write a two-body Schrédinger
equation for a physical systeffy, P) and a free particléz, 7,) acting as a pointer
(apparatus) together with an interaction Hamiltonian which depends explicitly on
the Newtonian time parametgre.g. in the form of an instantaneous measurement
interaction for recording the value of an observahl&), P):

igt\ll =H(Q,P,z 1), (11)
H(Q, P, z,m.,t) = Hys(Q, P) + 27;\34 — §(H)AA(Q, P)r... (12)

A direct calculation confirms that if the pointer is massive (in comparison with
the measured quantum system), i — oo and the pointer dynamics can be
neglected, the solution of the Schrédinger equation (11) is consistent with the final
state (5).

Measurement dynamics (11), (12) can be considered also for the Aharonov—
Bohm time operatorA(P,Q) = T(P,Q), Hss(P,Q) = P?/2m. Detailed
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calculations have been presented for an operational model consisting in
simultaneous measurements of the position and momentum in the phase space
['6:17]. The connection between the operational model and the Aharonov—Bohm
POVM (9) has been establisheld]l

However, as indicated by Busch et al],[time dependent Hamiltonian (12) is
not allowed in a mathematically rigorous theory.

2.5. Direct measurement of time

For investigating a complete quantum dynamics of a measurement process,
Aharonov and Bohm'] proposed to consider a quantum system consisting of
three parts: a physical system, an apparatus (a pointer), and an additional physical
particle acting as a clock. The time of interaction is determined by a physical
observable of the clock particle. The corresponding three-body Schrddinger
eguation contains a general Hamiltonian which includes free Hamiltonians of a
physical systenti,,(Q, P), a pointerH,(z, 7.), and a clockH(x, p) together
with an interaction Hamiltonia#f;(Q, P, z, p, z, 7, ):

o = HQ P, 2wV, (13)

H(Qv P7 Z,p, %, 7TZ) = HSyS(Q? P) +Ha(2, 7TZ) +Hcl($7p) +H1(Q> P7 T, D, %, 772)-
(14)
The above-mentioned interpretation of the three parts of the Hamiltohlgn,
H,, and H,, must follow from the form of the interaction Hamiltonian. So the
specification ofH; is crucial in analysing the measurement dynamics.

Aharonov and Bohm!| considered a free massive particle as a cldék, =
p?/2m. They demonstrated that if the wave function of the total system is
factorized, e.g¥ = ¢(z,t) ® ¢(Q, z,t) and the clock state(x, t) is determined
from an approximate Schrodinger equation as a free-wave packet, then the general
Hamiltonian (14) can approximately be reduced to a two-body Hamiltonian (12)
with an interaction Hamiltonian which depends explicitly on the Newtonian time
parametert. They also concluded that since the time observable belongs to the
clock and necessarily commutes with any observable of the physical system, there
are no constraints to the accuracy of a record of the time of interaction by a clock
at measuring the energy of a physical system.

Aharonov and Bohm!] investigated the time of arrival from the point of view
of determining the exact time of measurement of some other physical observable,
e.g. the energy of a quantum system. But there can be different measurement
arrangements which can be interpreted as direct measurements of the time of arrival
itself. The first model proposed by Allcock?] consisted of a free (arriving)
particle (x, p) and an interaction Hamiltonian in the form of a complex potential
H; = iVO(z), V = const (©(x) denotes the step function). The question under
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investigation was: what is the probability that the particle in an initial state, with
support inz < 0, enters the regiom > 0 during a finite time interval0, t]? The
solution¢(z, t) of the corresponding Schroédinger equation revealed a restriction
to the accuracy of the record of timeVét ~ 1 which is not in the form of the
Heisenberg uncertainty relation.

From the point of view of the general three-body Hamiltonian (14), a direct
measurement of the time of arrival can be described by a two-body system which
consists of a pointer and an arriving free particle acting also as a clock. A model
whose classical analogue (which is in more detail considered in Sec. 3.2) gives a
distinct record of the time of arrival was presented by Aharonov et3t.

2

H(z,p,z,m,) = 2p—m + O(—x)m,. (15)

Here (z,p) specifies a free particle an@, r.) specifies an infinitely massive
pointer which records the time of arrival of the particle .at = 0. They
demonstrated that the solution of the corresponding Schrodinger equation implies
an uncertainty relation between the kinetic energy of the parfifle) and the
accuracy of the pointer which records the time of arrived, ~ At,

E(p)At > 1. (16)

This is not a standard quantum mechanical uncertainty because the corresponding
operators belong to different particles and hence commute. Analogous restrictions
were found also for several improved model Hamiltoniaf [

According to Muga et al. '], such restrictions are not present in the indirect
measurement of the time of arrival as given by the Aharonov—Bohm POVM (9).
Baute et al. {] argued that a restriction to the accuracy of an indirect measurement
of the time of arrival of a free particle and its mean energy’ > can be obtained
if we consider a nonstandard uncertainty relation introduced by WidgAgr [n
more detail: the second momen(in respect of an arbitrary reference timg of
the probability distribution of the time of arrival and its mean enetgl > satisfy

h
< E >’

T > @an

Sincer depends on an arbitrary reference time it cannot be identified with

a usual spread of measurement results around the mean value and the Wigner
uncertainty relation (17) in general does not coincide with the Heisenberg one,
although both quantities; and < E > characterize the same quantum particle.
This makes the relation between the conditions (16) and (17) obscure, since the
first one concerns two quantum particles and the second one only one particle.
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2.6. Measurements in a closed system

The Hamiltonian (14) does not depend explicitly on the time paramgdad a
general three-part measurement scheme (13), (14) can be considered as describing
ameasurement in a closed system (€F2f]).

In [1], the clock particle was approximately described by a wave packett)
and the general Hamiltonian (14) was reduced to a two-body Hamiltonian with an
interaction Hamiltonian depending (vig x, t)) explicitly on the time parameter
e.g. in aform of the von Neumann measurement dynamics (12). Casher and Reznik
[?°] introduced another approximation for determining the time varialiby the
state of the clock particler = mz/ < p, >. They argued that if the measurement
interaction is determined by quantized clock timethen there arises a constraint
on the accuracyAJ of a measurement of an observalile

N
J _(Ed—Eo)(;T.

Here E; is the clock energy which is bounded below By (i.e. its Hamiltonian
is quadratic in the momentum; such a device is called a real clocky&nid
the duration of the measurement. In the von Neumann measurement theory, the
only fundamental restriction to the measurement is the Heisenberg uncertainty
relation for noncommuting observables and there are no restrictions on the accuracy
of the measurement of a single observable. Hence the general three-body
quantum measurement scheme (13), (14) contains the von Neumann theory in
some approximationt], but leads to results which contradict to it in some other
approximations?].

Aharonov and Reznik?f] considered in more detail a measurement of the
total energy of a system consisting of a box, an ideal clock (i.e. a device with
the Hamiltonian which is linear in the momentum), and a pointer:

(18)

H = Hs + Ho L o(r) Ha + Hag(7) + 29(r) Hooslz, (19)
where H,, = —ih0/07 is the Hamiltonian of the clock, the Hamiltonian of
the pointerr2/2M vanishes {/ — o), and g(7) is an interaction function
normalized asf g(t)dr = 1. They demonstrated that the solution of the
corresponding Schrodinger equation describes a measurement gty #&nd the
pointer coordinate satisfy a constraint

g(T)z < 1. (20)

Introducing an approximatiog(r) ~ 1 /7y (19 is the duration of the measurement)
and taking into account that the accuracy of the measured value of the total energy
AEy is given by the record of the pointeg, we see that the Heisenberg uncertainty
relation for the pointer implies a constraint

ToAFEy > 1. (21)
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This uncertainty relation between the duration of the measuremamd accuracy
of the measurement recolNFy is analogous to the relation (16) obtained for a
model of a direct measurement of the time of arrival and it cannot be considered as
the Heisenberg uncertainty relation.

We see that, at present, the quantum theory of the time of arrival leaves without
an answer at least the following questions:

1. Is indirect measurement of the time of arrival by the Aharonov—Bohm time
operator mathematically and conceptually adequate?

2. If the time of arrival is described as a direct measurement, which is the
corresponding Schrédinger equation?

3. Which is the status of non-Heisenberg uncertainty relations between time
and energy in direct and indirect measurements?

We argue that some of these questions arise already in the classical theory of
measurement of time.

3. THE CLASSICAL THEORY
3.1. External time and internal time

Classical canonical (Hamiltonian) mechanics is formulated in a phase space
(p, q) and the dynamics is determined by a Hamiltonf(p, ¢, t). Numerically,
the Hamiltonian is equal to the total enerdy of the physical system under
consideration. Equations of motion can be derived from the canonical integral

5= [wi- a0, o=, 22

as the Euler-Lagrange equations. Timeas a parameter along trajectories,
p=p(t),q=q(t).

Observable properties are represented by canonical coordinates and their
functions. For introducing an observable of timenust be on an equal footing
with space coordinates There are two possible ways to achieve this.

1. In the parametrized form of Hamiltonian dynamic3][ the parameter
t is considered as an additional canonical time coordinate. The corresponding
canonically conjugate momentum can be shown to be the total engrgy— H,
and the canonical integral takes a symmetric form

Sz/@Mp@m. (23)

The Euler—-Lagrange equations are parametrized with an arbitrary paranaeter
hold on a constraint surfagg + H(p,q,t) = 0. Alternatively, we can take the
totally parametrized canonical integral (23) as a starting-point; then the physics
is determined by the constraint equation which must be added. If we add the
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conventional constraint equation which is linearpfy we get the conventional
mechanics (energy mechanics). But in general we are free to choose the constraint
eguation as we please. In this way we get unconventional mechanics, interpretation
of which must be deduced from the equations. An example of an unconventional
mechanics is the so-called time mechanté€{], which follows from a constraint
eqguation which is linear it.

2. In the internal time approach by Rovelt’], the parametet is eliminated
from the equations of motion and trajectories are parametrized by one of the
canonical coordinates, e.g. by, which describes the position of a physical clock
particle. The procedure is in general possible if the Hamiltonian does not depend
on timet explicitly. Then it is equivalent to the standard procedure of the lowering
of the dimension of the phase space using the Hamiltonian as the first integral,
H(p;,q;) = h = const [3!]. Let us solve the last relation in respect of, exg:,

pl:K(pj’QjaCh,h), j?é]-

According to the Arnol'd theorem?3f], on a surface of constant energy,
H (pi,q;) = h, the trajectories can be parametrized by the corresponding coordinate
g1 and their equations are

dpj _ 0K~ dg; 0K

= - 24
dgi  0gj dq: Op; (24)

As an example, let us consider four-dimensional phase spBger, p;,t).
If we introduce the usual energy constrajpt+ H;(P,,z,t) = 0, we get the
conventional canonical equations for a particle in one-dimensiosahce, whose
trajectories are parametrized by time

dP,  OH dz _ 9H,
a Oz’ dt 0P,

(25)

Alternatively, we can consider the constraint as a general Hamiltonian
Hy(P,,x,pt, t), which does not depend explicitly on the external time parameter
7, and use the Arnol'd theorem for lowering the dimension of the phase space. If
H, is linear in the momentum,, i.e. Hy = p; + Hy, then equations of motion
in z-space (24) and (25) coincide (this statement is evidently true also in a general
2n-dimensional case).

However, there is a difference in the interpretation. In the former case, we
are considering the dynamics of a particle with the Hamiltorfigi0 P, x,t). In
the latter case, both canonical coordinates are at first considered as possible
trajectories of physical particles, positions of which are measurable. The particle
which can move in the-space only is a physical clock and the particle which
can move in ther-space only is a physical system under investigation. Let us
interpret the total HamiltoniarHy(P,, x,p;,t) as a sum of the corresponding
free Hamiltonians plus an interaction term. Then the usual energy constraint
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pt + Hy (P, z,t) = H, describes a clock particle with a linear free Hamiltonian
H. = p:. It determines the trajectory of a free clock particlepgs= const,
t = 7 + 79, Wherer is a parameter along the trajectory. Such a device is known
as an ideal clock. It is different from a real clock described by a free Hamiltonian
which is quadratic in its momentun#.,, = p?/2M, and the trajectory of which
readsp; = pY = const, t = pY7 + 79.

Finally, let us note that since a trajectdiy(t), ¢(t)) is a mapR — R?*", i.e.
canonical coordinates and the time parameter are both real numbers, equations of
typex = t are mathematically meaningful.

3.2. Classical measurement of time

The measurement of the Newtonian timean be realized as a measurement
of the position of a pointer particle with madg which is moving freely with a
constant momenturi,:
PO

y(t) = Tt + y(0). (26)

We can achieve alsg = t by choosing suitable values of constants.
Let us consider a physical system given by the Hamiltonisip, q) and
let A(p,q) be a variable we want to measure at a titye Let us describe the
measurement dynamics by the same Hamiltonian (12) as in the quantum theory
[*%]
2

P
H = Ho(p,q) + 537 + 0t = to) A(p, q) Py (27)

The trajectory of the pointer is

PO
y(t) = 5t +9(0) + Alto). (28)

We see that now the pointer is recording two distinct physical quantities: the
Newtonian timef (as in the previous example) and the valig,). The latter can
be read out as a constant shift in the position of the pointerat, in comparison
with the unperturbed trajectory &k ¢y,. We see that the measurement of a quantity
A at a timety is a nonlocal procedure in timein the sense that at first we must
determine the undisturbed trajectory of the pointer and only then we can read out
the shift proportional to the measured quantity. Usually the nonlocality in time is
eliminated by an assumption that the mass of the pointer is very big and in the limit
of an infinite massX/ — oc) the position of the pointer at > ¢, records only a
constant shift(t) — y(tg) = A(to).

Let the physical system under consideration be a freely moving particle with
the HamiltonianHy(P,,z) = (P;)?/2m. The property we want to measure
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is its time of arrival from the initial positioncy = z(0) to the pointz, i.e
A(Py,x) = (x — x9)m/P,. The trajectory of the pointer reads

P} m B
y(t) = Mt +y(0) + (x(to) — xO)F = Mt +y(0) + to. (29)

However, in such a measurement arrangement, thetjrhas a double meaning:

it is the time of the measurement as prescribed by the Hamiltonian (27) and

the quantity we want to measure. The time of switching on the measurement

interactionty equals to the measured quantity and cannot be prescribed arbitrarily.
An interaction Hamiltonian which does not fix the time of the measurement

in advance was proposed by Aharonov et #l] [

p: P
H(Pz,x;Py,y)*—erJr@( )Py (30)

The equations of motion of the pointer are

: P,
P, =0, = My +O(—x) (31)
and its trajectory is
y(t) = y 75 +y(0 / O(— P, = Pz? = const. (32)

The pointer is moving from its initial positio(0) with a constant velocity

Y = Pl?/M + 1 till the arrival of the particle atz = 0 and after that begins to
move undisturbed. If the pointer is infinitely massive, it moves with a unit velocity

y = 1 and stops at the momefit when the particle arrives at the point= 0 from

its initial positionz(0) = x¢ < 0. The situation is different in comparison with that
considered in the previous example (29): the interaction between the pointer and
the particle takes place before the measurement, not just at the time of measurement
to. This means that here we do not measure the time of arrival of a freely moving
particle but of a particle in an interaction with the pointer. The backreaction of the
interaction to the particle can be seen from the conservation of energy

(Po()) (B

—_ 0: =
o + Wi + O(—z)P; = E = const. (33)

Y

Aharonov et al. {°] argue that we can takég = 0; then the particle moves freely
and the motion of the pointer consists only of a constant ghifBut such a pointer
has neither kinetic nor potential energy and clearly is not a generic case.
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3.3. A general model for a real clock and a pointer

Let us now consider the Hamiltonian (30) with a general interaction function
g(x) instead ofo (—x):

p? P
H(aniU;Pyay):ﬁ‘i'm‘f‘g(fﬂ)Py- (34)

The equations of motion generated by (34) read

. P,

Py=0,  §=17+9(), (35)
. dg P,
P, =-—“>P, = —. 36
dr Yy x m ( )
For z(t) we get the following equation
. P} dg

T = _Ey%’ Pz?zconst:Py. (37)

Its general solution establishes a relation between the internal clock:tamd the
external timef

Cott= (38)

dx
/ N 2P0g(z)/m

Here(C; andCs are constants of integration.
The equation of motion of the pointer in respect to the internal tinmmeow

reads: o

dz j:\/o1 — 2P%g(z)/m

(39)

SHES

In the case of an infinitely massive pointev/( — oco) the first term in the
numerator vanishes, but a dependence on the pointer momd?ﬁmmmains in
the denominator. A pointer with an exactly vanishing momentum is an additional
and unrealistic condition. The influence of a small but nonvanisﬂ?ﬁgis a
multiplicative error in the shift of the pointer position

dy  g(x) Pg(x)
da:_i\/ci<1+ z@cl +> (40)

If PZ(,) =0, thenP, = PY = const. Now the constant of integratiafi; can be
given in terms ofP! as++/C; = P?/m and the position of the pointer is

m

P9=0 = 7o g(x)dx + C.

)
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In the case of the interaction considered by Aharonov et #l], p(z) =
©(—), the equation of the pointer can be integrated as

' m m
Y= / EG(—x)dx = ﬁ(—xo) = to. (41)
xo T T

The pointer stops and indicates the external tigmeecessary for the free particle
with constant momentur?? to move from the initial positiomy < 0,¢ = 0 to the
detector at the point = 0.

However, this “good measurement” takes place onlﬁj‘f = 0. If Pg =
APZ? # 0, then the condition for an “approximately good measurement” reads

AP?
g(gqy < 1 (42)

The measurement arrangement (27), (28) of an observiple;) can also be
reformulated in terms of the internal time

Py2 P2
H = H, Y 4z A P, 4
o(p,q)+2M+2m+9(w) (p,q) Py (43)

The equation of motion of an infinitely massive pointéf (-~ oo) reads

dy _ g(x)A
dz :I:\/C' —2AP0g(x)/m

(44)

whereC' is a constant of integration. The condition for a “good measurement”
reads

AP!
M < 1. (45)
mC
If we approximateg(z) = dé(x) ~ 1/zp, wherezy is the duration of the

measurement interaction in the internal time, and take into account that in the best
casePf =0+ APf and an errorAy in the pointer position is proportional to

the measurement erréxA, Ay = AA/+/C, then from the condition for a “good
measurement” (45) it follows that

AA
AYAP) < VCmzg—. (46)

We know that in the quantum theory the left-hand side has a lower limit
1K AyAP?? (in the units wheri = 1). In the classical theory, it has no absolute
lower limit, but still its vanishing is unrealistic. Note that the first factor on the
right-hand side depends on the clock particle and the second one on the measured

system.
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3.4. Measurement of total energy in internal time

In Sec. 2.6, we considered a quantum measurement of the total energy of a
closed system with an ideal clock as investigated by Aharonov and Ré%hik t
us now consider the corresponding classical model given by the same Hamiltonian

(19) 2

P; P?
H = Hyox + P + Jrg(x) Hyox + P + Z. (47)

2M 2M

We can take the pointer to be infinitely massivé, — oo, and ignore its kinetic
energy terms. The measurement outcome is recorded by a change in the momentum
of the pointer; its position remains constant= zy. Let the energy of the box be

a constant of motiond},., = HY. Now the following equation of motion for the
pointer momentun®, in respect of the internal time can be derived:

dp. _ g(@)(H’+C) gy
dr (1 +g(x)z)?’ C=H-H, (48)

where(C' is a constant of integration. The condition for a “good measurement” is
g(z)zp < 1. (49)

If we take the interaction function to be inversely proportional to the duration of
the measuremeng, ~ 1/xy, and the pointer position isy = 0 + Az, then the
condition (49) reads

Az < xg. (50)

But since P, records the measured enerffy; the measurement error iSP, =
AH. As a result we get a relation between the duration of the measurement in
respect of the internal clock time and measured total energy:

AzAP, < zoH. (51)

This can be considered as a classical analogue of the quantum relation (21). If
there is a lower limit for the L.h.s., then there is a lower limit for the product
of measurement duration in internal clock time and measured total energy of the
system.

The problem can be solved mathematically also in the case of a real clock with
a quadratic Hamiltonia#?,, = P2/2m. The equation of motion of the pointer in
respect of the internal time showed by the real clock is

ar, — g(z) C +2mH°
dx (1+ 920)%2 2,/C = 2mHO%%g’

where(C' is a constant of integration. The condition of a “good measurement” (49)
must now be supplemented with a second conditjéfi — 2mH zyg ~ m, from

C =2m(H - H%, (52)
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which a condition for the clock’, ~ m follows. It amounts to an assumption
that the clock particle must move with a unit velocity /dt = 1. We see that

in this case the model with a real clock does not add anything essentially new in
comparison with the model with an ideal clock.

4. DISCUSSION AND CONCLUSIONS

It seems that the problem of time has its beginning in the classical mechanics.
If we use the Hamiltonian formalism and agree that canonical coordinates (and
canonical momenta) are the only measurable quantities, then there are two distinct
possibilities for introducing the measurement of time: either we allow direct
measurements of time coordinatm an extended phase space, or we visualize the
time flow by a change in the positianof a clock particle given in an unextended
phase space.

As a result, there are two distinct ways of introducing the notion of a nontrivial
guantum mechanical time.

1. In the parametrized Hamiltonian dynamics the energy and time are
canonically conjugate coordinates and in a canonical quantization procedure they
are replaced by a pair of canonically conjugate operators. Their dependence on
the other canonical operators follows from the constraint equation, g,g+
H(p,q,t) = 0 determines the energy operatbfp, ¢,t) = —p; = H(p,q,t)
and the corresponding time operafb(p, ¢) must be found from the canonical
commutation relatiofil’, H] = —iI. (Or alternatively, a constraint equation linear
int, t+T(p,q,p:) = 0, determines the time operator, and the energy operator must
be found from the canonical commutation relation; $8é].)

2. In lowering the dimension of the phase space using the Hamiltonian as the
firstintegral, the resulting trajectories are parametrized by a canonical coorglinate
which corresponds to the internal time recorded by the position of a clock particle.
In the canonical quantization procedure we identify the canonical position operator
¢1 with the internal time operator. Now we can perform general investigations in the
Heisenberg representatiot], but this has given us only very general insights. If
we use the Schrodinger representation, we can identify eigenvalues of the position
operatorg; with the time parameter which occurs in the Schrédinger equation,
¢ = t, and determine probabilities from the total wave functiéh?{]. Here
the results depend crucially on our choice of the Hamiltonian in the corresponding
Schrddinger equation.

These two possibilities of introducing a quantum mechanical time differ in
several aspects. In the first case the time is an operator canonically conjugate to
the energy, in the second case it is a position operator canonically conjugate to
a momentum operator. In the first case the classical counterpart of the operator
algebra is an extended phase space where canonical varjahigsare assumed
to describe an ideal clock, in the second case it is an unextended phase space
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where a pair of canonical variablég p) are assigned to a real clock particle. The
distinction in the interpretation of clock variables results in the choice of clock
Hamiltonians: in the first case the usual constraint equation entails a Hamiltonian
which is linear in the momentum (an ideal clock), in the second case it is natural

to choose a Hamiltonian which is quadratic in the clock momenigareal clock).

Is it possible to find a correct Hamiltonian and a well-defined measurement
interaction for describing a quantum measurement of the time of arrival? The
corresponding classical theory gives us the following hints.

1. It is not reasonable to apply the conventional measurement theory with an
instantaneous measurement interaction in the case of a measurement of the time of
arrival. However, it is less problematic in the quantum theory, where the measured
observable is given by the Aharonov—-Bohm time operator and the measurement
interaction depends on the time parameter; in the classical theory both types of
time coincide and this leads to the above statement.

2. Itis not clear how to build an ideal clock with a Hamiltonian which is linear
in the momentum.

3. If we use a real clock particle with a quadratic Hamiltonian, its interaction
with a pointer particle gives rise to measurement records which are reasonable only
if certain “good measurement” conditions hold (e.g. (46) or (49)).
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AJA MOOTMINE MITTERELATIVISTLIKUS KVANTMEHAANIKAS
JA KLASSIKALISES MEHAANIKAS

Piret KUUSK ja Madis KOIV

Mitterelativistlikus kvantmehaanikas on kaks vdimalikku viisi vaba osakese
detektorisse saabumise aja mootmiseks: kaudne mddtmine sobivalt valitud aja-
operaatoriga ja otsene modtmine fuusikalise kellaosuti néidu abil. Nende kahe
modtmisviisi vahekord ei ole selge. Siinses kirjutises on vaidetud, et nende
omavahelise vahekorra probleemil on analoogia klassikalises mehaanikas, ja vaa-
deldud, milliseid nduandeid saab klassikaline mehaanika selles kisimuses anda
kvantmehaanikale.
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