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Abstract. We consider the generalized airfoil equation in the situation where the index of
the problem is−1. We periodize the problem, then discretize it by a fully discrete version
of the trigonometric collocation method and apply the conjugate gradient method to solve the
discretized problem. The approximate solution appears to be of optimal accuracy in a scale
of Sobolev norms, and theN parameters of the approximate solution can be determined by
O(N logN) arithmetical operations.
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1. THE GENERALIZED AIRFOIL EQUATION AND ITS
PERIODIZATION

Consider the generalized airfoil equation

(Bv)(x) :=

1∫
−1

( 1
π

1
x− y

+ b1(x, y) log |x− y|+ b2(x, y]
)
v(y)dy = g(x),

−1 < x < 1.
(1)

We assume that the kernel functionsb1 andb2 are smooth. It is well known (see,
e.g., [1−4]) that B represents a linear continuous Fredholm operator in different
weighted spacesL2

σ(−1, 1); the index ofB depends on the weight. Particularly,
ind (B) = 0 if σ(x) =

√
(1 + x)/(1− x) or σ(x) =

√
(1− x)/(1 + x), and
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ind (B) = 1 if σ(x) =
√

1− x2. Collocation solvers of Eq. (1) in these cases have
been examined in [2] and [4], respectively. In the present paper, we put

σ(x) =
1√

1− x2
, (u, v)L2

σ
=

1∫
−1

σ(x)u(x)v(x)dx ;

then the index ofB ∈ L(L2
σ(−1, 1)) is −1. We assume that the homogeneous

equationBv = 0 has inL2
σ(−1, 1) only the trivial solutionv = 0; then the

rangeR(B) = BL2
σ(−1, 1) is of codimension 1. Let us fix a smooth function

ψ ∈ L2
σ(−1, 1) outsideR(B). For anyg ∈ L2

σ(−1, 1) there exists a unique pair
(ω, v) ∈ C × L2

σ(−1, 1) satisfyingωψ + Bv = g, and this pair can be treated
as a generalized solution of (1). Ifg ∈ R(B), thenω = 0, and the generalized
solution(0, v) can be identified with the usual solutionv ∈ L2

σ(−1, 1) of (1). In
the sequel we design a numerical method yielding approximations(ωN , vN ) such
that|ωN−ω| → 0, ‖vN−v‖L2

σ
→ 0 with a certain velocity. Thus, the convergence

ωN → 0 asN → ∞ indicates thatω = 0, g ∈ R(B), and (1) is solvable in
L2

σ(−1, 1) in the usual sense. An interpretation of the generalized solution(ω, v)
with ω 6= 0 can be given considering the flow ejection through a point of the airfoil
(see [5]). In any case, the generalized solution(ω, v) is of interest also ifω 6= 0,
i.e. g 6∈ R(B). So we do not assume thatg ∈ R(B).

With the cosine transformation

x = x(t) = − cos(2πt)
(
0 ≤ t ≤ 1

2

)
, y = x(s) = − cos(2πs)

(
0 ≤ s ≤ 1

2

)
,

Eq. (1) can be reduced (see [3] for details) to the 1-periodic integral equation

Au := A0u+A1u+A2u = f, (2)

where

(A0u)(t) =

1/2∫
−1/2

cotπ(t− s)u(s)ds (the Hilbert transformation),

(A1u)(t) =

1/2∫
−1/2

a1(t, s) log | sinπ(t− s)|u(s)ds ,

(A2u)(t) =

1/2∫
−1/2

a2(t, s)u(s)ds,
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f(t) = g(x(t)) , t ∈ IR ,

a1(t, s) = b1(x(t), x(s))x′(s),

a2(t, s) =
1
2
[
b2(x(t), x(s)) + (log 2)b1(x(t), x(s))

]
x′(s) , t, s ∈ IR.

Clearly, f is 1-periodic and even, whereasa1 anda2 are 1-biperiodic, even int
and odd ins. The relation between solutions of (1) and (2) is somewhat more
sophisticated: fors ∈

(
− 1

2 ,
1
2

]
u(s) =


v(x(s)) , 0 ≤ s ≤ 1

2
,

−v(x(−s)) , −1
2
< s < 0 ,

and after thatu is extended from
(
− 1

2 ,
1
2

]
to IR 1-periodically. Thusu is a

1-periodic odd function. To the generalized solution(ω, v) of (1) there corresponds
the generalized solution(ω, u) of (2) satisfyingωϕ + Au = f , whereϕ(t) =
ψ(x(t)), t ∈ IR.

2. SOLVABILITY OF THE PROBLEM

Notice thata1, a2 ∈ Cm(IR), f, ϕ ∈ Cm(IR) if b1, b2 ∈ Cm([−1, 1]× [−1, 1]),
g, ψ ∈ Cm[−1, 1]. Introduce the Sobolev spaceHλ, λ ≥ 0, of 1-periodic functions
u having a finite norm

‖u‖λ =

(∑
k∈Z

k2λ|û(k)|2
)1/2

, k = max{1, |k|} , û(k) =

1/2∫
−1/2

u(s)e−ik2πsds .

We haveHλ = Hλ
ev ⊕ Hλ

od, whereHλ
ev and Hλ

od are closed subspaces of
Hλ consisting of even and odd functions, respectively. An orthogonal basis of
Hλ

ev is given by{cos(k2πt)}k≥0, and an orthogonal basis ofHλ
od is given by

{sin(k2πt)}k≥1. We also introduce the Sobolev spaceHλ1,λ2 , λ1 ≥ 0, λ2 ≥ 0, of
1-biperiodic functionsa having a finite norm

‖a‖λ1,λ2 =

 ∑
(k1,k2)∈Z2

k2λ1
1 k2λ2

1 |â(k1, k2]|2
1/2

,

â(k1, k2) =

1/2∫
−1/2

1/2∫
−1/2

a(t, s)e−ik12πte−ik22πsds dt ,
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and the subspaceHλ1,λ2

ev,od of functions which are even in the first argument and odd
in the second argument.

It is well known that

A0 sin(k2πt) = − cos(k2πt) , k ≥ 1 ,

A01 = 0 , A0 cos(k2πt) = sin(k2πt) , k ≥ 1 .

ThusA0 ∈ L(Hλ
od,H

λ
ev) is a Fredholm operator of index –1 for everyλ ≥ 0.

Lemma 2.1. If a1 ∈ Hµ,ν
ev,od ∩ H

ν,µ
ev,od, 1

2 < ν ≤ µ, thenA1 ∈ L(Hλ
od,H

λ
ev) is

compact for everyλ ∈ [0, µ].

Lemma 2.2. If a2 ∈ Hµ,0
ev,od, µ ≥ 0, thenA2 ∈ L(Hλ

od,H
λ
ev) is compact for every

λ ∈ [0, µ].

Lemma 2.3. Assume thata1 ∈ Hµ,ν
ev,od ∩H

ν,µ
ev,od, a2 ∈ Hµ,0

ev,od, 1
2 < ν ≤ µ. Then

A = A0 + A1 + A2 ∈ L(Hλ
od,H

λ
ev) is a Fredholm operator of index−1 for every

λ ∈ [0, µ].

The proofs of Lemmas 2.1–2.3 can be constructed following the ideas of [4].
As a consequence of Lemma 2.3 we obtain the following result.

Theorem 2.1. Assume the conditions of Lemma2.3. Assume also that the homo-
geneous equationAu = 0 has inHµ

od only the trivial solution. Then the range
AHµ

od ⊂ Hµ
ev is of codimension1. Fixing aϕ ∈ Hµ

ev\AHµ
od, for everyf ∈ Hµ

ev

we get a unique pair(ω, u) ∈ C×Hµ
od such thatωϕ+Au = f , and this generalized

solution of(2) is unique inC×H0
od.

We haveHµ ⊂ Cm(IR) for m < µ − 1
2 , µ > 1

2 , and under conditions of
Theorem 2.1,u ∈ Cm(IR). For(ω, v), the generalized solution of (1), we have

v(x) = u
( 1

2π
arccos(−x)

)
, 1 ≤ x ≤ 1 .

Sov is continuous on[−1, 1], Cm-smooth in(−1, 1), satisfiesv(−1) = u(0) = 0,
v(1) = u(1/2) = 0, but the derivatives ofv have certain singularities at the end
points of the interval(−1, 1), e.g.v ∈ C1(−1, 1) for µ > 3

2 ,

v′(x)− u′(0)
2π
√

1− x2
→ 0 as x→ −1 , v′(x)−

u′(1
2)

2π
√

1− x2
→ 0 as x→ 1 .
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3. A FULLY DISCRETE COLLOCATION METHOD

ForN ∈ IN, introducem,M,n ∈ IN such that

2m ≤M ≤ n ≤ N , m ∼ N%, M ∼ Nσ, n ∼ N τ ,

0 < % ≤ σ ≤ τ < 1 , σ ≤ 1
2
,

µ

µ+ 1
≤ τ < 1 ,

(3)

where n ∼ N τ means that there are positive constantsc1 and c2 such that
c1 ≤ nN−τ ≤ c2 asN →∞. We approximateA = A0+A1+A2 ∈ L(H0

od,H
0
ev)

byAN ∈ L(H0
od,H

0
ev) defined by

AN = A0 +Qev
M (A(M)

1 +A
(M)
2 )P od

m +Qev
n A

[d]
1 (P od

n − P od
m ), (4)

whereP od
n is the orthogonal projection operator inH0

od to

T od
n = span {sin(k2πt) , k = 1, . . . , n} ;

Qev
n is the interpolation projection operator defined by

Qev
n u ∈ T ev

n = span {cos(k2πt) , k = 0, 1, . . . , n} ,

(Qnu)
( j

2n+ 1

)
= u

( j

2n+ 1

)
, j = 0, 1, . . . , n , u ∈ Hµ

ev , µ >
1
2

;

the product integration approximationsA(M)
1 , A

(M)
2 ∈ L(Hµ

od,H
0
ev) are defined by

(A(M)
1 u)(t) =

1/2∫
−1/2

log | sinπ(t− s)|Qev
M,s(a1(t, s)u(s))ds ,

(A(M)
2 u)(t) =

1/2∫
−1/2

Qev
M,s(a2(t, s)u(s))ds , u ∈ Hµ

od , µ >
1
2
,

where the indexs in Qev
M,s indicates the interpolation with respect to the argument

s; the asymptotic approximationA[d]
1 ∈ L(H0

od,H
0
ev) of A1 is defined by

A
[d]
1 sin(k2πt) =

d−2∑
j=0

k−1−jbj(t)
{

sin(k2πt), j even
cos(k2πt), j odd

}
, k = 1, 2, . . . ,

bj(t) = −
{

(−1)j/2, j even
(−1)(j−1)/2, j odd

}
1
2

1
(2π)j

( ∂
∂s

)j
a1(t, s)

∣∣∣∣
s=t

,

j = 0, . . . , d− 2 ,
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IN 3 d ≥ 1− %

%
µ , µ >

1
2

; d = 1 , A[d]
1 = 0 may be set if

1− %

%
µ ≤ 1 .

Lemma 3.1.Let (3) be fulfilled with aµ > 1
2 , and letd ≥ 1−%

% µ. Further, assume
thatai = ai(t, s), i = 1, 2, are even int, odd ins and with aν > 1/2,

a1 ∈ Hν,d+ν ∩Hµ+1,ν ∩Hν+µ(1−σ)/σ,µ/σ ∩Hµ/σ,ν+µ(1−σ)/σ,

a2 ∈ Hν,µ/σ ∩Hµ/σ,0 ∩H0,µ(1−%)/%.

Then

‖A −AN‖λ,µ := ‖A −AN‖L(Hµ
ev,Hλ

od) ≤ cNλ−µ (0 ≤ λ ≤ µ) ,

‖A −AN‖λ,λ → 0 as N →∞ (0 ≤ λ ≤ µ) .

Theorem 3.1. Assume the conditions of Lemma3.1. Assume also that the homo-
geneous equationAu = 0 has inHµ

od only the trivial solution. Letϕ ∈ Hµ
ev\AHµ

od.
Then there is aN0 ∈ IN such that forN ≥ N0, the approximate problem

ωQev
Nϕ+ANu = Qev

N f (5)

has for everyf ∈ Hµ
ev a solution(ωN , uN ) ∈ C×T od

N which is unique inC×H0
od,

and

|ωN − ω| ≤ cN−µ‖f‖µ , ‖uN − u‖λ ≤ cNλ−µ‖f‖µ (0 ≤ λ ≤ µ),

where(ω, u) ∈ C×Hµ
ev is the(unique) solution of the problemωϕ+Au = f .

Notice that to(ωN , uN ), uN =
∑N

j=1 cj sin(j2πt), there corresponds the
approximate generalized solution(ωN , vN ) of (1) with

vN (x) = uN

( 1
2π

arccos(−x)
)

=
N∑

j=1

cj sin(j arccos(−x))

=
√

1− x2

N∑
j=1

cjUj−1(−x),

whereUj(x) = sin((j + 1) arccosx)/
√

1− x2, j = 0, 1, . . ., are the Chebyshev
polynomials of the second kind. Moreover, by Theorem 3.1

‖vN − v‖L2
σ

= ‖uN − u‖0 ≤ cN−µ‖f‖µ,

where(ω, v), v(x) = u( 1
2π arccos(−x)), is the generalized solution of problem (1).

Also estimates ofvN − v in weighted Sobolev norms follow from Theorem 3.1.
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4. MATRIX FORM OF THE METHOD AND CONJUGATE
GRADIENTS

The dimension of the problem (5) can be reduced fromN to n. Namely, if
(ωN , uN ) with uN =

∑N
j=1 cj sin(j2πt) is the solution of (5), thenωn = ωN ,

un = P od
n uN =

∑n
j=1 cj sin(j2πt) is the solution of the problem

ωϕn +ANu = fn (6)

with ϕn = P ev
n Qev

Nϕ, fn = P ev
n Qev

N f , anduN can be reconstructed by the formula

uN = un +
∑N

j=n+1(ωnαj − dj) sin(j2πt), whereαj and dj are the Fourier

coefficients ofQev
Nϕ andQev

N f , respectively,

Qev
Nϕ =

N∑
j=0

αj cos(j2πt) , Qev
N f =

N∑
j=0

dj cos(j2πt) .

Denotingcn = (c1, . . . , cn)>, dn = (d0, d1, . . . , dn)>, αn = (α0, α1, . . . , αn)>,
we have problem (6) in the matrix form

ωαn + Mncn = dn (7)

with the(n+ 1)× n matrix Mn defined by

Mn = A0 + In,M C̃M (A(M)
1 + A(M)

2 )SMPM,m,n

+ C̃n

d−2∑
j=0

B(j)
n

{
CnJn, j even
JnSn, j odd

}
G(j)

N ,

where

A0 = −Jn, Jn =
(

0
In

)
are(n+ 1)× n matrices,

In is ann× n identity matrix,

In,M =
(

IM+1

0

)
is an(n+ 1)× (M + 1) matrix,

PM,m,n =
(

Im 0
0 0

)
is anM × n matrix;

Cn =
(

cos
(
kj

2π
2n+ 1

))n

j,k=0
, C̃n =

4
2n+ 1

DnCnDn,

Dn = diag
{1

2
, 1, . . . , 1

}
, Sn =

(
sin
(
kj

2π
2n+ 1

))n

j,k=1
;

A(M)
1 =

(
a

(1)
kj

)
, A(M)

2 =
(
a

(2)
kj

)
are(M + 1)×M matrices with the entries
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a
(1)
kj = − 1

2M + 1
a1

( k

2M + 1
,

j

2M + 1

)(
γ|k−j| + γk+j

)
,

a
(2)
kj =

2
2M + 1

a2

( k

2M + 1
,

j

2M + 1

)
, k = 0, 1, . . . ,M, j = 1, . . . ,M,

γk = log 2 +
M∑
l=1

1
l

cos
(
kl

2π
2M + 1

)
, k = 0, 1, . . . ,M,

γM+k = γM+1−k , 1 ≤ k ≤M ;

G(j)
n = diag

{
0, . . . , 0, (m+ 1)−1−j , . . . , n−1−j

}
is an n× n matrix,

B(j)
n = diag

{
bj(0), bj

( 1
2n+ 1

)
, . . . , bj

( n

2n+ 1

)}
is an (n+ 1)× (n+ 1)

matrix.

The application ofMn to ann-vector, as well as the application ofM′
n, the

Hermite adjoint matrix ofMn, to an(n+ 1)-vector costsO(n log n) +O(M2) =
O(N τ logN) + O(N2σ) arithmetical operations, provided that the fast Fourier
technique is used for the cosine and sine transformationsCn and Sn. The
computation of the entries ofMn costsO(M2) + O(N) = O(N) arithmetical
operations. This enables us to design fast solvers of problem (2) on the basis of
iteration methods. We specify a classical conjugate gradient iteration algorithm
(see [6,7]) to solve (7).

Denote byxn = (ω, c1, . . . , cn) the (n + 1)-vector of unknowns and rewrite
the system (7) in the form

Anxn = dn,

where
An =

(
αn Mn

)
is an (n+ 1)× (n+ 1) matrix.

Algorithm 1.
Step 0:x0

n = 0, y0
n

= −dn, r0n = −A′
ndn.

Fork = 0, 1, 2 . . .:

(i) if ‖yk
n
‖ ≤ ‖dn‖δN−µ, then terminate;

(ii) if ‖yk
n
‖ > ‖dn‖δN−µ, then go to stepk + 1, and compute

zk
n =

{
−r0n , k = 0 ,
−rk

n +
(
‖rk

n‖/‖rk−1
n ‖

)2
zk−1

n , k ≥ 1 ,

xk+1
n = xk

n + γkz
k
n , γk =

(
‖rk

n‖/‖Anz
k
n‖
)2
,

yk+1
n

= yk
n

+ γkAnz
k
n ,

rk+1
n = rk

n + γkA′
nAnz

k
n .

152



In this algorithm the usual norm‖dn‖ =
(∑n

k=0 |dk|2
)1/2

is used for(n+ 1)-
vectors. We have incorporated the residual termination rule into the algorithm: the
iterations stop on the firstk such that‖Anx

k
n − dn‖ ≤ ‖dn‖δN−µ. Hereδ > 0 is a

parameter.

Theorem 4.1. Under conditions of Theorem3.1, for N ≥ N0, Algorithm 1
terminates at an iteration numberk of order o(logN) as N →∞. The
corresponding iteration approximationxk

n = (ωk, ck1, . . . , c
k
n) defines an iteration

solution(ωk
N , u

k
N ) to (5) with

ωk
N = ωk , uk

N =
n∑

j=1

ckj sin(j2πt) +
N∑

j=n+1

(ωkαj − dj) sin(j2πt)

for which there hold the optimal order estimates

|ωk
N − ω| ≤ cN−µ‖f‖µ , ‖uk

N − u‖λ ≤ cNλ−µ‖f‖µ , 0 ≤ λ ≤ µ ,

where(ω, u) ∈ C×Hµ
od is the unique generalized solution of integral equation(2).

The computation ofdN = C̃NfN
and αN = C̃NϕN

from the vectors of

grid valuesf
N

=
(
f(0), f

(
1

2N+1

)
, . . . , f

(
N

2N+1

))
and ϕ

N
=
(
ϕ(0), ϕ

(
1

2N+1

)
,

. . . , ϕ
(

N
2N+1

))
by the fast algorithm costsO(N logN) arithmetical operations. All

other computations are cheaper, costing asymptoticallyo(logN)(O(N τ logN) +
O(N2σ)) arithmetical operations, which iso(N) for σ < 1

2 ; notice that an iteration
step by Algorithm 1 contains one application ofAn and one application ofA′

n. If
the Fourier coefficients off andϕ with respect tocos(k2πt) (k = 0, 1, 2, . . .) are
known, we can useP ev

N f andP ev
N ϕ instead ofQev

N f andQev
Nϕ. In this case the full

number of arithmetical and logical operations reduces toN + o(N).
If functionsa1, a2, andϕ are real, thenAn is real.
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ÜLDISTATUD TIIVAVÕRRANDI KIIRED LAHENDUSMEETODID
INDEKSI –1 KORRAL

Gennadi VAINIKKO

Üldistatud tiivavõrrandit on käsitletud situatsioonis, kui vastava integraal-
operaatori Fredholmi indeks on−1. On esitatud vastava laiendatud ülesande
lahendusmeetod, mis põhineb trigonomeetrilisele kollokatsioonimeetodile, on
aga täielikult diskreetne ning võimaldab teatud mõttes optimaalse täpsusastmega
lähislahendiN parameetrit määrataO(N logN) aritmeetilise tehtega.
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