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Abstract. We consider the generalized airfoil equation in the situation where the index of
the problem is—1. We periodize the problem, then discretize it by a fully discrete version
of the trigonometric collocation method and apply the conjugate gradient method to solve the
discretized problem. The approximate solution appears to be of optimal accuracy in a scale
of Sobolev norms, and thd parameters of the approximate solution can be determined by
O(N log N) arithmetical operations.

Key words: airfoil equations, fast solvers.

1. THE GENERALIZED AIRFOIL EQUATION AND ITS
PERIODIZATION

Consider the generalized airfoil equation

1
(Bo)(@) = [
21

1)

We assume that the kernel functiohsandb, are smooth. It is well known (see,
e.g., [7%]) that B represents a linear continuous Fredholm operator in different
weighted spaces?(—1,1); the index of B depends on the weight. Particularly,
ind(B) = 0if o(z) = /Q1+2)/1—2)oro(z) = /1 —-2)/(1+z), and

(%x i , T y)logle —yl+ b2($,y])v(y)dy = g(z),

—l<zxz<l.
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ind (B) = 1if o(z) = v/1 — 22. Collocation solvers of Eq. (1) in these cases have
been examined ir] and [!], respectively. In the present paper, we put

1
1
o) = ey )y = / o(z)u(w)o(z)de

then the index ofB € L£(L2(—1,1)) is —1. We assume that the homogeneous
equationBv = 0 has inL2(—1,1) only the trivial solutionv = 0; then the
rangeR(B) = BL2(—1,1) is of codimension 1. Let us fix a smooth function
Y € L2(—1,1) outsideR(B). For anyg € L2(—1,1) there exists a unique pair
(w,v) € C x L2(—1,1) satisfyingwy + Bv = g, and this pair can be treated
as a generalized solution of (1). ¢f€ R(B), thenw = 0, and the generalized
solution (0, v) can be identified with the usual solutienc L2(—1,1) of (1). In
the sequel we design a numerical method yielding approximatiogsvy) such
that|wy —w| — 0, [[uy —v| 2 — 0 with a certain velocity. Thus, the convergence
wy — 0asN — oo indicates thatv = 0, g € R(B), and (1) is solvable in
L2(—1,1) in the usual sense. An interpretation of the generalized sol(tion)
with w # 0 can be given considering the flow ejection through a point of the airfoil
(see ]). In any case, the generalized soluti@n v) is of interest also ifv # 0,
i.e. g € R(B). So we do not assume that R(B).

With the cosine transformation

x = x(t) = — cos(2mt) <0 <t< %) . y=x(s) = —cos(2ms) (0 <s< %) )

Eg. (1) can be reduced (se® for details) to the 1-periodic integral equation
Au = Agu + Aju + Asu = f, (2)

where
1/2
(Aogu)(t) = / cot w(t — s)u(s)ds (the Hilbert transformation)

~1/2
1/2

(Aju)(t) = / a1 (t, s)log|sinm(t — s)|u(s)ds,
~1/2
1/2

(Agu)(t) = / as(t, s)u(s)ds,

—-1/2
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f) =g(=(), telR,
1 al(tﬂ s) = b1<m(t)7$(5))x/(s)v
as(t,s) = 5 [b2(2(t), z(s)) + (log 2)by (z(t), z(s))]2'(s), ¢,s € R.

Clearly, f is 1-periodic and even, whereas anda, are 1-biperiodic, even in
and odd ins. The relation between solutions of (1) and (2) is somewhat more

sophisticated: fos € ( — %, % ]

v(z(s)), 0
—v(z(=s)), —

S

IN
A |~

)

<s<0,

=

VA

~—
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and after thatu is extended from( — £,1 ] to IR 1-periodically. Thusu is a
1-periodic odd function. To the generalized solutianv) of (1) there corresponds
the generalized solutiofw, u) of (2) satisfyingwy + Au = f, wherep(t) =
P(x(t)), t € R.

2. SOLVABILITY OF THE PROBLEM

Notice thata;, as € C™(R), f,p € C™(R) if by, by € C™([—1, 1] x [-1,1]),
g,v € C™[—1,1]. Introduce the Sobolev spaég*, A > 0, of 1-periodic functions
u having a finite norm

1/2 1/2
lullx = (Zk”\@(k)\Q) » k= max{1, [k}, a(k) = / u(s)e™ 2 ds
kez 1
We have H* = H2, @ H),, where H), and H?, are closed subspaces of

H* consisting of even and odd functions, respectively. An orthogonal basis of
HJ, is given by {cos(k27t)},>0, and an orthogonal basis df?, is given by
{sin(k27t)}x>1. We also introduce the Sobolev spdéét 2, \; > 0, Ay > 0, of
1-biperiodic functions: having a finite norm

(k‘l,kQ)EZQ
1/2 1/2

&(kl,kg):/ /a(t,s)e_ikl%te_ikﬂmdsdt,

-1/2-1/2

1/2
axl,Az( > k?lk%&@(khkzﬁ) ;
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and the subspadd}!"*? of functions which are even in the first argument and odd
in the second argument.
It is well known that

Apsin(k2nt) = — cos(k2nt) , kE>1,

Apl =0, Apcos(k2nt) = sin(k2nt) , E>1.

Thus A, € L(H),, H,) is a Fredholm operator of index —1 for every> 0.
Lemma 2.1. If a1 € HY" N HZ! L < v < p, thenA; € L(H), HY,) is

V,0 ev,od’ 2

compact for every € [0, p].

Lemma 2.2.1f ay € H*® |, 1 > 0,thenAy € L(H),, HY,) is compact for every

A € [0, .
Lemma 2.3. Assume thaty € HYy" N HZY | ap € HES (5 < v < p. Then
A= Ay + A1 + Ay € L(H),, HY,) is a Fredholm operator of index 1 for every
A €10, p).

The proofs of Lemmas 2.1-2.3 can be constructed following the ideds. of [
As a consequence of Lemma 2.3 we obtain the following result.

Theorem 2.1. Assume the conditions of Lemm&. Assume also that the homo-
geneous equatiomu = 0 has in H, only the trivial solution. Then the range
AH! c HE is of codimensiod. Fixing ay € HL\AH",, for everyf € HE,
we get a unique paifw, u) € Cx H, such thatvp+.Au = f, and this generalized
solution of(2) is unique inC x HY;.

We haveH* c C™(IR) for m < p — %, p > 1, and under conditions of
Theorem 2.1y € C™(IR). For (w, v), the generalized solution of (1), we have

1
v(x) = u(— arccos(—x)) , 1<z<1.
27

Sow is continuous onf—1, 1], C™-smooth in(—1, 1), satisfiess(—1) = u(0) = 0,
v(1) = u(1/2) = 0, but the derivatives of have certain singularities at the end
points of the interva(—1, 1), e.g.v € C'(-1,1) for > 3,

(0
21 — 22

u'(3)

B 2mvV'1 — 2

U/(x) —0asx—1.

—0asx— —1, ()
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3. A FULLY DISCRETE COLLOCATION METHOD

For N € IN, introducem, M, n € IN such that
2m < M <n< N, m~N¢ M~ N°, n~NT,

3
K <7t<1, 3)

1
0<QSUST<]~7 Ugiv =~
2 w1

wheren ~ N7 means that there are positive constantsand ¢, such that
c1 <nN~T < cpasN — co. We approximated = Ag+ A+ Ay € L(HY,, HY,)
by Ay € L(H?,, HY,) defined by

An = Ao+ QA + AP Pt Qi - PR, @)
whereP24 is the orthogonal projection operator if, to
7°4 = span {sin(k27t), k=1,...,n};
QY is the interpolation projection operator defined by

Q7w e TV = span{cos(k2nt), k=0,1,...,n},

i) k) m0h we o
(Qnu)<2n+1 u2n+1 , j=0,1,....n, wé€ ev,,u>2

the product integration approximatioﬁ.%M), Ag ) € L(HY,, HQ) are defined by

1/2
(AMu@) = [ log]sinm(t — 5)/Q8% s (t,)uls)ds.
~1/2
1/2
(AgM)u)(t) = / i}’s(ag(t, s)u(s))ds, wu€ Hffd, w> %,
“i/2

where the index in QN s indicates the interpolation with respect to the argument
s; the asymptotic approximatioA[ld] € L(HY,, HY,) of Ay is defined by

1—j sin(k27t), j even B
Al sin(k2nt) Zk b;( {Cos(k‘27rt), i odd . k=1,2,...,

B (_1)1'/27 jeven] 1 1 0\J
bi(t) __{ (—1)U=D/2, j odd }2(2@3‘ (55) @(®:9)



1-— 1 L 1=
]NadZ—Qu, /~L>§; d=1, A[ld]ZOmaybesetlf e
0

pw<1.
Lemma 3.1.Let(3) be fulfilled with ay. > % and letd > I;QQM. Further, assume
thata;, = a;(t,s),i = 1,2, are even in,, odd ins and with av > 1/2,
ay € H»4+tv 0 grtly o grtu(l=o)/on/o  gr/ov+u(l=o)/o
as € HYMo N gr/o0 n gOu(l-e)/e,
Then
1A = Axllg = 1A = Al g iy < N (0 <A<p),

|A—An|xr— 0 as N — oo 0<A<up).

Theorem 3.1. Assume the conditions of Lemi3d. Assume also that the homo-
geneous equatiodu = 0 has inH", only the trivial solution. Lep € H. N\ AHY,.
Then there is @V, € IN such that forN > Ny, the approximate problem

wQN e + Avu = QY (5)

has for everyf € HZ, a solution(wy, uy) € C x T]@d which is unique irC x Hg ,
and

won —wl < NSy Nuy —ulla < NSl (0 <A< p),

where(w,u) € C x Hb, is the(uniqué solution of the problervy + Au = f.

Notice that to(wy,un), uy = Zjv:l ¢; sin(j2nt), there corresponds the
approximate generalized solutiéay, vy ) of (1) with

1 N
un(x) = un (ﬂ arccos(—x)) = Z ¢; sin(j arccos(—x))
j=1

N
=V1-22 ZCjUj_l(—a:),
j=1

whereU;(z) = sin((j + 1) arccosz)/v1 — 2, j = 0,1,..., are the Chebyshev
polynomials of the second kind. Moreover, by Theorem 3.1

lon = vllpz = [lun = ullo < eNTH|| fl,,

where(w, v), v(z) = u(5= arccos(—z)), is the generalized solution of problem (1).
Also estimates ofiy — v in weighted Sobolev norms follow from Theorem 3.1.
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4. MATRIX FORM OF THE METHOD AND CONJUGATE
GRADIENTS

The dimension of the problem (5) can be reduced fidno n. Namely, if
(wn, un) with uy = YN ¢;sin(j2nt) is the solution of (5), thew, = wy,
U, = P?luy = > j—1¢jsin(j2mt) is the solution of the problem

won + Anu = fn (6)

with ¢, = PSYQY ¢, fn = PV Q% f, anduy can be reconstructed by the formula
uy = Up + Z;V:nﬂ(wnaj — dj)sin(j27t), whereo; andd; are the Fourier

coefficients ofQ% ¢ andQYy f, respectively,

N N
QN =D ajcos(jant),  QNf=)_djcos(j2mt).
j=0 j=0
Denotingc,, = (c1,...,¢c) ", d,, = (do,d1,...,dn)", a,, = (a0, 01,...,00) 7,
we have problem (6) in the matrix form
wa, +Mpc, =d, (7)

with the (n + 1) x n matrixM,, defined by

5 M M
M,, = Ag + Hn,MCM(Ag ) + Ag ))SM]PM,m,n

d—2 .
5 G) Cnln, jeven ()
+C"ZA OE” {JnSm j odd Gy
]:

where
AOZ_JnaJn: < 0

I
I, is ann x n identity matrix,

are(n + 1) x n matrices,
Loy = < ]11\40+1 ) isan(n+ 1) x (M + 1) matrix,

Prrmpn = < Hg‘ 8 > isanM x n matrix;

2 n ~ 4
cz( (k )) G, = ——D,C,D,,
" €08 32n+1 k=0 " op 41 T

1 21 n
D, = di {7,1,...,1},5 :(' (k )) :
" 1481 5 " S\ 9 11 k=1

Al = (az(;‘)) A = (a,(é)) are(M + 1) x M matrices with the entries
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al) = — ! a( u J )(’Y i V)
KT M A1 \2M 4+ 17 2M + 1) VIRl IR

2 _ _ 2 ( K J ) k=01, M, j=1,... M
akj 2M+1a2 2M+172M+1 ) s Ly ey s J PR )

2M +1
YM+k = YM+1—k s 1<k< M,

Mol o
vk:log2+zjcos<k‘l7>, k=0,1,..., M,
=1

GY) = diag{0,...,0,(m+1)7'7 ... ,n7 '} isan n x n matrix,

BY) = diag{bj<0>,bj(2n1+ 1)t
matrix.

)} isan (n+1) x (n+1)

2n+1

The application ofV,, to ann-vector, as well as the application bf/,, the
Hermite adjoint matrix ofVI,,, to an(n + 1)-vector cost€)(nlogn) + O(M?) =
O(N7log N) + O(N??) arithmetical operations, provided that the fast Fourier
technique is used for the cosine and sine transformationand S,,. The
computation of the entries aff,, costsO(M?) + O(N) = O(N) arithmetical
operations. This enables us to design fast solvers of problem (2) on the basis of
iteration methods. We specify a classical conjugate gradient iteration algorithm
(see f7]) to solve (7).

Denote byz,, = (w,c1,...,c,) the (n + 1)-vector of unknowns and rewrite
the system (7) in the form

Anin = dn’
where
A, = ( a, M, ) isan (n+1) x (n+ 1) matrix.
Algorithm 1.
Step 0:2% =0, yg =—d,, 1% =—-Ald,.
Fork=0,1,2...:

@) if [ly* || <[, 0N, then terminate;
(ii) if HyﬁH > ||d,, |0 N~*, then go to stepr + 1, and compute

Zk = { _£9L7 9 k = 07
o =+ ([l /ey~ ) "z k> 1,
2
aptt = 2l ez Y = (Irkll/IlAnzil)”,

yf:l-i-l = yfl + fykAngz ,

k+1 k / k
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In this algorithm the usual norfy,, || = (>-7_, |d,€|2)1/2 is used for(n + 1)-
vectors. We have incorporated the residual termination rule into the algorithm: the
iterations stop on the firét such that|A,z* — d,,|| < ||d,|[6N*. Hered > Ois a
parameter.

Theorem 4.1. Under conditions of Theorer.1, for N > Ng, Algorithm 1

terminates at an iteration numbek of order o(logN) as N — co. The
corresponding iteration approximatiotf = (w*,c}, ..., ck) defines an iteration
solution(w5;, u%;) to (5) with

n N
Wk =Wk, k= Z c? sin(j27t) + Z (WFa; — d;)sin(j27t)
j=1 j=n+1

for which there hold the optimal order estimates
Wi =@l SeNTH s llul —ulla Nl 0<A<p,
where(w, u) € Cx H!, is the unique generalized solution of integral equaii2h

The computation ofdy :éNiN and oy :éNEN from the vectors of

grid valuesf . = (f(0), f (gx51): -+ f (avyr)) andey = (2(0), ¢ (ax1);

-, ¢(sw51)) by the fast algorithm cost8( NV log N) arithmetical operations. Al
other computations are cheaper, costing asymptotioéltg N)(O(N™log N) +
O(N?7)) arithmetical operations, which g N) for o < 1; notice that an iteration
step by Algorithm 1 contains one application/of and one application of!,. If
the Fourier coefficients of andy with respect tacos(k27t) (k = 0,1,2,...) are
known, we can us@y f and Py’ ¢ instead ofQ% f andQy ¢. In this case the full
number of arithmetical and logical operations reduce¥ t¢ o(N).

If functionsas, as, andyp are real, them,, is real.
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ULDISTATUD TIIVAVORRANDI KIIRED LAHENDUSMEETODID
INDEKSI -1 KORRAL

Gennadi VAINIKKO

Uldistatud tiivavdrrandit on kéasitletud situatsioonis, kui vastava integraal-
operaatori Fredholmi indeks onrl. On esitatud vastava laiendatud Ulesande
lahendusmeetod, mis po&hineb trigonomeetrilisele kollokatsioonimeetodile, on
aga taielikult diskreetne ning vdimaldab teatud mottes optimaalse tdpsusastmega
l&hislahendiV parameetrit maarat@(N log N) aritmeetilise tehtega.
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