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Abstract. The Chandrasekhar equation describes the particles emerging from the atmospheric radiation and its solution of physical
significance is the minimal positive solution. This paper analyses the efficiency index of Newton’s iteration in detail, which then
helps to design a structured Shamanskii method for calculating the minimal positive solution. The monotone convergence of the
presented algorithm is subsequently established as well as the elementary monotonicity of the solution. Preliminary numerical
experiments are listed to indicate that the newely developed two-step Shamanskii method outperforms the Newton’s method in
terms of CPU time and iterative number with almost no loss in accuracy.

Key words: Chandrasekhar equation, Newton’s method, structured Shamanskii method, factor-alternating direction implicit itera-
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1. INTRODUCTION

The Chandrasekhar’s H-function

F(H)(δ ) = H(δ )−
(

1− c
2

∫ 1

0

δH(t)dt
δ + t

)−1

with c ∈ [0,1] (the average total number of particles emerging from a collision), was first introduced by
Subrahmanyan Chandrasekhar [3,4,13]. The solution associated with problems involving scattering in at-
mospheric radiation was also proposed by him.

To calculate the Chandrasekhar’s H-function in conservative case, the equation

F(H)(δ ) = 0 (1)

has to be solved by numerical methods. Exploiting the numerical integration formula using the Composite
Midpoint Rule ∫ 1

0
f (δ )dδ ≈ 1

n

n

∑
j=1

f (δ j) (2)
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with δi = (i−1/2)/n for 1≤ i≤ n yields the nonlinear vector equation F(x) = 0 with its i-th element(
F(x)

)
i
= xi−

(
1− c

2n

n

∑
j=1

δix j

δi +δ j

)−1
= 0.

The practical solution in physics is the minimal positive solution which has been studied in [11,13].
Various iterative methods such as fixed-point iterations and Newton’s methods [5,13,15] were employed
to find the minimal positive solution. Especially in case of Newton’s method, the subproblem could be
solved efficiently by some Krylov subspace methods [14]. An interesting property which has not been fully
explored regarding these methods is the solution of Eq. (1), which closely relates to the Cauchy-like matrix

(X)i j =
xix j

δi +δ j
,

that implies the structured numerical low-rank factorization. In fact, the Chandrasekhar equation (1) with
the structure presented above can be rewritten as a matrix Riccati equation

R(X) = XCX−AX−XAT +B = 0, (3)

where the matrix

K =

(
AT −C
−B A

)
(4)

is a nonsingular M-matrix or an irreducible singular M-matrix with A = ∆−1(I−αeeT ), B = ∆−1eeT ∆−1,
C = α2eeT , ∆ = diag(δ1, ...,δn); and e = (1,...,1)T .

For given initial value X (0) with the i j element
x(0)i x(0)j
δi+δ j

= 0, Newton’s method for Riccati equation (3)
admits the following iteration format [1,8–10,12,18]

(A−X (k)C)X (k+1)+X (k+1)(A−X (k)C)T = B−X (k)CX (k), k ≥ 0. (5)

Note that, by introducing x(k) = α∆X (k)e+ e, the matrix B−X (k)CX (k) on the right hand side (RHS) is
a product of two rank-two matrices (∆−1(e,x(k)− e))(∆−1(e,e− x(k)))T ; and A−X (k)C on the left hand
side (LHS) is a diagonal-plus-rank-one matrix ∆−1−α∆−1x(k)eT , then each X (k+1) in the above structured
Newton step might be expressed implicitly and stored in low-rank form via the factor-alternating direction
implicit (FADI) method [2,16]. The obvious advantage of using FADI method to solve subproblems, com-
pared to those equipped with Krylov subspace methods [14], is that the complexity of solving the subprob-
lem could be down to O(n) [16,20,24]. However, from the viewpoint of computational efficiency, the above
structured Newton’s method might still leave enough room for further improvement. To see concretely, one
may employ an evaluation of efficiency index (EI)

EI = p1/q

of an iterative method, where p is the order of the method and q represents the number of pieces of infor-
mation for one iteration [19]. For example, the classic Newton’s method according to the EI above, has the
efficiency

√
2 = 1.4142, since it converges quadratically with the requirement of two pieces of information

(one function evaluation and one derivative evaluation). Regarding iterations in the form of vector or matrix,
an evaluation index in terms of flop counts is more appropriate [6,9]. For structured Newton’s method, the
computation cost for each iteration x(k) is about (21Jk− 10)n, where Jk is the number of FADI iterations
in each Newton step. Considering (10.5Jk− 5)n as a piece of information, the EI of structured Newton’s
method is still 1.4142. However, enhanced convergence of Newton’s method with the available Fréchet
derivative F ′(x(k)) may potentially result in improved efficiency. Actually, the complexity of implementing
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Fig. 1. Function of the efficiency index (EI).

chord method for r times in current step takes (6Jk−1)n and the number Jk in all structured Newton steps
varies generally between 40 and 41. So, the efficiency index of r-step Shamanskii method is

EI = (2+ r)
10.5Jk−5

21Jk−10+(6Jk−1)r .

Obviously, EI is 1.4142 when r = 0 and it is just the original structured Newton’s method. One interesting
question is – when will the value of EI with increasing r attain its peak? To see this, two different cases
(Jk = 40 and Jk = 41) of EI vs r were plotted in Fig. 1.

It is clear from Fig. 1 that in both cases, Jk = 40 or Jk = 41, EI has the maximal efficiency value around
1.55 when r = 2. This contributes to the motivation of designing the structured Shamanskii method for
solving Eq. (1). Numerical experiments show that the modified Shamanskii method with r = 2 actually out-
performs the structured Newton’s method in terms of CPU time and iteration number without compensating
any residual accuracy.

Throughout this paper we use “◦” to denote Hadamard product and “(A)i j” or “(v)i” to stand for the
element of a matrix A ∈ Rn×n or a vector v ∈ Rn. Let I be the identity matrix of order n. We also need
the concept of M-matrix. A real square matrix A is called a Z-matrix if all its off-diagonal elements are
nonpositive. It is clear that a Z-matrix A can be written as sI−B with (B)i j ≥ 0. A Z-matrix sI−B with
(B)i j ≥ 0 is called a singular or non-singular M-matrix if s = ρ(B) or s > ρ(B), where ρ(·) is the spectral
radius.

The following several lemmas about some properties of M-matrices and the Riccati equation (3) are also
required in this paper.

Lemma 1. ([21]). For a Z-matrix A, it is true that
(i) A is an M-matrix if and only if uT A≥ 0 (Av≥ 0) for some vector u≥ 0 (v≥ 0);
(ii) when A is non-singular, A is an M-matrix if and only if A−1 ≥ 0 or, uT A > 0 (Av > 0) for some vector

u > 0 (v > 0) or, the spectrum σ(A) ∈ C+ with C+ denoting the open right half-plane.

Lemma 2. ([8,9]). The Riccati equation (3) has a minimal nonnegative solution X∗. If K is irreducible,
then X∗ > 0 and A−X∗C is an irreducible M-matrix. If K is a nonsingular M-matrix, then A−X∗C and is
a nonsingular M-matrix. If K is an irreducible singular M-matrix, there exist positive vectors u1,v1 ∈ Rn

and u2,v2 ∈ Rn such that
K(vT

1 ,v
T
2 )

T = 0, (uT
1 ,u

T
2 )K = 0,

and the vectors (vT
1 ,v

T
2 ) and (uT

1 ,u
T
2 ) are unique up to a scalar multiple, the matrix A−X∗C in this case is

a singular M-matrix.
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The rest of this paper is organized so that the review of the Shamanskii method and its structured version
is presented in Section 2. Section 3 focuses on the establishment of the monotone convergence and the
elementary monotonicity of the solution. We implement the numerical experiments to show the effectiveness
of the structured Shamanskii method in Section 4 and draw the conclusions in Section 5.

2. STRUCTURED SHAMANSKII METHOD

There are different versions of Newton’s iterations with higher order convergence, of which the Shamanskii
method is one of the most important. Its essence is to impose several chord iterations in each Newton step
so that the precipitation is possible. The optimal number of chord iterations in Shamanskii method might be
2 due to the EI interpretation described in introduction. However, r-step structured Shamanskii method will
be described here for more general purpose.

2.1. Structured Shamanskii method

1. Given initial vector x(0) = 0 and (X (0))i j =
x(0)i x(0)j
δi+δ j

, for k = 0,1,2, ..., set Y (k)
0 = X (k) and solve the equation

for m = 0, ...r−1:

(A−X (k)C)Y (k)
m+1 +Y (k)

m+1(A−X (k)C)T = B−X (k)CX (k)+ (Y (k)
m −X (k))C(Y (k)

m −X (k)). (6)

2. Set X (k+1) = Y (k)
r and form the vector x(k+1) = α∆X (k+1)e+ e.

Obviously, by letting
y(k)m = α∆Y (k)

m e+ e, (7)

the last item in iterative scheme (6) admits the following factorization:

(Y (k)
m −X (k))C(Y (k)

m −X (k)) = (∆−1(y(k)m − x(k)))(∆−1(y(k)m − x(k)))T .

Then, rather than solving the equation of a rank-two matrix on RHS in structured Newton’s method, the
structured Shamanskii method copes with one of a rank-three matrix on RHS. Analogously, the factor-
alternating direction implicit (FADI) method [2,16,20,22,23] might be applicable to the subproblem in each
Shamanskii step. In details, set

F(k)
m1 = ∆

−1[e, x(k)m − e, y(k)m − x(k)], G(k)
m1 = ∆

−1[e, e− x(k)m , y(k)m − x(k)],

then each Y (k)
m (also X (k)) in structured Shamanskii method has the following low-rank factorization when

the number Jk of FADI iterations is determined:

Y (k)
m = T (k)

m (T̄ (k)
m )T ,

T (k)
m = [ T (k)

m1 ,

√
2p(k)2√
2p(k)1

(p(k)1 I−A+X (k)C)(A−X (k)C+ p(k)2 I)−1T (k)
m1 , ...,√

2p(k)Jk√
2p(k)Jk−1

(p(k)
Jk−1

I−A+X (k)C)(A−X (k)C+ p(k)
Jk

I)−1T (k)
m,Jk−1

],

T̄ (k)
m = [ T̄ (k)

m1 ,

√
2p(k)2√
2p(k)1

(p(k)1 I−A+X (k)C)(A−X (k)C+ p(k)2 I)−1T̄ (k)
m1 , ...,√

2p(k)Jk√
2p(k)Jk−1

(p(k)
Jk−1

I−A+X (k)C)(A−X (k)C+ p(k)
Jk

I)−1T̄ (k)
m,Jk−1

],

(8)

where

T (k)
m1 =

√
2p(k)1 (A−X (k)C+ p(k)1 I)−1F(k)

m1 , T̄ (k)
m1 =

√
2p(k)1 (A−X (k)C+ p(k)1 I)−1G(k)

m1
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and

T (k)
mi =

√
2p(k)i√
2p(k)i−1

(p(k)i−1I−A+X (k)C)(A−X (k)C+ p(k)i I)−1T (k)
m,i−1,

T̄ (k)
mi =

√
2p(k)i√
2p(k)i−1

(p(k)i−1I−A+X (k)C)(A−X (k)C+ p(k)i I)−1T̄ (k)
m,i−1

for i = 2, ...,Jk−1. We refer to [2,16] for more details about the FADI iteration method.
The following theorem shows that the FADI iteration can be implemented in a more efficient format

with the O(n) computational complexity.

Theorem 1. Let T (k)
m and T̄ (k)

m be factor matrices generated by the FADI iteration for solving (6). For each
i = 1,2, ...,Jk and m = 0,1, ...r−1, denote by

[t(k)m,3i−2, t
(k)
m,3i−1, t

(k)
m,3i] and [t̄(k)m,3i−2, t̄

(k)
m,3i−1, t̄

(k)
m,3i]

the i-th triple vectors in T (k)
mi and T̄ (k)

mi , respectively. Define diagonal matrices

D(k)
∆1

= (I + p(k)1 ∆)−1, D(k)
∆i

= (p(k)i−1∆− I)(I + p(k)i ∆)−1, i = 2,3, ...,Jk,

and scalars

h(k)m1 =
ηT D(k)

∆1
e

1−ηT D(k)
∆1

x(k)
, h(k)m2 =

ηT D(k)
∆1
(x(k)−e)

1−ηT D(k)
∆1

x(k)
, h(k)m3 =

ηT D(k)
∆1
(y(k)m −x(k))

1−ηT D(k)
∆1

x(k)
,

h(k)m,3i =
ηT (I+pi∆)

−1∆t(k)m,3i−3

1−ηT (I+pi∆)−1x(k)
, h(k)m,3i−2 =

ηT (I+pi∆)
−1∆t(k)m,3i−5

1−ηT (I+pi∆)−1x(k)
, h(k)m,3i−1 =

ηT (I+pi∆)
−1∆t(k)m,3i−4

1−ηT (I+pi∆)−1x(k)
,

(9)

with η = αe. Then we have

[ t(k)m1 , t(k)m2 , t(k)m3 ] =
√

2p1[D
(k)
∆1
(e+h(k)m1x(k)),D(k)

∆1
((1+h(k)m2)x

(k)− e),D(k)
∆1
(y(k)m − x(k)+h(k)m3x(k))], (10)

[ t̄(k)m1 , t̄(k)m2 , t̄(k)m3 ] = [t(k)m1 , −t(k)m2 , t(k)m3 ] (11)

and for i = 2, ...,Jk

[ t(k)m,3i−2, t(k)m,3i−1, t(k)m,3i ] =
√

2pi [ D(k)
∆i
(t(k)m,3i−5 +h(k)m,3i−2ξ

(k))+h(k)m,3i−2ξ
(k),

D(k)
∆i
(t(k)m,3i−4 +h(k)m,3i−1ξ

(k))+h(k)m,3i−1ξ
(k),

D(k)
∆i
(t(k)m,3i−3 +h(k)m,3iξ

(k))+h(k)m,3iξ
(k) ], (12)

[ t̄(k)m,3i−2, t̄(k)m,3i−1, t̄(k)m,3i ] = [ t(k)3i−2, −t(k)m,3i−1, t(k)m,3i ] (13)

with ξ (k) = ∆−1x(k).

Proof. By using the Sherman-Morrison-Woodbury formula (see [7] for example) for the inverse matrix of
A−X (k)C + p(k)i I = ∆−1+ p(k)i I− ξ (k)ηT (i =1, ...,Jk) in (8), we can obtain the factoring formulae (10)–
(13).
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Remark. (i). Apart from sharing the same scalars h(k)m,3i−2 and h(k)m,3i−1 and vectors t(k)m,3i−2 and t(k)m,3i−1 (i =

1,2, ...,Jk) with structured Newton’s method, the structured Shamanskii method additionally ushers in h(k)m,3i

and t(k)m,3i, which is exclusive of the m-th Shamanskii step. Therefore, scalars h(k)m,3i−2, h(k)m,3i−1 and vectors

t(k)m,3i−2, t(k)m,3i−1 actually have no relation to m, the subscript imposed here is only for the purpose of the
uniformity for whole iteration format.
(ii). Compared with structured Newton’s method increasing two vectors within each iteration T (k)

m and T̄ (k)
m ,

the structured Shamanskii method at m-step raises three instead. From the viewpoint of Krylov subspaces,
the dimension of low-rank solution space at each iteration structured Shamanskii method enables to enhance
3r times, implying a faster convergence than that of the structured Newton’s method.

We give all steps of the structured Newton-FADI iteration method for Chandrasekhar equation with
c ∈ [0,1] in Algorithm 1.

Algorithm 1. Inputs: Initial guess x(0) = 0 and tolerance tol. Outputs: x ∈ Rn is approximative minimal
positive solution of Chandrasekhar equation

1. x(0) := 0.
2. For k = 0,1,2, ..., until convergence, do
3. Compute the two extreme eigenvalues of ∆−1−∆−1(x(k))ηT .
4. Determine Jk and the optimal ADI parameters {pi}Jk

i=1.
5. Construct [ t(k)01 , t(k)02 ] via (10), store 1−ηT (I + p1∆)−1x(k) and I + p1∆.
6. y(0) := ((t(k)01 )

T e)t(k)01 − ((t(k)02 )
T e)t(k)02 .

7. For i = 2,3, ...,Jk, do
8. Update [h(k)3i−2,h

(k)
3i−1] with (9), [t(k)3i−2, t

(k)
3i−1] with (12) and store 1−ηT (I + pi∆)

−1x(k), I + pi∆.
9. y(k)0 := y(k)0 +((t(k)m,3i−2)

T e)t(k)m,3i−2− ((t(k)m,3i−1)
T e)t(k)m,3i−1.

10. End
11. y(k)0 := α∆y(k)0 + e.
12. For m = 0, ...,r−1, do
13. v(k) := y(k)m − x(k). Update h(k)m3 with (9), t(k)m3 with (10) and set y(k)m+1 := (tT

1 e)t1.
17. For i = 2,3, ...,Jk, do
18. Update h(k)m,3i with (9), t(k)m,3i with (12) and set y(k)m+1 := y(k)m+1 +(tT

1 e)t1.
20. End
21. y(k)m+1 := y(k)0 +α∆y(k)m+1.
22. End
23. x(k) = y(k)r .
24. If ||F(x(k))||2 < tol, x := x(k), stop.
25. k := k+1.
26. End

2.2. Implementation issues

(i) For general implementations, the whole Algorithm 1 describes m-step structured Shamanskii method.
But as stated in Introduction, the number m = 2 implies the efficiency index attaining the highest value. So,
the numerical experiments in Section 4 indicate the performance of 2-step structured Shamanskii method.
(ii) The computation of two extremal eigenvalues of ∆−1−∆−1(x(k))ηT and the determination of the Jk
optimal ADI parameters {pi} in rows 3–4 are totally same with [24], see also [16,22,23] for more details.
(iii) Note that in row 8, the scalars [h(k)m,3i−2,h

(k)
m,3i−1] of (9) and vectors [t(k)m,3i−2, t

(k)
m,3i−1] of (12) are not relevant

to m as stated in Remark (iii), we omit the subscript in Algorithm 1.
(iv) Recall that the structured Newton’s method needs only rows 1–12 (except for row 9) with an additional
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convergence detection row 24. While the structured Shamanskii method requires updating the vector y(k)m
extra mJk times (m = 2 as the efficiency index is the highest). Note that forming a Jk vector and an n× Jk
matrix for respective storage of 1−ηT (I+ pi∆)

−1x(k) and I+ pi∆ (i= 1, ...Jk) in row 9 is unavoidable as they
are indispensible for the update of h(k)m,3i and t(k)m,3i in rows 15 and 18. Therefore, the structured Shamanskii
method definitely requires more storage space compared to the structured Newton’s version. Fortunately, the
slightly higher storage cost could be ignored as faster convergence of Shamanskii method decreases CPU
time.

3. CONVERGENCE AND ELEMENTARY MONOTONICITY

To show the monotone convergence of the structured Shamanskii method, a lemma is first required (see
[8,9]).
Lemma 3. Let X∗ be the minimal nonnegative solution of the algebraic Riccati equaton (3). Suppose that a
matrix X is such that
(i) R(X)≥ 0,
(ii) 0≤ X ≤ X∗, and 0≤ X < X∗ when K is an irreducible singular M-matrix,
(iii) I⊗ (A−XC)+(A−XC)⊗ I is a nonsingular M-matrix.

Then for any matrix Z with 0≤ Z ≤ X, the matrix

Y = X− (R
′
Z)
−1R(X) (14)

is well defined and
(a) R(Y )≥ 0,
(b) 0≤ Y ≤ X∗, and 0≤ Y < X∗ when K is an irreducible singular M-matrix,
(c) I⊗ (A−YC)+(A−YC)⊗ I is a nonsingular M-matrix.

Theorem 2. Let x∗ be the minimal nonnegative solution of the Chandrasekhar equation (1). Then the
structured Shamanskii method generates sequence {x(k)} and {y(k)} satisfying

x(k) = y(k)0 ≤ y(k)1 ≤ ...≤ y(k)r = x(k+1) ≤ x∗

for all k ≥ 0 and limk→∞ x(k) = x∗.

Proof. Starting with x(0) = 0, the initial iteration matrix in structured Shamanskii method (6) is Y (0)
0 =

X (0) = 0.
Let Z = X (0), Y =Y (0)

1 and X = X (0) in (14). Obviously, the conditions (i), (ii), and (iii) in Lemma 3 hold
true and we have R(Y (0)

1 )≥ 0, Y (0)
1 ≤ X∗ and I⊗ (A−Y (0)

1 C)+(A−Y (0)
1 C)⊗ I is a non-singular M-matrix.

Then the equivalent form of iteration (14)(
I⊗ (A−Y (0)

1 C)+(A−Y (0)
1 C)⊗ I

)
vec(Y (0)

1 −Y (0)
0 ) = vec(R(Y (0)

1 ))

implies X∗ ≥ Y (0)
1 ≥ Y (0)

0 = X (0). If we assume that X∗ ≥ Y (0)
j ≥ Y (0)

j−1 ≥ X (0) holds for some integer j, it is

easy to validate that these inequalities also hold true for j+1 by letting Z = X (0), Y = Y (0)
j+1 and X = Y (0)

j in
(14). Thus we have shown

X (0) = Y (0)
0 ≤ Y (0)

1 ≤ ...≤ Y (0)
r = Y (1) ≤ X∗. (15)

Now, suppose (15) is true for some integer k− 1, i.e., R(X (k)) = R(Y (k−1)
r ) ≥ 0, X (k) = Y (k−1)

r ≤ X∗, and
I⊗(A−X (k)C)+(A−X (k)C)⊗I = I⊗(A−Y (k−1)

r C)+(A−Y (k−1)
r C)⊗I is a nonsingular M-matrix, we shall

indicate by induction that (15) is also valid for k. In fact, setting X = X (k) in Lemma 3 satisfies conditions
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(i), (ii) and (iii), and letting Z = X (k), Y = Y (k)
1 . We then have R(Y (k)

1 ) ≥ 0 and Y (k)
1 ≤ X∗. Moreover

I⊗ (A−Y (k)
1 C)+(A−Y (k)

1 C)⊗ I is a nonsingular M-matrix. Repeating the same argument with case k = 0,
it holds X∗ ≥ Y (k)

1 ≥ Y (k)
0 = X (k). Again, an induction argument of X∗ ≥ Y (k)

j ≥ Y (k)
j−1 = X (k) for j = 1, ...,r

shows that (15) is valid for k.
Therefore we know that the matrix sequence {X (k)} is monotonically increasing and bounded above by

X∗. Then it has a limit X̄∗ satisfying the Eq. (3), i.e. X̄∗ is a nonnegative solution of (3). As X̄∗ ≤ X∗,
X̄∗ is the minimal nonnegative solution X∗. Note the constitution of y(k)m and x(k)m in structured Shamanskii
method, the conclusion is drawn in Theorem 2.

Theorem 3. Let the sequence {y(k)m }+∞

k=1 (m = 0,1, ...,r) be generated by structured Shamnaskii method with

an initial guess x(0) = y(0) = 0. Then for k = 1,2, . . ., each iteration vector y(k)m is elementwisely strictly
monotonic, namely, for m = 0,1, ...,r and k = 1,2, . . ., the following inequalities hold true

(y(k)m )n ≥ (y(k)m )n−1 ≥ ...≥ (y(k)m )2 ≥ (y(k)m )1. (16)

Proof. The iteration format of the structured Shamanskii method could be written as
y(k)0 = x(k),

y(k)m+1 = (M(k))−1
(
(y(k)m − x(k))◦ (S(y(k)m − x(k)))+ e− x(k) ◦Sx(k)

)
, m≥ 0,

x(k+1) = y(k)r ,

where M(k) = I− diag(Sx(k))− diag(x(k))S and the elements of S are (S)i j = α
δi

δi+δ j
. Note that the mono-

tonicity of δ1 < ... < δn, it always holds (Sv)i+1 > (Sv)i for any vector v≥ 0 and v 6= 0. On the other hand,
it follows an analogous way in [8, Thm 3.1] that A−X (k)C = ∆−1−α∆−1x(k)eT is a nonsingular M-matrix,
so is I−αx(k)eT , which further implies for any i = 1, ...,n and k = 0,1, ...,

1− (Sx(k))i > 1−αeT x(k) = 1−ρ(αx(k)eT )> 0.

Then e > Sx(k) holds true for each x(k) in Shamanskii method.
We next demonstrate Theorem 3 by the induction. Starting with x(0) = 0, it is clear y(0)1 = e and (16)

holds for k = 0 and m = 1. Suppose (16) is true for k = 0 and m = j. Then

(y(0)j+1)i = (y(0)j )i(Sy(0)j )i ≤ (y(0)j )i+1(Sy(0)j )i+1 = (y(0)j+1)i+1

with i = 1, ...,n−1 indicates (16) holds for k = 0 and m = j+1. So the inequality (16) is valid for k = 0 and
all m = 1,2, ...r. Now assume (16) is true for k = l and m = 1,2, ...r, we have to show it holds for k = l +1
and m = 1,2, ...r. In fact, the inequality

(y(l+1)
1 )i =

1+(x(l+1))i(S(y
(l+1)
1 − x(l+1)))i

1− (Sx(l+1))i
≤

1+(x(l+1))i+1(S(y
(l+1)
1 − x(l+1)))i+1

1− (Sx(l+1))i+1
= (y(l+1)

1 )i+1

indicates (16) is true for k = l+1 and m= 1 and, with assuming the validation of m= 1,2, ... j, the inequality

(y(l+1)
j+1 )i =

1+(x(l+1))i(S(y
(l+1)
j+1 − x(l+1)))i

1− (Sx(l+1))i
+

(y(l+1)
j − x(l+1))i(S(y

(l+1)
j − x(l+1)))i

1− (Sx(l+1))i

≤
1+(x(l+1))i+1(S(y

(l+1)
j+1 − x(l+1)))i+1

1− (Sx(l+1))i+1
+

(y(l+1)
j − x(l+1))i+1(S(y

(l+1)
j − x(l+1)))i+1

1− (Sx(l+1))i+1

= (y(l+1)
j+1 )i+1

shows (16) is true for k = l +1 and m = j+1. Thus the whole proof completes by induction.
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4. NUMERICAL EXPERIMENTS

This section will show the effectiveness of the structured Shamanskii method. The numerical example
comes from the discrete integral equation (1) with different c ∈ [0,1], see [13] for more details. In practical
implementations, Algorithm 1 with one Shamanskii step (i.e. r = 1) and two Shamanskii steps (i.e. r = 2)
is denoted by “SS1” and “SS2”, respectively. Higher Shamanskii steps are omitted as they give poorer nu-
merical results. In comparison, the structured Newton’s method (“SN”) in [20,24] is employed to highlight
the efficiency of Algorithm 1.

All algorithms are coded by MATLAB 2014 and run on a PC with Intel i3-3240 3.4GHz processor and
8GB RAM. Besides, they are terminated when the inequality

||F(x(k))|| ≤ τr||F(x(0))||+ τa

is satisfied, where τr and τa are, relative error tolerance and absolute error tolerance, respectively [13]; and
are set to be 10−12 in our experiments. The Chandrasekhar equation (1) varies from the non-critical case
to extremely near-critical case via setting c = 0.5, 0.9, 0.99 and 0.999999. Numerical experiments are
implemented in all cases and the results are listed in Tables 1–2, where the “n” column is the size of the
problem, the “CPU” row denotes the CPU time used in seconds, the “IT” row represents the number of
iterations, and the “RES” row stands for the 2-norm of the relative residual of the Chandrasekhar equation
at the obtained minimal positive solution.

We see from Tables 1–2 that all three methods stopped regularly and were able to derive the minimal
positive solution of (1). Indeed, the structured Shamanskii method performs better than the structured
Newton’s method in most cases.

Chandrasekhar equation (1) lies in the non-critical case when c = 0.5 and numerical results in Table 1
show that “SS1” and “SS2” are able to attain almost the same RES accuracy by using less CPU time with
smaller iteration number. Especially, the “SS2” requires the shortest CPU time compared to others and thrift
with CPU time becomes more obvious as the dimension n increases. When the equation is close to the
critical case with parameter c = 0.9, an interesting numerical phenomenon can be seen in Table 1, where
the “SS1” fails to obtain higher RES accuracy, although it beats “SN” in both – aspects of CPU time and
iteration number. Still, the “SS2” outperforms other two in terms of CPU time without sacrificing the RES
accuracy.

Table 2 shows the superiority of the structured Shamanskii method over Newton’s method when the
Chandasekhar equation approaches the critical case. Indeed, “SS1” and “SS2” achieve almost the same RES
accuracy with that of “SN”, but they are observed to consume less CPU time with smaller iteration number.
Again, the “SS2” possesses the best numerical performance among all three, expending the shortest CPU
time with the smallest iteration number. When the Chandrasekhar equation is extremely close to the critical
case, the “SS2” requires only nearly half of the iteration number of the “SN” to attain the prescribed residual
accuracy.

5. CONCLUSIONS

A structured Shamanskii method was presented in this paper to solve Chandrasekhar equation. The proposed
method sufficiently exploits the low-cost chord iterations to accelerate the structured Newton’s method and
is still proved to possess the monotone convergence. Numerical experiments indicate that the proposed
structured Shamanskii method with r = 2 outperforms structured Shamanskii method with r = 1 and the
structured Newton’s method. Hopefully, similar line of research will be conducted to generalize the newly
developed method for more complicated Chandrasekhar equations presented in [11].
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Table 1. Test results for c = 0.5 and c = 0.9

c = 0.5 c = 0.9

n Method SN SS1 SS2 SN SS1 SS2

CPU 0.390 0.312 0.312 0.500 0.234 0.343

5000 IT 4 3 2 5 3 3

RES 3.49e-14 3.49e-14 3.55e-14 1.34e-13 1.53e-11 1.34e-13

CPU 0.500 0.390 0.296 0.500 0.312 0.375

6000 IT 4 3 2 5 3 3

RES 4.19e-14 4.20e-12 4.21e-14 1.58e-13 1.68e-11 1.58e-13

CPU 0.578 0.437 0.312 0.07 0.04 0.10

7000 IT 4 3 2 5 3 3

RES 4.90e-14 4.92e-14 4.90e-14 1.88e-13 1.81e-11 1.88e-13

CPU 0.859 0.703 0.687 0.718 0.484 0.468

8000 IT 4 3 2 5 3 3

RES 5.46e-14 5.46e-14 5.49e-14 2.09e-13 1.94e-11 2.09e-13

CPU 0.968 0.640 0.531 1.296 0.796 0.828

9000 IT 4 3 2 5 3 3

RES 6.19e-14 6.19e-14 6.20e-14 2.37e-13 2.05e-11 2.37e-13

CPU 1.062 0.875 0.734 1.171 0.890 0.937

10000 IT 4 3 2 5 3 3

RES 6.86e-14 6.86e-14 6.88e-14 5.73e-13 2.84e-11 6.19e-13

CPU 1.218 1.000 0.718 1.750 0.968 0.968

11000 IT 4 3 2 5 3 3

RES 7.49e-14 7.48e-14 7.53e-14 2.89e-13 2.77e-11 2.89e-13

CPU 1.984 1.406 0.859 1.734 1.265 1.688

12000 IT 4 3 2 5 3 3

RES 7.83e-15 2.22e-12 5.98e-14 3.22e-13 2.37e-11 3.23e-13

CPU 1.734 1.359 1.109 1.937 1.234 1.312

13000 IT 4 3 2 5 3 3

RES 8.96e-14 8.98e-14 9.01e-14 3.44e-13 2.47e-11 3.44e-13

CPU 2.093 1.750 1.221 2.156 1.515 1.484

14000 IT 4 3 2 5 3 3

RES 9.61e-14 9.60e-14 9.62e-14 3.79e-13 2.56e-11 3.79e-13

CPU 2.265 1.781 1.250 2.718 2.406 1.875

15000 IT 4 3 2 5 3 3

RES 1.03e-13 1.03e-13 1.03e-13 4.08e-13 2.65e-11 4.07e-13

CPU 3.171 2.109 1.515 3.171 2.078 2.040

16000 IT 4 3 2 5 3 3

RES 1.08e-13 1.09e-13 1.09e-13 4.28e-13 2.74e-11 4.27e-13
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Table 2. Test results for c = 0.99 and c = 0.999999

c = 0.99 c = 0.999999

n Method SN SS1 SS2 SN SS1 SS2

CPU 0.500 0.453 0.390 0.906 0.906 0.750

5000 IT 7 5 4 13 9 7

RES 2.68e-13 2.69e-13 2.67e-13 1.78e-11 1.79e-11 1.79e-11

CPU 0.703 0.640 0.515 1.281 1.125 0.890

6000 IT 7 5 4 13 9 7

RES 3.23e-13 3.22e-13 3.22e-13 1.94e-11 1.91e-11 1.91e-11

CPU 1.234 1.328 0.796 1.546 1.390 1.234

7000 IT 7 5 4 13 9 7

RES 3.77e-13 3.79e-13 3.77e-13 2.04e-11 2.05e-11 2.04e-11

CPU 1.218 0.843 0.828 2.062 1.796 1.281

8000 IT 7 5 4 13 9 7

RES 4.29e-13 4.30e-13 4.27e-13 2.25e-11 2.24e-11 2.18e-11

CPU 1.781 1.375 1.093 2.437 2.265 1.640

9000 IT 7 5 4 13 9 7

RES 4.88e-13 4.88e-13 4.89e-13 2.34e-11 2.35e-11 2.32e-11

CPU 1.609 1.250 1.109 3.984 2.984 2.562

10000 IT 7 5 4 13 9 7

RES 5.375e-13 5.35e-13 5.22e-13 2.46e-11 2.48e-11 2.46e-11

CPU 2.453 1.546 1.312 3.406 2.765 3.343

11000 IT 7 5 4 13 9 7

RES 5.91e-13 5.92e-13 5.92e-13 2.66e-11 2.65e-11 2.63e-11

CPU 2.843 2.281 1.812 5.203 4.093 3.015

12000 IT 7 5 4 13 9 7

RES 6.43e-13 6.42e-13 6.43e-13 2.70e-11 2.69e-11 2.70e-11

CPU 2.625 1.968 2.156 4.984 3.328 2.812

13000 IT 7 5 4 13 9 7

RES 7.08e-13 7.07e-13 7.09e-13 2.83e-11 2.84e-11 2.81e-11

CPU 3.171 2.734 1.890 4.984 3.984 3.218

14000 IT 7 5 4 13 9 7

RES 7.67e-13 7.69e-13 7.70e-13 2.99e-11 2.98e-11 2.99e-11

CPU 3.531 2.765 2.453 6.859 4.921 3.578

15000 IT 7 5 4 13 9 7

RES 8.02e-13 8.01e-13 8.02e-13 3.08e-11 3.10e-11 3.05e-11

CPU 4.296 3.156 2.500 7.321 6.515 4.500

16000 IT 7 5 4 13 9 7

RES 8.60e-13 8.58e-13 8.60e-13 3.12e-11 3.14e-11 3.11e-11
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Struktureeritud Šamanski meetodid radiatsioonis esineva Chandrasekhari võrrandi
jaoks

Ning Dong, Bo Yu ja Zhaoyun Meng

On välja pakutud struktureeritud Šamanski meetod Chandrasekhari võrrandi minimaalse positiivse lahendi
leidmiseks. On tõestatud meetodi monotoonne koonduvus. Numbriliste näidete baasil on näidatud, et antud
meetod on struktureeritud Newtoni meetodist efektiivsem.


