
1. INTRODUCTION 
 
In Estonian energy production, renewable sources have 
an increasing importance but at least during the following 
decade, oil shale will be the dominating raw material for 
combustion at power plants and for production of shale 
oil [1]. The optimization of the working regimes of both 
processes need online control of the oil shale quality 
which varies from place to place, depending on the oil 
shale deposit. 

The quality of oil shale is often characterized by its 
calorific value. Currently, a precise determination of 
the oil shale calorific value is made in laboratory 
conditions by the bomb calorimetric method [2]. This 
procedure has typically several timeconsuming steps 
(sampling, transportation, averaging the initial sample 
to analytical sample, grinding, measuring moisture 
content and finally, determining the calorific value in 
bomb). The total duration determining the calorific 
value could take several hours. Accordingly, this 
routine method is not suitable for fast quality control 
of nonstop processes. 
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Abstract. Diffuse reflectance spectroscopy in near infrared region was used as a fast laboratory method for quantitative assessment 
of the calorific value and the moisture content of Estonian oil shale. Samples of different caloricity were collected from Narva open
cast mine and from beneficiation plant of Estonia underground mine, Estonia. The set of crushed oil shale samples, which moisture 
content was varied were tested by the help of a commercial multipurpose analyser, where Fouriertransform spectrometer recorded 
spectra in near infrared region and the software used partial least squares regression method. Results were related to the values of 
caloricity and moisture content, obtained by the bomb calorimeter and weighing methods, respectively. Bands characterizing organic 
and inorganic parts of the samples as well as the presence of the free water were ascertained by the infrared spectroscopy. Using the 
software provided by the analyser, the calorific value and the moisture content of samples were predicted. The prediction error of the 
lower caloricity was 1 MJkg–1 and prediction error of the weight percent of the moisture content was 1.35%. The comparison between 
achieved results and the values obtained from earlier laserinduced breakdown spectroscopy (LIBS) measurements shows that in la
boratory conditions more precise prediction can be made by diffuse reflectance measurements. Further improvement of the prediction 
accuracy could be achieved by modified software which considers observed nonlinear effects in spectra. 
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Among methods applied for quality control of raw 
material on running conveyer belt, the optical method 
based on the laserinduced breakdown spectroscopy 
(LIBS) has the advantage of being rapid, nondestructive 
and relatively safe [3–5]. In case of this method, a focused 
laser beam evaporates the material and emission spectra of 
chemical elements is recorded [6]. For oil shale analysis, 
our previous study demonstrated that the concentrations of 
main ingredients of pellets pressed from oil shale powders 
can be found on the basis of LIBS spectra by using 
methods of multivariate analysis [7]. LIBS was further 
applied for the determination of the calorific value and the 
moisture content of crushed oil shale samples on the mock
up of the conveyer belt [8]. Results of the two last studies 
showed that LIBS method could be implemented for 
obtaining online information of the oil shale quality. 

Another optical method used for the assessment of the 
quality of the raw material is the diffuse reflectance 
spectroscopy (DRS), which records spectra in infrared or 
near infrared (NIR) regions [9,10]. As spectra arising in 
these regions are caused by vibrations of chemical 
compounds, they are more directly related to the properties 
of material (e.g. calorific value and moisture) than that of 
atomic spectra of LIBS. The method is widely used in food 
and beverage industry, agricultural tests and petrochemical 
industry [11,12], and it has potential for online measure 
ments over moving conveyor belt [13,14]. The method of 
NIR DR spectroscopy was successfully used in studies of 
various quality parameters of coal and biomass/coal 
samples, applying different data processing methods [15–
18]. For oil shale powder samples, it was possible to 

predict the yield of shale oil by the NIR DR spectroscopy 
[19–21]. Nevertheless, there are no studies where NIR DR 
spectroscopy had been used to predict the calorific value 
and moisture content of the oil shale. 

The aim of the present study was to evaluate the 
suitability of NIR DR spectroscopy for determining the 
calorific values and moisture content of crushed oil shale. 
An extra task of the study was the comparison of results 
of DR spectrometry with those obtained by LIBS, and 
thus, the present study uses the same set of samples of 
crushed oil shale which were used for LIBS studies [8]. 
NIR spectra were recorded at different values of moisture 
content. For quantitative analysis, multivariate calibration 
models were applied. 

 
 

2. SAMPLES 

 
The samples investigated during present study were similar 
as in our previous study with LIBS and are listed in Table 1 
[8]. Most of the samples (11) were collected from Narva 
(Estonia) opencast mine, from the 7th trench’s west side 
exposure (outcrop), from different layers of oil shale and 
limestone interlayers AF2 [22]. Additional 4 samples 
labelled with EST were taken from the stopped conveyor 
belt of the beneficiation plant of Estonia underground mine. 

All samples were crushed by jaw crusher to the fraction 
of 0–25 mm. One part of each sample was used for the 
determination of calorific value by the bomb calorimeter 
method (ISO 1928). Calorific values Qd of dry samples are 
presented in Table 1. 
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Table 1. Calorific value and moisture content of samples
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Another part of samples was kept in hermetically closed 
jars between measurements of spectra. The moisture 
content of samples was determined by ovendrying method. 
Differently from the previous study [8], the moisture 
content of samples was increased from low to high moisture 
level (up to 20%) by pipetting 4% of the sample weight into 
the jar, followed by subsequent “homogenization” in closed 
jars, which lasted about 10 hours at room temperature. 

Before the measurements with increasing moisture 
content, samples were dried in the evacuated oven at the 
temperature of 105 ◦C for about 24 hours. These dry 
samples were characterized by 0.5 weight percent of 
moisture content. 

Overall, seven remarkably different values of moisture 
content were set (Table 1). For a number of samples, the 
highest moisture contents (see columns W6 and W7, 
Table 1) could not be set as they were not able to absorb 
such amount of water. 
 
 
3. DEVICE  AND  PROCEDURE  OF   

    MEASUREMENTS 

 
The NIR spectra from crushed oil shale samples were 
measured and the data were processed by multipurpose 
analyser MPAFTNIR (Bruker Optik GmbH), where IR 
spectrum in 12500–3600 cm–1 (800–2780 nm) interval 
was recorded by Fourier transform spectrometer. The 
device worked in diffuse reflectance mode. Figure 1 
passes the idea of collection of light reflected from a 
sample [23]. Lumps of oil shale with different size and 
random orientation filled tightly a rotating Petri dish of 
90 cm diameter. The centre of the incident light beam of 
≈ 3 cm2 crosssection area was at 2.5 cm distance from 
the rotation axis. Light, partly reflected from oil shale 
lumps at very different angles, is collected by the 
integrating sphere. The inner surface of the sphere has a 

very diffuse coating with high reflection and evenly 
dispersed light is formed due to the multiple reflections 
inside the sphere, which is detected by detector. The 
relative remittance R´ is determined as the ratio of 
intensity of the signal from the sample of the reference 
nonabsorbing surface. 

At 8 cm–1 spectral resolution, the average of 64 spectra 
was saved. During the recording of these spectra Petri dish 
made 2.7 revolutions. At a fixed moisture content each 
sample was characterized by at least three averaged 
spectra, the time interval between the recordings of 
spectra was ≈ 1 min. Overall, 355 spectra were recorded. 
 
 
4. SPECTRA 

 
Figure 2a presents the dependence of absorbance A on the 
wave number ν. Here, the term “absorbance” is just the 
apparent absorbance, introduced as an analogous to that 
in transmission spectroscopy and defined as A = log ( 1 ), 
its value is directly related to the concentration of 
absorbing species [10]. 

Here, like in further figures, the absorbance is 
presented as a function of wavelength. 

At a fixed caloricity the bias component of absorption 
spectra gradually increased with the growth of the 
moisture content, whereby in case of samples with higher 
caloricity the bias was more intensive. At ν > 7500 cm–1 
(λ < 1300 nm) the absorption bands were missing and at 
ν < 3800 cm–1 (λ > 2600 nm) the absorption was very 
large. For further analysis of spectra, only the narrower 
spectral range with the characteristic absorbing bands was 
selected. 

Closer examination of presented spectra in the 1200–
2600 nm range showed a good signaltonoise ratio, which 
allowed to characterize samples by the first derivative of 
the spectrum. Figure 2b demonstrates that this data 
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Fig. 1. (a) sample illumination and collection of reflected light; (b) top view of Petri dish; dashed line indicates the area of incident 
light beam. 
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preprocessing emphasizes steep edges of peaks, thus 
making the interpretation of spectra easier. Five 
distinguishable groups of bands exist in the selected 
spectral range. The most intensive band around 1950 nm 
(5130 cm–1) belongs to OH and is related to the presence 
of free water [24], while a peak near 2500 nm (4000 cm–1) 
characterizes carbonates [25,26]. Both bands near 1700 
and 2300 nm belong to CH vibrations [27]. Near 
1400 nm (7100 cm–1) OH and CH bands are overlapped 
and this part is not used for analysis. 

In Fig. 3a spectra of dry samples with very different 
calorific values can be seen. Differences in spectra 
correspond to the oil shale chemical composition, whose 
organic part is described by empirical formula 
C421H638O44S4NCl [28], and the main components of the 
mineral part are CaCO3 and CaMg(CO3)2 [26]: samples 
of higher caloricity have more intensive absorption at CH 
bands, while samples of lower caloricity have larger 
absorption of CO band. Additionally, because of a low 
moisture content, the absorbance near 1950 nm is 
practically missing. 

Absorption of OH band with the peak at 1950 nm has 
a strong dependence on the moisture content (Fig. 3b). 
Besides, the moisture content affects the absorbance of 
bands belonging both to organic (1700 and 2300 nm) and 
mineral (near 2500 nm) components of the samples. 

Figure 4a shows the absorbance of CH peaks at 
2305 nm as a function of caloricity at a fixed moisture 
content: absorbance is a sublinear function of caloricity, 
which indicates to the saturation of the absorbance at 
higher calorific values. Similar nonlinear trends were 
observed in case of all used moisture values.  

In case of a certain sample, the absorbance was a linear 
function of the moisture content (Fig. 4b) but slopes of 
dependences differ remarkably. 

 
 

5. DATA  PROCESSING  AND  RESULTS 

 
Above presented analysis gives proper physical back 
ground of NIR spectra but it does not guarantee the 
accuracy needed for the assessment of the calorific value         
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Fig. 2. (a) absorbance spectra of samples with drastically different values of caloricity and percentage of moisture content (indicated 
in figure); sample B (Qd = 21.123 MJkg–1, solid lines); sample BC (Qd = 2.32 MJkg–1, dashed lines). (b) absorbance and its derivative 
as a function of wavelength with the indication of characteristic absorbing bands; sample F1 (Qd = 9.4 MJkg–1, Ww = 7.5%).

Fig. 3. (a) spectra of dry samples, Ww = 0.5%; dashed line – sample A+A´ (Qd = 13.6 MJ/kg); solid line – sample B/A´ 
(Qd = 0.5 MJ/kg). (b) spectra of sample A+A´ at three different values of Ww = 0.5, 7.8 and 18%. 
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and the moisture content as the measured bands are partly 
overlapped and therefore, the measured absorbance is the 
sum of the absorbances of all components (not only the 
component of interest) in the sample. 

The software of MPAFTNIR device uses multivariate 
approach, i.e. instead of the intensity of only one specific 
band, samples are characterized by the entire selected 
spectrum. Thus, it is assumed that systematic variations in 
the spectra are related to the sample composition. For data 
analysis the device software Quant [23] applies partial least 
square (PLS) regression [29] method, which expects a 
linear relationship between the spectral data and property 
value to be determined.  

In order to get out most of the information from 
recordings, a preprocessing of NIR spectra is usually utilized 
[30]. The device software proposes a number of different 
preprocessing methods (e.g. first derivative) as well as 
suggests spectral intervals for building a model for quantifi 
cation of results. The combination of preprocessing methods 
and selected spectral ranges are ordered by software 

according to the value of root mean square error of prediction 
(RMSEP) and the one giving the lowest RMSEP was used. 

On the basis of spectra belonging to samples with 
different calorific values and the moisture content, the 
software of the device calculated the calibration curve which 
is then used for analyses of unknown samples. For 
prediction of properties of samples, the software used two 
validation types. The “cross validation” (leave one out 
method [31]) uses the same set of samples for calibration 
and validation but the “test set validation” uses two 
independent sets of samples, one for calibration and the 
other for validating the model. In the present study ≈ 20% 
of spectra was used for calibration and the remaining ≈ 80% 
was the test set. 

In case of both types of validations, slopes for 
calibration and prediction dependences differ only a little 
(Fig. 5a). 

Figures 5a and 6a show correlations between the 
predicted values of caloricity QPd and moisture WP with 
the calorific value Qd and moisture Ww, respectively. 
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Fig. 4. (a) normalized absorbance as a function of caloricity; Ww = 14.5%; filled symbols – λ = 2305 nm peak; open symbols – 
λ = 1725 nm peak; solid line – logarithmic fit of λ = 2305 nm data. (b) absorbance as a function of moisture content; open symbols 
– sample B/C (Qd = 2.32 MJ/kg); filled symbols – sample B (Qd = 21.12 MJ/kg) λ = 1925 nm peak. 

Fig. 5. (a) DR results: test set validation of calorific value QPd; filled symbols – calibration data and dashed line – linear fit for cali
bration; open symbols – prediction data and solid line – linear fit for prediction. (b) LIBS results: cross validation of calorific value 
QPd; data taken from [8]. 
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Compared with LIBS studies of same crushed oil shale 
samples [8] we see from Figs 5b and 6b that results of DR 
are better correlated with the results of calorific bomb and 
weighing methods. 

In industry, the basic parameter of oil shale quality is 
the lower (net) calorific value Qw [32]. The formulae 
which allow to calculate the caloricity Qw on the basis of 
known values of Qd and Ww are given by ISO 1928:2009 
standard [2]. For prediction of lower caloricity QPw, the 
same procedure was followed but instead of Ww, the 
prediction values WP were used. The relationship between 
Qw and QPw is presented in Fig. 7a; and in Fig. 7b is the 
histogram of the difference Qw– QPw. 
 
 
6. COMPARISON  OF  DR  AND  LIBS  RESULTS,   

    FURTHER  PROSPECTS 

 
Results of prediction of caloricity Qd, moisture content 
Ww , and lower caloricity Qw are shown in Table 2, LIBS 
results were taken from [7,8]. In the third and fourth 

columns are slopes and correlation coefficients of linear 
fits between “true” and predicted values of corresponding 
characteristics, while  the root mean square errors of 
prediction (RMSEP) are in the last column.  

The best results are obtained for dry powder samples 
by LIBS. On the other hand, the time needed for 
preparation of these samples is comparable with that of 
the traditional calorific bomb method and in this case the 
only advantage of LIBS is the possibility to predict the 
concentrations of oil shale ingredients [7]. 

One experimental problem, common for both DR and 
LIBS methods, is the accuracy of the estimation of the 
moisture content. By weighing the samples, it is possible 
to calculate the moisture content in the body of lumps while 
DR and LIBS give the moisture at the lumps’ surface. The 
balance between the moisture at the surface and inside the 
samples depends on the surrounding environment and the 
balance could change in time, which leads to the increase 
of the prediction error. It is the likely reason of higher 
prediction error in the case of LIBS measurements where 
the experiments were carried out in an airflow, which 
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Fig. 6. (a) DR results: cross validation of moisture content WP. (b) LIBS results: cross validation of moisture content WP; data taken from [8]. 

Fig. 7. DR results: (a) cross validation of lower calorific value; (b) histogram corresponding to prediction of lower calorific value; 
solid line – Gaussian fit characterized by standard deviation 1 MJkg–1. 
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causes faster changes in the moisture content at the lumps’ 
surface. Furthermore, the moisture affects not only these 
parts of spectra which are directly related to the moisture 
content, like OH band near 1950 nm, but due to the matrix 
effect, it causes also changes in other parts of spectra 
(Figure 3b). As a result, the uncertainty of determination of 
moisture content influences also the accuracy of the 
determination of the caloricity. 

Due to the use of integrating sphere, the role of 
fluctuations in DR spectra, caused by a random orientation 
of faces of oil shale lumps, was almost negligible. 
Contrary, in case of LIBS, even the average intensity of a 
spectral line found from 100 LIBS spectra needs extra 
normalization [8]. For this purpose, the average intensity 
of a line was normalized by the average of the total 
intensity in 220–850 nm range [8]. This procedure gave a 
better signaltobackground ratio but it did not allow to 
exclude “blank” spectra caused by laser beam impacting 
between lumps of tested samples [3]. This circumstance 
seems to be the main reason why the prediction error of 
Qd in case of LIBS is two times larger than in case of DR. 
Carrying out the normalization of intensity of a spectral 
line belonging to a single spectrum by the corresponding 
total intensity allows the discrimination of outliers. 

The final remark concerns the used software. We saw 
that some bands in NIR spectra (Fig. 3) are directly related 
to the changes of samples’ caloricity and moisture content. 
However, these dependencies alone did not allow to 
determine the caloricity/moisture content with sufficient 
accuracy. The main advantage of used multivariate 
approach which handles all parts of spectra equally, is  
diminishing the role of uncontrollable factors. On the 
other hand, this approach almost neglects the physical 
background of observed trends in spectra. Additional 
limitation related to PLS is that it could not satisfactorily 
reflect the nonlinear relationship between absorbance and 
the caloricity (Fig. 4a). An appropriate data processing 

which combines the physical processes with the 
multivariate regression could improve the accuracy of 
data analysis. This approach was successfully realized in 
LIBS studies [33] where different dominant factors as a 
function of spectral line intensity were combined with 
PLS correction, and a significant improvement of final 
results was achieved. 
 
 
7. CONCLUSIONS 

 
DR spectroscopy was applied for prediction of caloricity 
and moisture content of crushed 0–25 mm fraction oil shale 
samples. The study showed that good correlation between 
calorific value and moisture content determined by 
traditional methods and those calculated on the bases of 
NIR DR spectra could be achieved without any additional 
preparation of samples.  

The list of most important findings is given below: 
● In the DR spectra, it was possible to separate vibra 

tional bands which characterize organic and inorganic 
parts of the matter. The most intensive band belongs 
to OH which reflects the presence of free water. The 
moisture has a strong matrix effect and changes of its 
content cause remarkable changes in other bands of 
spectra. At a fixed moisture content, the intensity of 
bands of the organic part of oil shale are nonlinear 
functions of the caloricity. 

● For predicting the caloricity and moisture content, the 
conventional software of the device was used. The 
accuracy of predictions was governed by a possible 
difference of the moisture content at lumps’ surface 
from that of inside the lumps. 

● Comparison of DR NIR measurements with LIBS 
results showed that the model of DR NIR predicts the 
caloricity with higher accuracy. The values of RMSEP 
are 0.85 MJ/kg and 1.76 MJ/kg, respectively. 
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Table 2. Results of prediction of oil shale main characteristics



● Regularities in spectra indicate that a considerable 
improvement of final results of both DR and LIBS 
methods could be achieved by combining the data 
processing of the multivariate linear regression with 
the dominant factor model.  
Laboratory online control of oil shale quality by NIR

DR spectroscopy is justified in case of selective mining 
where the oil shale quality changes comparatively slowly. 
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Difuusse  peegeldusspektroskoopia  rakendamine  Eesti  põlevkivi  kvaliteedi  kiireks   

laboratoorseks  hindamiseks 
 
Iram Tufail, Peeter Paris, Indrek Jõgi, Märt Aints, Andres Siiman, Hella Riisalu ja Matti Laan 

 
Infrapuna piirkonna peegeldusspektroskoopiat kasutati põlevkivi kütteväärtuse ja niiskusesisalduse kvantitatiivseks 
määramiseks. Erineva kütteväärtusega tükikivi proovid võeti Narva karjäärist ja Estonia kaevanduse rikastusvabrikust. 
Katsetes muudeti proovide niiskusesisaldust. Testimisel kasutati tööstuslikku analüsaatorit, kus Fourier’ spektromeeter 
registreeris spektri lähedases infrapuna piirkonnas. Testimise tulemusena saadud kütteväärtusi ja niiskusesisaldust võr
reldi tulemustega, mis saadi kalorimeetrilise pommi ning kaalumise meetodeid vastavalt kasutades. Infrapuna spektris 
tehti kindlaks karakteristlikud ribad, mis iseloomustavad nii proovide orgaanilist ja anorgaanilist osa kui ka vaba vee 
olemasolu. Kütteväärtuse ennustusviga oli 1 MJkg–1 ja niiskuse kaaluprotsendi oma 1,35%. Varem kasutatud LIBSi 
meetodiga võrreldes olid peegeldusspektroskoopia tulemused täpsemad. Tulemuste arutelus leiti, millise kaevandus
meetodi puhul peaks peegeldusspektroskoopia rakendamine olema kõige efektiivsem ja millised andmetöötluse viisid 
peaksid viima täpsemate tulemusteni. 


