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Abstract. We construct 3-Lie superalgebras on a commutative superalgebra by means of involution and even degree derivation. We

construct a representation of induced 3-Lie algebras and superalgebras by means of a representation of initial (binary) Lie algebra,

trace and supertrace. We show that the induced representation of 3-Lie algebra, that we constructed, is a representation by traceless

matrices, that is, lies in the Lie algebra sl(V ), where V is a representation space. In the case of 2-dimensional representation we

find conditions under which the induced representation of induced 3-Lie algebra is irreducible. We give the example of irreducible

representation of induced 3-Lie algebra of 2nd order complex matrices.
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1. INTRODUCTION

A generalization of such an important concept as Lie algebra and superalgebra occurs in several directions.

One of such directions is the development of the theory of n-ary Lie algebras and superalgebras, which

was originated by Filippov in [9]. A n-ary Lie algebra g is a vector space endowed with n-ary Lie bracket

(x1,x2, . . . ,xn)∈ g×g× . . .×g→ [x1,x2, . . . ,xn]∈ g, which is a multilinear totally skew-symmetric mapping

and satisfies the Filippov-Jacobi identity

[x1,x2, . . . ,xn−1, [y1,y2, . . . ,yn]] = [[x1,x2, . . . ,xn−1,y1],y2, . . . ,yn]+ [y1, [x1,x2, . . . ,xn−1,y2],y3, . . . ,yn]

+ . . .+[y1,y2, . . . ,yn−1, [x1,x2, . . . ,xn−1,yn]],

where x1,x2, . . . ,xn−1,y1,y2, . . . ,yn ∈ g. The extension of this definition to Lie superalgebras is based on

the signs matching rule in Z2-graded structures. A n-ary Lie superalgebra is a super vector space h =
h0 ⊕ h1 endowed with a multilinear graded skew-symmetric mapping (x1,x2, . . . ,xn) ∈ h× h× . . .× h →
[x1,x2, . . . ,xn] ∈ h such that it satisfies the graded Filippov–Jacobi identity

[x1,x2, . . . ,xn−1, [y1,y2, . . . ,yn]] = [[x1,x2, . . . ,xn−1,y1],y2, . . . ,yn]

+(−1)μ1 [y1, [x1,x2, . . . ,xn−1,y2],y3, . . . ,yn]

+ . . .+(−1)μn−1 [y1,y2, . . . ,yn−1, [x1,x2, . . . ,xn−1,yn]],
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where
µ1 = y

∧
1(x
∧

1 + . . .+ x
∧

n−1), . . . ,µn−1 = (y
∧

1 + y
∧

2 + . . .+ y
∧

n−1)(x
∧

1 + . . .+ x
∧

n−1),

and x
∧

denotes the Z2-grading of an element x ∈ h. In the particular case n = 3 a Lie (super)algebra with
ternary (graded) Lie bracket is usually called 3-Lie (super)algebra.

A well known example of an n-ary Lie algebra can be constructed by means of the analogue of a
vector product of n vectors in an (n+ 1)-dimensional vector space. In this case, the n-ary Lie bracket is
constructed with the help of determinant of order n+1. Another important example of an n-ary Lie bracket
is the analogue of the Poisson bracket on an algebra of smooth functions proposed by Nambu as part of his
approach to generalization of Hamiltonian mechanics [13]. In this case, the n-ary Lie bracket for n smooth
functions, where n is a positive odd integer, is constructed with the help of Jacobian. Another natural way
to construct new n-ary Lie brackets is the method of constructing such a bracket making use of an existing
(n−1)-ary Lie bracket. Thus, the resulting n-ary Lie bracket is usually called the induced n-ary Lie bracket
and the corresponding n-ary Lie algebra is called the induced n-ary Lie algebra. In this paper, we consider
induced 3-Lie algebras and superalgebras.

At first glance, it seems that the induced ternary (graded) Lie brackets do not give anything new, since
they are based on a more fundamental structure, that is, a binary (graded) Lie bracket. But that is not true. It
is well known that Lie groups and their Lie algebras are used in gauge field theories, where the Lie group is a
gauge group and its Lie algebra (Lie bracket) is used in infinitesimal gauge transformations. Now, suppose
we were able to construct a ternary Lie bracket using a binary Lie bracket of some gauge group. Then
we can trace a relation of our ternary bracket (through a binary Lie bracket) with the infinitesimal gauge
transformations and we can generalize them introducing two (or more) gauge transformation parameters.
This idea and a method of constructing induced ternary Lie brackets were proposed in [6]. This method in a
more general form can be described as follows: Given a Lie algebra g and a generalized trace τ : g→ C on
it, one can define the induced ternary Lie bracket by the formula

[x,y,z] = τ(x) [y,z]+ τ(y) [z,x]+ τ(z) [x,y], (1)

where x,y,z ∈ g and [·, ·] is a Lie bracket of g. The structure of induced n-Lie algebras with n-ary Lie
brackets constructed by means of a generalized trace, their cohomologies and Hom-generalizations were
studied in the papers [4,5,12]. An extension of the method of constructing induced 3-Lie algebras to 3-
Lie superalgebras by means of a generalized supertrace and possible application of this method in BRST-
formalism of quantum field theory was proposed in the papers [1,2]. Later the method of constructing 3-Lie
superalgebras by means of supertrace proposed in [1,2] was extended to ternary Hom–Lie superalgebras in
[10].

In this paper, we construct induced 3-Lie superalgebras, whose ternary graded Lie brackets have the
structure similar to (1). First of all, we propose two identities, which give sufficient and necessary conditions
for graded skew-symmetric ternary bracket to satisfy the graded Filippov–Jacobi identity, in other words,
to determine a 3-Lie superalgebra. This result can be considered as an extension of result obtained in [7]
for 3-Lie algebras to 3-Lie superalgebras. Next we construct binary graded Lie brackets and then ternary
graded Lie brackets on a commutative superalgebra with involution, where the structure of a ternary graded
Lie bracket is similar to (1) and it is constructed by means of even degree derivation and involution. The
starting point for our constructions are the results obtained in [8], in which the authors construct ternary Lie
brackets on a commutative algebra with involution. Then we study representations of induced 3-Lie algebras
and superalgebras. Given a representation π : g→ gl(V ) of Lie algebra g, where V is a representation space,
we construct the mapping ρ : g⊗g→ gl(V ) as follows:

ρ(x,y) = Tr(π(x))π(y)−Tr(π(y))π(x), (2)

where x,y ∈ g, and prove that ρ is a representation of induced 3-Lie algebra. We call this representation
of induced 3-Lie algebra induced representation. Note that the induced representation (2) of induced 3-Lie



118 Proceedings of the Estonian Academy of Sciences, 2020, 69, 2, 116–133

algebra was introduced in the PhD dissertation [11], where the author also proposed an example of such a

representation constructed by means of the Lie algebra of 2nd order complex matrices, which is similar to

example given in the present paper. In this paper, we consider the question of irreducibility of the induced

representation of 3-Lie algebra. We show that for any x,y ∈ g the matrix ρ(x,y) ∈ gl(V ) is traceless, i.e.

ρ : ⊗g→ sl(V ), where sl(V ) is the Lie algebra of special linear group of endomorphisms of a vector space

V . Then we study the irreducibility of induced representation ρ and propose conditions, when the induced

representation of induced 3-Lie algebra is irreducible. As an example, we consider the basic representation

of gl2(C) by 2nd order complex matrices and the corresponding induced 3-Lie algebra of 2nd order matrices

and, making use of previously mentioned conditions, show that this is an irreducible representation of 3-Lie

algebra. Next we propose the extension of induced representation (2) to induced 3-Lie superalgebras by

means of supertrace and prove that this is a representation of induced 3-Lie superalgebra.

2. 3-LIE SUPERALGEBRAS INDUCED BY MEANS OF DERIVATION AND INVOLUTION

In this section we consider a commutative superalgebra A =A0⊕A1 endowed with an involution x ∈A �→
x� ∈ A and an even degree derivation δ : A → A . By involution we mean an even degree linear mapping

(even degree means that it preserves grading of any homogeneous element), which satisfies (x�)� = x, x∈A .

By derivation of degree m, where m is an integer either 0 or 1, we mean linear mapping δ : A → A , which

satisfies the graded Leibniz rule δ (xy) = δ (x)y+(−1)mx
∧

y
∧

xδ (y), where x
∧

,y
∧

are gradings of homogeneous

elements x,y, respectively. Using an involution and derivation we construct three graded Lie brackets on

superalgebra A . Furthermore, by considering a generalized supertrace we apply methods described in [3]

and yield induced 3-Lie superalgebras whose bracket is defined using involution, derivation and both of

them, together with generalized supertrace.

First of all, we start by proposing equivalent form to the graded Filippov–Jacobi identity. To simplify

the equations, we will use the notation xy
∧

= x
∧

+ y
∧

.

Proposition 1. Assume g= g0 ⊕g1 is a super vector space and let

[·, ·, ·] : g×g×g→ g (3)

be a skew-symmetric multilinear map, such that [x,y,z]
∧

= xyz
∧

. Then (g, [·, ·, ·]) is a 3-Lie superalgebra if
and only if the equalities

[[x,y,z] ,u,v] = (−1)u
∧

xyz
∧

+x
∧

yz
∧

[[u,y,z],x,v]+ (−1)u
∧

yz
∧

+y
∧

z
∧

[[x,u,z],y,v]+ (−1)u
∧

z
∧

[[x,y,u],z,v] (4)

and

[[x,y,z],u,v]+ (−1)xy
∧

zuv
∧

+z
∧

uv
∧

[[u,v,z],x,y]− (−1)y
∧

u
∧

+y
∧

z
∧

+z
∧

u
∧

[[x,u,z],y,v]

−(−1)v
∧

yzu
∧

+x
∧

yzu
∧

+x
∧

v
∧

[[v,y,z],u,x]− (−1)yv
∧

zu
∧

+v
∧

y
∧

[[x,v,z],u,y]− (−1)xu
∧

yz
∧

+x
∧

u
∧

[[u,y,z],x,v] = 0
(5)

hold for bracket [·, ·, ·] : g×g×g→ g.

Proof. Let g= g0 ⊕g1 be a super vector space and assume that (g, [·, ·, ·]) is a 3-Lie superalgebra. If this is

the case, then the Filippov–Jacobi identity must hold:

[x,y, [z,u,v]] = [[x,y,z],u,v]+ (−1)xy
∧

z
∧

[z, [x,y,u],v]+ (−1)xy
∧

zu
∧

[z,u, [x,y,v]]. (6)

  (5)
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To show that identity (4) holds for bracket (3), apply Filippov–Jacobi identity (6) recursively to itself on the

right-most bracket. This yields us the following result:

������
[x,y, [z,u,v]] = [[x,y,z],u,v]+ (−1)xy

∧

z
∧

[z, [x,y,u],v]

+ (−1)xy
∧

zu
∧(

[[z,u,x],y,v]+ (−1)zu
∧

x
∧

[x, [z,u,y],v]+ (−1)zu
∧

xy
∧

[x,y, [z,u,v]]
)

= [[x,y,z],u,v]+ (−1)xy
∧

z
∧

[z, [x,y,u],v]+ (−1)xy
∧

zu
∧

[[z,u,x],y,v]

+ (−1)xy
∧

zu
∧

+zu
∧

x
∧

[x, [z,u,y],v]+ (−1)xy
∧

zu
∧

+zu
∧

xy
∧

������
[x,y, [z,u,v]] ,

which gives

[[x,y,z],u,v] =−(−1)xy
∧

z
∧

[z, [x,y,u],v]− (−1)xy
∧

zu
∧

[[z,u,x],y,v]− (−1)zu
∧

y
∧

[x, [z,u,y],v]. (7)

We need to show that the right hand sides of (4) and (7) coincide. It is indeed the case:

−(−1)zu
∧

y
∧

[x, [z,u,y],v] =− (−1)3(−1)zu
∧

y
∧

+x
∧

zuy
∧

+u
∧

z
∧

+z
∧

y
∧

[[u,y,z],x,v] = (−1)u
∧

xyz
∧

+x
∧

yz
∧

[[u,y,z],x,v],

−(−1)xy
∧

zu
∧

[[z,u,x],y,v] =− (−1)3(−1)xy
∧

zu
∧

+z
∧

u
∧

+z
∧

x
∧

+x
∧

u
∧

[[x,u,z],y,v] = (−1)u
∧

yz
∧

+y
∧

z
∧

[[x,u,z],y,v],

−(−1)xy
∧

z
∧

[z, [x,y,u],v] =− (−1)1(−1)xy
∧

z
∧

+z
∧

xyu
∧

[[x,y,u],z,v] = (−1)u
∧

z
∧

[[x,y,u],z,v].

From those equalities we can deduce that if (g, [·, ·, ·]) is indeed a 3-Lie superalgebra, then identity (4) holds

for bracket [·, ·, ·].
In order to prove the identity (5), we can apply Filippov–Jacobi identity recursively to itself once again,

but this time to both the right-most and middle brackets on the right hand side of identity (6).

������
[x,y, [z,u,v]] = [[x,y,z],u,v]− (−1)xy

∧

z
∧

+v
∧

xyu
∧

[z,v, [x,y,u]]+ (−1)xy
∧

zu
∧

[z,u, [x,y,v]]
= [[x,y,z],u,v]

− (−1)xy
∧

z
∧

+v
∧

xyu
∧(

[[z,v,x],y,u]+ (−1)zv
∧

x
∧

[x, [z,v,y],u]+ (−1)zv
∧

xy
∧

[x,y, [z,v,u]]
)

+(−1)xy
∧

zu
∧(

[[z,u,x],y,v]+ (−1)zu
∧

x
∧

[x, [z,u,y],v]+ (−1)zu
∧

xy
∧

[x,y, [z,u,v]]
)

= [[x,y,z],u,v]− (−1)xy
∧

z
∧

+v
∧

xyu
∧

[[z,v,x],y,u]− (−1)xy
∧

z
∧

+v
∧

xyu
∧

+zv
∧

x
∧

[x, [z,v,y],u]

− (−1)xy
∧

z
∧

+v
∧

xyu
∧

+zv
∧

xy
∧

[x,y, [z,v,u]]+ (−1)xy
∧

zu
∧

[[z,u,x],y,v]

+ (−1)xy
∧

zu
∧

+zu
∧

x
∧

[x, [z,u,y],v]+ (−1)xy
∧

zu
∧

+zu
∧

xy
∧

������
[x,y, [z,u,v]].

Reordering the summands in the last equation results in

[[x,y,z],u,v]− (−1)xy
∧

z
∧

+v
∧

xyu
∧

+zv
∧

xy
∧

[x,y, [z,v,u]]

+(−1)xy
∧

zu
∧

[[z,u,x],y,v]− (−1)xy
∧

z
∧

+v
∧

xyu
∧

+zv
∧

x
∧

[x, [z,v,y],u]

−(−1)xy
∧

z
∧

+v
∧

xyu
∧

[[z,v,x],y,u]+ (−1)xy
∧

zu
∧

+zu
∧

x
∧

[x, [z,u,y],v] = 0,

+ (−1)xy
∧

zu
∧(

[[z,u,x],y,v]+ (−1)zu
∧

x
∧

[x, [z,u,y],v]+ (−1)zu
∧

xy
∧

[x,y, [z,u,v]]
)

+ (−1)xy
∧

zu
∧

+zu
∧

x
∧

[x, [z,u,y],v]+ (−1)xy
∧

zu
∧

+zu
∧

xy
∧

������
[x,y, [z,u,v]] ,
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which is exactly (5) once the elements are ordered accordingly within the brackets:

−(−1)xy
∧

z
∧

+v
∧

xyu
∧

+zv
∧

xy
∧

[x,y, [z,v,u]] =+(−1)xy
∧

zuv
∧

+z
∧

uv
∧

[[u,v,z],x,y]

+(−1)xy
∧

zu
∧

[[z,u,x],y,v] =− (−1)y
∧

u
∧

+y
∧

z
∧

+z
∧

u
∧

[[x,u,z],y,v]

−(−1)xy
∧

z
∧

+v
∧

xyu
∧

+zv
∧

x
∧

[x, [z,v,y],u] =− (−1)v
∧

yzu
∧

+x
∧

yzu
∧

+x
∧

v
∧

[[v,y,z],u,x]

−(−1)xy
∧

z
∧

+v
∧

xyu
∧

[[z,v,x],y,u] =− (−1)yv
∧

zu
∧

+v
∧

y
∧

[[x,v,z],u,y]

+(−1)xy
∧

zu
∧

+zu
∧

x
∧

[x, [z,u,y],v] =− (−1)xu
∧

yz
∧

+x
∧

u
∧

[[u,y,z],x,v].

This completes the proof of necessity. Sufficiency can be shown analogously.

Let A =A0⊕A1 be a superalgebra. We say that superalgebra A is commutative superalgebra if for any

two homogeneous elements u,v ∈A it holds that uv = (−1)u
∧

v
∧

vu. Let m ∈ Z2. Linear mapping δ : A →A

is said to be a degree m derivation of a superalgebra A if δ (u)
∧

= u
∧

+m, for all u ∈ A , and it satisfies the

graded Leibniz rule

δ (uv) = δ (u)v+(−1)mu
∧

v
∧

uδ (v).

In case m = 0, we call it even degree derivation, and otherwise, for m = 1, we call it odd degree derivation.

We denote the degree of δ as δ
∧

. Consequently, if δ is an even degree derivation of superalgebra A , then

δ (u)
∧

= u
∧

. Or, in other words, derivation δ does not change the degree of homogeneous element u ∈ A .

Furthermore, in case of even δ the Leibniz rule for any u,v ∈ A simplifies to

δ (uv) = δ (u)v+uδ (v).

Mapping (·)� : A → A , u �→ u� is said to be an involution of a superalgebra A if it satisfies the

following conditions:

(1) involution is an even degree mapping of a superalgebra A , A �
i ⊂ Ai, i ∈ Z2, u�

∧

= u
∧

,

(2) it is linear, (λu+μv)� = λu�+μv�,

(3) (·)� : A → A is its own inverse, (u�)� = u,

(4) (uv)� = (−1)u
∧

v
∧

v�u�.

In the case of commutative superalgebra the condition 4 takes on the form (uv)� = u�v�.

Making use of involution and even degree derivation we can construct graded Lie brackets on a superal-

gebra A . To achieve that, let us define

[u,v]� = u�v− (−1)u
∧

v
∧

v�u, (8)

[u,v]δ = uδ (v)− (−1)u
∧

v
∧

vδ (u), (9)

[u,v]�,δ = (u−u�)δ (v)− (−1)u
∧

v
∧

(v− v�)δ (u). (10)

Proposition 2. Brackets (8) and (9) are graded Lie brackets. If involution (·)� : A →A and an even degree
derivation δ : A → A satisfy the condition

(δ (u))� =−δ (u�) ,

then bracket (10) is also a graded Lie bracket.
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Proof. Proving the proposition is similar for all three brackets (8), (9) and (10). Let us only observe (10),

which is the most involved. To assure linearity, pick coefficients λ ,μ ∈ K and homogeneous elements

u,v,w ∈ A such that v
∧

= w
∧

. Note that ω
∧

= λv+μw
∧

= v
∧

= w
∧

as both v and w are homogeneous, and

calculate

[u,λv+μw]�,δ = (u−u�)δ (λv+μw)− (−1)u
∧

ω
∧

((λv+μw)− (λv+μw)�)δ (u)

= λ (u−u�)δ (v)+μ (u−u�)δ (w)− (−1)u
∧

ω
∧

(λ (v− v�)+μ(w−w�))δ (u)

= λ (u−u�)δ (v)−λ (−1)u
∧

v
∧

(v− v�)δ (u)+μ (u−u�)δ (w)−μ(−1)u
∧

w
∧

(w−w�)δ (u)
= λ [u,v]�,δ +μ[u,w]�,δ .

Antisymmetry is a result of direct computation

[u,v]�,δ = (u−u�)δ (v)− (−1)u
∧

v
∧

(v− v�)δ (u)

=−(−1)u
∧

v
∧ (

(v− v�)δ (u)− (−1)u
∧

v
∧

(u−u�)δ (v)
)
=−(−1)u

∧

v
∧

[v,u]�,δ .

In order to complete the proof, we still need to show that bracket defined by (10) satisfies the Jacobi

identity. To achieve that, first observe that due to the commutativity of A we can write bracket [·, ·]�,δ as

[u,v]�,δ = uδ (v)−u�δ (v)−δ (u)v+δ (u)v�.

Furthermore, if δ is even and (δ (u))� =−δ (u�), then we can write

[u,vδ (w)]�,δ = uδ (v)δ (w)+uvδ 2(w)−u�δ (v)δ (w)

−u�vδ 2(w)−δ (u)vδ (w)−δ (u)v�δ (w�),

[u,δ (v)w]�,δ = uδ 2(v)w+uδ (v)δ (w)−u�δ 2(v)w

−u�δ (v)δ (w)−δ (u)δ (v)w−δ (u)δ (v�)w�.

Using the results above we can now calculate [u, [v,w]�,δ ]�,δ :

[u, [v,w]�,δ ]�,δ = [u,vδ (w)]�,δ − [u,v�δ (w)]�,δ − [u,δ (v)w]�,δ +[u,δ (v)w�]�,δ

= uδ (v)δ (w)+uvδ 2(w)−u�δ (v)δ (w)−u�vδ 2(w)−δ (u)vδ (w)−δ (u)v�δ (w�)

−uδ (v�)δ (w)−uv�δ 2(w)+u�δ (v�)δ (w)+u�v�δ 2(w)+δ (u)v�δ (w)+δ (u)vδ (w�)

−uδ 2(v)w−uδ (v)δ (w)+u�δ 2(v)w+u�δ (v)δ (w)+δ (u)δ (v)w+δ (u)δ (v�)w�

+uδ 2(v)w�+uδ (v)δ (w�)−u�δ 2(v)w�−u�δ (v)δ (w�)−δ (u)δ (v)w�−δ (u)δ (v�)w.

(11)

As a next step we can apply (11) also to [v, [w,u]�,δ ]�,δ and [w, [u,v]�,δ ]�,δ , yielding all elements on the

left hand side of Jacobi identity.

−uδ (v�)δ (w)−uv�δ 2(w)+u�δ (v�)δ (w)+u�v�δ 2(w)+δ (u)v�δ (w)+δ (u)vδ (w�)

−uδ 2(v)w−uδ (v)δ (w)+u�δ 2(v)w+u�δ (v)δ (w)+δ (u)δ (v)w+δ (u)δ (v�)w�

+uδ 2(v)w�+uδ (v)δ (w�)−u�δ 2(v)w�−u�δ (v)δ (w�)−δ (u)δ (v)w�−δ (u)δ (v�)w.

(11

(11)

,

−u�δ (v)δ (w)−δ (u)δ (v)w−δ (u)δ (v�)w�.

−u�vδ 2(w)−δ (u)vδ (w)−δ (u)v�δ (w�),
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[u, [v,w]?,δ ]?,δ +(−1)u
∧

v
∧
+u
∧

w
∧

[v, [w,u]?,δ ]?,δ +(−1)w
∧

u
∧
+w
∧

v
∧

[w, [u,v]?,δ ]?,δ =

+���
���XXXXXXuδ (v)δ (w)

(1)
+���

�XXXXuvδ 2(w)
(2)−���

���XXXXXXu?δ (v)δ (w)
(3)−���

��XXXXXu?vδ 2(w)
(4)

−���
���XXXXXXδ (u)vδ (w)

(5)−(((((
(hhhhhhδ (u)v?δ (w?)

(6)−���
���XXXXXXuδ (v?)δ (w)

(7)−���
��XXXXXuv?δ 2(w)

(8)

+((((
((hhhhhhu?δ (v?)δ (w)

(9)
+���

��XXXXXu?v?δ 2(w)
(10)

+���
���XXXXXXδ (u)v?δ (w)

(11)
+���

���XXXXXXδ (u)vδ (w?)
(12)

−����uδ 2(v)w
(1)−���

���XXXXXXuδ (v)δ (w)
(1)
+���

��u?δ 2(v)w
(2)
+���

���XXXXXXu?δ (v)δ (w)
(3)

+���
���δ (u)δ (v)w

(3)
+((((

((
δ (u)δ (v?)w? (4)

+���
��uδ 2(v)w? (5)

+���
���uδ (v)δ (w?)

(6)

−���
��u?δ 2(v)w? (7)−(((((

(u?δ (v)δ (w?)
(8)−���

���δ (u)δ (v)w? (9)−���
���δ (u)δ (v?)w

(10)



[u, [v,w]?,δ ]?,δ

+���
���XXXXXXδ (u)vδ (w)

(5)
+���

�
δ 2(u)vw

(11)−���
���XXXXXXδ (u)v?δ (w)

(11)−���
��

δ 2(u)v?w
(12)

−���
���δ (u)δ (v)w

(3)−hhhhhhδ (u?)δ (v)w? (1)−���
���XXXXXXδ (u)vδ (w?)

(12)−XXXXXδ 2(u)vw? (2)

+((((
((hhhhhhδ (u)v?δ (w?)

(6)
+
XXXXXδ 2(u)v?w? (3)

+���
���δ (u)δ (v)w? (9)

+
XXXXXXδ (u?)δ (v)w

(4)

−����XXXXuvδ 2(w)
(2)−XXXXXXδ (u)vδ (w)

(5)
+���

��XXXXXuv?δ 2(w)
(8)
+
XXXXXXδ (u)v?δ (w)

(6)

+
XXXXXXuδ (v)δ (w)

(7)
+((((

((u?δ (v)δ (w?)
(8)
+���

��XXXXXu?vδ 2(w)
(4)
+
XXXXXXδ (u?)vδ (w)

(8)

−���
��XXXXXu?v?δ 2(w)

(10)−hhhhhhδ (u?)v?δ (w)
(9)−XXXXXXu?δ (v)δ (w)

(10)−���
���uδ (v)δ (w?)

(6)



(−1)u
∧

vw
∧

[v, [w,u]?,δ ]?,δ

+
XXXXXXδ (u)δ (v)w

(11)
+���

�uδ 2(v)w
(1)−XXXXXXδ (u)δ (v)w? (12)−���

��uδ 2(v)w? (5)

−XXXXXXuδ (v)δ (w)
(7)−(((((

(hhhhhhu?δ (v?)δ (w)
(9)−XXXXXXδ (u?)δ (v)w

(4)−���
��u?δ 2(v)w

(2)

+
hhhhhhδ (u?)δ (v)w? (1)

+���
��u?δ 2(v)w? (7)

+
XXXXXXu?δ (v)δ (w)

(10)
+���

���XXXXXXuδ (v?)δ (w)
(7)

−����δ 2(u)vw
(11)−XXXXXXδ (u)δ (v)w

(11)
+
XXXXXδ 2(u)vw? (2)

+
XXXXXXδ (u)δ (v)w? (12)

+
XXXXXXδ (u)vδ (w)

(5)
+
hhhhhhδ (u?)v?δ (w)

(9)
+���

��
δ 2(u)v?w

(12)
+���

���δ (u)δ (v?)w
(10)

−XXXXXδ 2(u)v?w? (3)−(((((
(

δ (u)δ (v?)w? (4)−XXXXXXδ (u)v?δ (w)
(6)−XXXXXXδ (u?)vδ (w)

(8)



(−1)w
∧

uv
∧

[w, [u,v]?,δ ]?,δ

= 0.

This means that Jacobi identity indeed holds, and [·, ·]?,δ is a graded Lie bracket.

What the proposition tells us is that graded Lie brackets (8), (9) naturally define Lie superalgebra struc-
tures (A , [·, ·]δ ) and (A , [·, ·]?) on commutative superalgebra A . In case we further assume that the deriva-
tion δ is even, and together with involution it satisfies the condition (δ (u))? = −δ (u?), then graded Lie
bracket (10) defines another Lie superalgebra structure

(
A , [·, ·]?,δ

)
on A .

Next let us consider the generalized supertraces on those Lie superalgebras:

ξ : (A , [·, ·]?)→ K, (12)
η : (A , [·, ·]δ )→ K, (13)

χ :
(
A , [·, ·]?,δ

)
→ K. (14)
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With the help of those generalized supertraces we can induce ternary Lie superalgebras out of the binary Lie
superalgebras, by following the construction described in [3].

Theorem 1. Let A = A0⊕A1 be a commutative superalgebra, and let (·)? : A →A and δ : A →A be
involution and derivation of A , respectively. If (12) and (13) are supertraces, then graded ternary brackets
[·, ·, ·]? : A ⊕3→ A and [·, ·, ·]δ : A ⊕3→ A, defined by

[u,v,w]? = ξ (u)[v,w]?+(−1)u
∧

vw
∧

ξ (v)[w,u]?+(−1)w
∧

uv
∧

ξ (w)[u,v]?, (15)

[u,v,w]δ = η(u)[v,w]δ +(−1)u
∧

vw
∧

η(v)[w,u]δ +(−1)w
∧

uv
∧

η(w)[u,v]δ (16)

are graded ternary Lie brackets. If δ is even, (δ (u))? = −δ (u?) and (14) is a supertrace, then graded
ternary bracket [·, ·, ·]?,δ : A ⊕3→ A, defined as

[u,v,w]?,δ = χ(u)[v,w]δ +(−1)u
∧

vw
∧

χ(v)[w,u]?,δ +(−1)w
∧

uv
∧

χ(w)[u,v]?,δ (17)

is ternary Lie bracket.

Consequences of the theorem are that each and every one of (A , [·, ·, ·]δ ), (A , [·, ·, ·]?) and
(
A , [·, ·, ·]?,δ

)
are all ternary Lie superalgebras. Of course granted that for the latter the derivation and involution satisfy
the required condition.

3. 3-LIE ALGEBRAS INDUCED BY MEANS OF TRACE AND THEIR REPRESENTATIONS

Let g be a Lie algebra over C. By a generalized trace on g we will mean a linear function τ : g→C such
that τ([x,y]) = 0 for any x,y ∈ g. If a Lie algebra g is equipped with a generalized trace τ , then one can
construct a ternary bracket using the binary Lie bracket of g and a generalized trace τ as follows:

[x,y,z] = τ(x) [y,z]+ τ(y) [z,x]+ τ(z) [x,y], (18)

and then prove that this ternary bracket satisfies the Filippov–Jacobi identity. For a matrix Lie algebra gln(C)
of complex matrices of nth order, this was proved in the paper [6] in which the authors proposed an approach
to quantum theory of Nambu generalization of Hamilton mechanics based on the ternary Lie bracket (18).
Thus, an initial binary Lie algebra g endowed with the ternary Lie bracket (18) becomes a 3-Lie algebra,
which is usually called an induced 3-Lie algebra. We will denote this induced 3-Lie algebra by tgτ . This
method of constructing the induced 3-Lie algebra is applicable, for example, in the case when we have a
representation π : g→ gl(V ) of a Lie algebra g in a vector space V . Let π : g→ gl(V ) be a representation
of a Lie algebra g in a vector space V . Then one can construct the induced 3-Lie algebra with the help of
ternary bracket

[x,y,z] = Tr(π(x)) [y,z]+Tr(π(y)) [z,x]+Tr(π(z)) [x,y]. (19)

In what follows we will denote the 3-Lie algebra induced with the help of (19) by tgπ .
Let h be a 3-Lie algebra and V be a finite-dimensional vector space.

Definition 3.1. A bilinear skew-symmetric mapping ρ : h× h→ gl(V ) is said to be a representation of a
3-Lie algebra h if the following conditions are satisfied:
(1) [ρ(x,y),ρ(u,v)] = ρ([x,y,u],v)+ρ(u, [x,y,v]),
(2) ρ([x,y,z],u) = ρ(x,y)ρ(z,u)+ρ(y,z)ρ(x,u)+ρ(z,x)ρ(y,u),
where x,y,z,u,v ∈ h. We will denote this representation of 3-Lie algebra h in a vector space V by (h,ρ,V ).

Let g be a Lie algebra, π : g→ gl(V ) be a representation of g and tgπ be the induced 3-Lie algebra. We
show that it is possible to construct a representation of the 3-Lie algebra tgπ using a representation π of g.
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Theorem 2. The mapping ρ : g×g→ gl(V ) defined by

ρ(x,y) = Tr(π(x))π(y)−Tr(π(y))π(x), (20)

where x,y ∈ g, is a representation of induced 3-Lie algebra tgπ in a vector space V .

Proof. First of all, we obtain the formula for terms of the form ρ([x,y,u],v). Making use of the formula for
ternary Lie bracket (19), we get

ρ([x,y,u],v) = ρ
(
Tr(π(x))[y,u]+Tr(π(y))[u,x]+Tr(π(u))[x,y],v

)
= Tr(π(x))ρ([y,u],v)+Tr(π(y))ρ([u,x],v)+Tr(π(u))ρ([x,y],v).

Now applying the formula for a representation (20) and taking into account that Tr([π(x),π(y)]) = 0 for any
x,y ∈ g, we get

ρ([y,u],v) =−Tr(π(v))[π(y),π(u)]. (21)

Hence,

ρ([x,y,u],v) = −Tr(π(v))Tr(π(x))[π(y),π(u)]−Tr(π(v))Tr(π(y))[π(u),π(x)]
−Tr(π(v))Tr(π(u))[π(x),π(y)]. (22)

Analogously,

ρ(u, [x,y,v]) = Tr(π(u))Tr(π(x))[π(y),π(v)]+Tr(π(u))Tr(π(y))[π(v),π(x)]
+Tr(π(u))Tr(π(v))[π(x),π(y)]. (23)

Summing up the obtained expressions (22),(23), we see that the last terms cancel each other and the remain-
ing four terms can be combined into the binary commutator[

Tr(π(x))π(y)−Tr(π(y))π(x),Tr(π(u))π(v)−Tr(π(v))π(u)
]
,

which is equal to [ρ(x,y),ρ(u,v)]. Thus we get

[ρ(x,y),ρ(u,v)] = ρ([x,y,u],v)+ρ(u, [x,y,v])

and the first condition for representation of 3-Lie algebra is proved. In order to prove the second condition
of Definition 3.1 we calculate the right hand side of this condition. We get

ρ(x,y)ρ(z,u) =
(
Tr(π(x))π(y)−Tr(π(y))π(x)

)(
Tr(π(z))π(u)−Tr(π(u))π(z)

)
=
((((

((((
((((Tr(π(x))Tr(π(z))π(y)π(u)−Tr(π(x))Tr(π(u))π(y)π(z)︸ ︷︷ ︸

1

−
hhhhhhhhhhhh
Tr(π(y))Tr(π(z))π(x)π(u) +Tr(π(y))Tr(π(u))π(x)π(z)︸ ︷︷ ︸

2

.

Analogously,

ρ(y,z)ρ(x,u) =
(((

((((
(((

((hhhhhhhhhhhh
Tr(π(x))Tr(π(y))π(z)π(u)−Tr(π(y))Tr(π(u))π(z)π(x)︸ ︷︷ ︸

2

−
(((

((((
(((

((
Tr(π(x))Tr(π(z))π(y)π(u) +Tr(π(z))Tr(π(u))π(y)π(x)︸ ︷︷ ︸

3

,
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ρ(z,x)ρ(y,u) =
������������
Tr(π(y))Tr(π(z))π(x)π(u)−Tr(π(z))Tr(π(u))π(x)π(y)︸ ︷︷ ︸

3

−
������������������������
Tr(π(x))Tr(π(y))π(z)π(u) +Tr(π(x))Tr(π(u))π(z)π(y)︸ ︷︷ ︸

1

.

Taking the sum of these expressions, we see that strike through terms cancel each other, while terms marked

with 1,2,3 give the sum of following terms, each containing the corresponding binary commutator,

−Tr(π(u))Tr(π(x))[π(y),π(z)]−Tr(π(u))Tr(π(y))[π(z),π(x)]−Tr(π(u))Tr(π(z))[π(x),π(y)]. (24)

Now the formula (22) shows that the expression (24) is equal to ρ([x,y,z],u) and this ends the proof.

Proposition 3. Let π : g→ gl(V ) be a representation of a Lie algebra g. Then for induced representation ρ
of induced 3-Lie algebra tgπ we have ρ : g×g→ sl(V ), i.e. for any x,y ∈ g the matrix ρ(x,y) is traceless.

Proof. We have

Trρ(x,y) = Tr(π(x))Tr(π(y))−Tr(π(y))Tr(π(x)) = 0.

An important question related with the induced representation ρ of induced 3-Lie algebra tgπ is the

question of how the irreducibility (reducibility) of an initial representation π : g → gl(V ) is related to the

irreducibility (reducibility) of the induced representation ρ of tgπ . It is quite easy to show that if an initial

representation π of a Lie algebra g is reducible, then the induced representation ρ of induced 3-Lie algebra

tgπ is reducible as well. Indeed, assume that π : g→ gl(V ) is reducible, i.e. there is a non-trivial subspace

W ⊂ V , which is invariant under a representation π : g→ gl(V ). By other words, for any x ∈ g,v ∈ W we

have π(x) · v ∈W . Now it is easy to show that a subspace W is invariant under the induced representation ρ
of induced 3-Lie algebra tgπ . Indeed, for any x,y ∈ g and v ∈W we have

ρ(x,y) · v = Tr(π(x))π(y) · v−Tr(π(y))π(x) · v ∈W.

The question of whether the induced representation ρ of the induced 3-Lie algebra tgπ will be irreducible

if an initial representation π is irreducible is more subtle. The following theorem gives an answer to this

question in the case when the representation space is two-dimensional. Let e1,e2, . . . ,er be a basis for a Lie

algebra g and π : g → gl(V ) be a representation of g, where V is a 2-dimensional complex vector space.

We denote by μi the trace of the 2nd order matrix π(ei). We assume that generators e1,e2, . . . ,er of the Lie

algebra g are ordered in such a way that the first k have non-zero trace, i.e. μ1 �= 0, . . . ,μk �= 0, and the next

r− k have the trace equal to zero, i.e. μk+1 = . . .= μr = 0.

Theorem 3. Let g be a Lie algebra, π : g → gl(V ) be a representation of g, where V is a 2-dimensional
complex vector space, e1,e2, . . . ,er be a basis for a Lie algebra g, μ1,μ2, . . . ,μr be traces of matrices
π(e1),π(e2), . . . ,π(er), respectively, and μ1 �= 0, . . . ,μk �= 0,μk+1 = . . .= μr = 0. If the matrices

π(μi e j −μ j ei),π(ek+1), . . . ,π(er), (25)

where 1 ≤ i < j ≤ k, have no common eigenvector, then a representation π : g → gl(V ) and the induced
representation ρ : g×g→ sl(V ) are both irreducible representations.

Proof. First of all, we prove that if the assumption of theorem holds then π is an irreducible representation

of g. We will prove this by contradiction. Thus we assume that π is reducible and our aim to show that

then the matrices π(μi e j − μ j ei),π(ek+1), . . . ,π(er) have common eigenvector and this will contradict our

assumption. From reducibility of π it follows that the matrices π(e1),π(e2), . . . ,π(er) have a common

eigenvector, which we denote by v, i.e. π(ei) · v = λi v. Particularly, the matrices π(ek+1), . . . ,π(er) have

a,
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common eigenvector v. Hence, we only need to show that v is a common eigenvector for the matrices
π(µi e j−µ j ei), where 1≤ i < j ≤ k. We have

π(µi e j−µ j ei) · v = µi π(e j) · v−µ j π(ei) · v = (µi λ j−µ jλi)v.

Hence v is a common eigenvector for the matrices π(µi e j−µ j ei),π(ek+1), . . . ,π(er) and this is contradic-
tion.

The second part of the proof, that is, that ρ is an irreducible representation similar to the first, that is, we
prove by contradiction. Hence, we assume that ρ : g× g→ sl(V ) is a reducible representation of induced
3-Lie algebra tgπ . Since we are considering a two-dimensional vector space V , this means that there is
a one-dimensional invariant subspace in V for all matrices ρ(x,y), in other words, the matrices ρ(ei,e j),
where 1 ≤ i < j ≤ r have a common eigenvector. Let us denote this common eigenvector by v. Then
ρ(ei,e j) · v = λi j v or (

µi π(e j)−µ j π(ei)
)
· v = λi j v, 1≤ i < j ≤ r. (26)

As a vector e j in this formula, we take an arbitrary vector from the set {ek+1, . . . ,er}, i.e. k+1≤ j ≤ r, and
as a vector ei we take an arbitrary vector from the set {e1, . . . ,ek}, i.e. 1 ≤ i ≤ k. Then µi 6= 0,µ j = 0 and
the relation (26) takes on the form

π(e j) · v =
λi j

µi
v,

and this relation shows that a vector v is a common eigenvector for the matrices π(ek+1), . . . ,π(er). The
fact that this vector v is a common eigenvector for the matrices π(µi e j−µ j ei), where 1≤ i < j ≤ k follows
directly from the relation (26).

As an illustration of the application of this theorem, we consider the Lie algebra of 2nd order square
matrices gl2(C). This means that we consider these matrices as a basic (irreducible) representation of Lie
algebra gl2(C) in a complex plane C2. We choose the standard basis for this Lie algebra

E1
1 =

(
1 0
0 0

)
, E2

2 =

(
0 0
0 1

)
, E2

1 =

(
0 1
0 0

)
, E1

2 =

(
0 0
1 0

)
. (27)

Notice that we order the generators of gl2(C) as in Theorem 3, i.e. the generators E1
1 ,E

2
2 have non-zero

trace and the generators E2
1 ,E

1
2 have zero trace. Then the Lie algebra gl2(C) has the following commutation

relations

[E1
1 ,E

2
2 ] = 0, [E1

1 ,E
2
1 ] = E2

1 , [E
1
1 ,E

1
2 ] =−E1

2 ,

[E2
2 ,E

2
1 ] =−E2

1 , [E
2
2 ,E

1
2 ] = E1

2 , [E
2
1 ,E

1
2 ] = E1

1 −E2
2 .

The ternary commutation relations of the induced 3-Lie algebra we find by means of (19)

[E1
1 ,E

2
2 ,E

2
1 ] =−2E2

1 , (28)
[E1

1 ,E
2
2 ,E

1
2 ] = 2E1

2 , (29)
[E1

1 ,E
2
1 ,E

1
2 ] = E1

1 −E2
2 , (30)

[E2
2 ,E

2
1 ,E

1
2 ] = E1

1 −E2
2 . (31)

The induced representation of induced 3-Lie algebra we compute by means of the formula given in Theorem 2

ρ(E1
1 ,E

2
2 ) = E2

2 −E1
1 , ρ(E1

1 ,E
2
1 ) = E2

1 , ρ(E1
1 ,E

1
2 ) = E1

2 ,

ρ(E2
2 ,E

2
1 ) = E2

1 , ρ(E2
2 ,E

1
2 ) = E1

2 , ρ(E2
1 ,E

1
2 ) = 0.
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It is easy to see that in accordance with Proposition 3, the induced representation of 3-Lie algebra (28) –
(31) gives the generators of the Lie algebra sl2(C) of the special linear group SL2(C)

E1
1 −E2

2 =

(
1 0
0 −1

)
, E2

1 =

(
0 1
0 0

)
, E1

2 =

(
0 0
1 0

)
.

It is easy to see that these matrices are exactly the matrices (25) in Theorem 3. The first matrix E1
1 −E2

2
has two eigenvalues 1,−1 and two eigenvectors (1,0),(0,1), respectively, the second matrix E2

1 has one
eigenvalue 0 and the corresponding eigenvector is (1,0), third matrix E1

2 has also one eigenvalue 0 and the
corresponding eigenvector is (0,1). Thus, these matrices have no common eigenvector and the induced
representation of 3-Lie algebra (28)–(31) is irreducible.

4. INDUCED 3-LIE SUPERALGEBRAS AND THEIR INDUCED REPRESENTATIONS

In this section we consider 3-Lie superalgebras. It was shown [1,2] that the method of constructing an
induced 3-Lie algebra with the help of a generalized trace can be extended to the case of Lie superalgebras by
means of a concept of a generalized supertrace. Let g= g0⊕g1 be a Lie superalgebra. Then by generalized
supertrace we mean a linear function Sτ : g→ C such that it vanishes on graded Lie bracket of g, i.e.
Sτ([x,y]) = 0, and it also vanishes when restricted to g1, i.e. Sτ|g1 ≡ 0.

Let h = h0⊕h1 be a 3-Lie superalgebra, V = V0⊕V1 be a super vector space and End(V ) be the super
vector space of endomorphisms of V . The graded commutator of two endomorphisms A,B ∈ End(V ) of a

super vector space V , defined by formula [A,B] = AB− (−1)A
∧

B
∧

BA, where A,B are homogeneous endo-
morphisms and A

∧
,B
∧

are their gradings, determines the structure of the Lie superalgebra on End(V ) and we
denote this Lie superalgebra by sgl(V ). There is a canonical structure of a super vector space on the tensor
product h⊗h, which is defined as follows:

h⊗h= (h⊗h)0⊕ (h⊗h)1,

where (h⊗h)0 = (h0⊗h0)⊕ (h1⊗h1) and (h⊗h)1 = (h0⊗h1)⊕ (h1⊗h0).

Definition 4.1. A mapping ρ : h⊗h→ sgl(V ) is said to be a representation of a 3-Lie superalgebra h if the
following conditions are satisfied:
(1) ρ , as a mapping between two super vector spaces, has grading zero, i.e. ρ : (h⊗ h)0 → V0 and ρ :

(h⊗h)1→V1, or, equivalently, ρ
∧
(x,y) = x

∧
+ y
∧

,
(2) ρ(x,y) =−(−1)x

∧
y
∧

ρ(y,x),
(3) [ρ(x,y),ρ(u,v)] = ρ([x,y,u],v)+(−1)u

∧
xy
∧

ρ(u, [x,y,v]),
(4) ρ([x,y,z],u) = ρ(x,y)ρ(z,u)+(−1)x

∧
yz
∧

ρ(y,z)ρ(x,u)+(−1)z
∧

xy
∧

ρ(z,x)ρ(y,u),
where x,y,z,u,v ∈ h. We will denote this representation of 3-Lie superalgebra h in a super vector space
V by (h,ρ,V ).

An evident example of a representation of 3-Lie superalgebra is an adjoint representation. Fix two
elements x,y of a 3-Lie superalgebra h and for any u ∈ h define ad(x,y)u = [x,y,u]. Hence, ad : h⊗ h→
End(h). Conditions 1 and 2 of Definition 4.1 immediately follow from the properties of graded ternary Lie
bracket. In order to prove condition 3 of Definition 4.1, we calculate the graded commutator of two linear
operators ad(x,y) and ad(u,v) by means of graded Filippov–Jacobi identity. Then we have

[ad(x,y),ad(u,v)]z = (ad(x,y)ad(u,v)− (−1)xy
∧

uv
∧

ad(u,v)ad(x,y))z = [x,y, [u,v,z]]− (−1)xy
∧

uv
∧

[u,v, [x,y,z]]

= [[x,y,u],v,z]+ (−1)u
∧

xy
∧

[u, [x,y,v],z]+((((
((((

(((
(−1)xy

∧
uv
∧

[u,v, [x,y,z]]−(((((
(((

(((
(−1)xy

∧
uv
∧

[u,v, [x,y,z]]

= [[x,y,u],v,z]+ (−1)u
∧

xy
∧

[u, [x,y,v],z] = ad([x,y,u],v)z+(−1)u
∧

xy
∧

ad(u,[x,y,v])z.
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The last property of Definition 4.1 can be checked as follows;

ad([x,y,z],u)v = [[x,y,z],u,v] = (−1)uv
∧

xyz
∧

[u,v, [x,y,z]]. (32)

Now making use of graded Filippov–Jacobi identity we obtain

[u,v, [x,y,z]] = [[u,v,x],y,z]+ (−1)x
∧

uv
∧

[x, [u,v,y],z]+ (−1)uv
∧

xy
∧

[x,y, [u,v,z]].

Now we should substitute this expression into the right hand side of formula (32), but first we will calculate

the sign of each term in resulting expression. In the term [x,y, [u,v,z]], we will do the following permutation

of the arguments [x,y, [z,u,v]], which will entail multiplication by (−1)z
∧

uv
∧

. Therefore, the coefficient of

this term will be (−1) in power

uv
∧

xyz
∧

+uv
∧

xy
∧

+ z
∧

uv
∧

= uv
∧

xyz
∧

+uv
∧

xyz
∧

= 0.

Analogously, we permute the arguments of the double bracket [[u,v,x],y,z] as follows [y,z, [x,u,v]] and this

entails the appearance of the factor (−1) to power yz
∧

uvx
∧

+ x
∧

uv
∧

. All together it gives the following sign

uv
∧

xyz
∧

+ yz
∧

uvx
∧

+ x
∧

uv
∧

= uv
∧

yz
∧

+ yz
∧

uvx
∧

= yz
∧

(uv
∧

+uvx
∧

) = xy
∧

x
∧

.

Similarly, we permute the arguments of the double bracket [x, [u,v,y],z] to cast it into the form [z,x, [y,u,v]],
then calculate the sign, which turns out to be z

∧

xy
∧

. Hence, we get

ad([x,y,z],u) = ad(x,y)ad(z,u) + (−1)x
∧

yz
∧

ad(y,z)ad(x,u) + (−1)z
∧

xy
∧

ad(z,x)ad(y,u).

Now we assume that h = h0 ⊕ h1 is a 3-Lie superalgebra, V = V0 ⊕V1 is a super vector space and

ρ : h⊗h→ End(V ) is a graded skew-symmetric mapping. Consider the direct sum h⊕V . We equip it with

a structure of super vector space if we associate grade 0 to elements x+ v (elements of even grade), where

x ∈ h0,v ∈ V0, and grade 1 to elements x+ v (elements of odd grade), where x ∈ h1,v ∈ V1. Then h⊕V =
(h⊕V )0 ⊕ (h⊕V )1, where (h⊕V )0 = h0 ⊕V0 and (h⊕V )1 = h1 ⊕V1. In analogy with representations of

3-Lie algebras [7], we define the ternary bracket on the super vector space h⊕V as follows:

[x1 + v1,x2 + v2,x3 + v3] = [x1,x2,x3]+ρ(x1,x2)v3

+(−1)x1

∧

x2x3

∧

ρ(x2,x3)v1 +(−1)x3

∧

x1x2

∧

ρ(x3,x1)v2.
(33)

It is easy to show that this ternary bracket is a graded ternary bracket. Indeed, if we assume that all arguments

of this ternary bracket are homogenous elements of h⊕V , then the grading of xi + vi is equal to the grading

of xi (or vi). Thus it is sufficient to show that the grading of ternary bracket (33) is x1

∧

+ x2

∧

+ x3

∧

. But this

is true, because the grading of the first term [x1,x2,x3] is x1

∧

+ x2

∧

+ x3

∧

and the grading of each term of the

form ρ(xi,x j)vk, where i, j,k is a cyclic permutation of 1,2,3, is the same integer, because

xi
∧

+ x j
∧

+ vk
∧

= xi
∧

+ x j
∧

+ xk
∧

= x1

∧

+ x2

∧

+ x3

∧

.

The fact that this ternary bracket has the correct graded symmetries is checked on the permutation of the

first two arguments x1 + v1,x2 + v2. Making use of the graded symmetry properties of a graded ternary Lie

bracket in h and the property 2 of Definition 4.1, we get

[x2 + v2,x1 + v1,x3 + v3] = [x2,x1,x3]+ρ(x2,x1)v3 +(−1)x2

∧

x1x3

∧

ρ(x1,x3)v1 +(−1)x3

∧

x1x2

∧

ρ(x3,x2)v1

= −(−1)x1

∧

x2

∧

[x1,x2,x3]− (−1)x1

∧

x2

∧

ρ(x1,x2)v3 − (−1)x1

∧

x3

∧

ρ(x2,x3)v1

−(−1)x1

∧

x2

∧

+x3

∧

x1x2

∧

ρ(x3,x1)v2

= −(−1)x1

∧

x2

∧

[x1 + v1,x2 + v2,x3 + v3].

+(−1)x1

∧

x2x3

∧

ρ(x2,x3)v1 +(−1)x3

∧

x1x2

∧

ρ(x3,x1)v2.
(33

(33)
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The following theorem extends the result, obtained in the paper [7] for 3-Lie algebras, to 3-Lie superalge-
bras. Actually, this extension is not complicated and consists of checking the rule for the consistency of
signs that arise in the case of graded structures. Since we did not find formulation and proof of this theorem
in the literature, we decided to give its proof here. Note that we will need this theorem for the induced
representation, which will be discussed later in this paper.

Theorem 4. Let h= h0⊕h1 be a 3-Lie superalgebra, V =V0⊕V1 be a super vector space, ρ : h⊗h→ sgl(V )
be a graded skew-symmetric bilinear mapping. Then (h,ρ,V ) is a representation of 3-Lie superalgebra h in
a super vector space V if and only if the direct sum of super vector spaces h⊕V equipped with the graded
ternary bracket (33) is a 3-Lie superalgebra, or, in other words, the graded ternary bracket (33) satisfies the
graded Filippov–Jacobi identity.

Proof. First of all, we prove that if (h,ρ,V ) is a representation of a 3-Lie superalgebra h, then the graded
ternary bracket (33) defines the structure of 3-Lie superalgebra on the direct sum of super vector spaces
h⊕V . Since we have already proved that the ternary bracket (33) is a graded ternary bracket, the only thing
we need to prove is that this bracket satisfies the graded Filippov-Jacobi identity. To this end, we introduce
the following notations:

Y = y+ v, Z = z+w, Xi = xi +ui,

where i = 1,2,3, y,z,xi ∈ h and v,w,ui ∈ V . We assume that all elements Y,Z,Xi are homogeneous with
respect to super vector space structure of h+V . Evidently the grading of Y is equal to y

∧
, grading of Z is z

∧

and the grading of Xi is xi
∧

. Now our aim is to prove the graded Filippov–Jacobi identity for graded ternary
bracket (33), that is, we need to show that the following expression

[Y,Z, [X1,X2,X3]]− [[Y,Z,X1],X2,X3]− (−1)x1
∧

yz
∧

[X1, [Y,Z,X2],X3]− (−1)x1x2
∧

yz
∧

[X1,X2, [Y,Z,X3]] (34)

is equal to zero. If we expand each double ternary bracket in this expression by means of (33), then, the
h-component of resulting expression is

[y,z, [x1,x2,x3]]− [[y,z,x1],x2,x3]− (−1)x1
∧

yz
∧

[x1, [y,z,x2],x3]− (−1)x1x2
∧

yz
∧

[x1,x2, [y,z,x3]] (35)

and this is zero by virtue of the graded Filippov–Jacobi identity in a 3-Lie superalgebra h. The V -component
of the resulting expression can be written in the form

Ψ1(u1)+Ψ2(u2)+Ψ3(u3)+Ψv(v)+Ψw(w), (36)

where Ψ1,Ψ2,Ψ3,Ψv,Ψw ∈ gl(V ) and

Ψ1 = (−1)x1
∧

x2x3
∧(

[ρ(y,z),ρ(x2,x3)]−ρ([y,z,x2],x3)− (−1)x2
∧

yz
∧

ρ(x2, [y,z,x3])
)
,

Ψ2 = (−1)x3
∧

x1x2
∧(

[ρ(y,z),ρ(x3,x1)]−ρ([y,z,x3],x1)− (−1)x3
∧

yz
∧

ρ(x3, [y,z,x1])
)
,

Ψ3 = [ρ(y,z),ρ(x1,x2)]−ρ([y,z,x1],x2)− (−1)x1
∧

yz
∧

ρ(x1, [y,z,x2]),

Ψv = (−1)α

(
ρ([x1,x2,x3],z)−ρ(x1,x2)ρ(x3,z)

−(−1)x1
∧

x2x3
∧

ρ(x2,x3)ρ(x1,z)− (−1)x3
∧

x1x2
∧

ρ(x3,x1)ρ(x2,z)
)
,

Ψw = (−1)β

(
ρ([x1,x2,x3],y)−ρ(x1,x2)ρ(x3,y)

−(−1)x1
∧

x2x3
∧

ρ(x2,x3)ρ(x1,y)− (−1)x3
∧

x1x2
∧

ρ(x3,x1)ρ(x2,y)
)
,

where α = yz
∧

[x1,x2,x3]
∧

+y
∧

z
∧
+1,β = yz

∧
[x1,x2,x3]
∧

. Expressions Ψ1,Ψ2,Ψ3 vanish by virtue of condition
3 of Definition 4.1 and expressions Ψv,Ψw by virtue of condition 4. Hence, the V -component of expression
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(34) also vanishes and this means that the graded ternary bracket (33) is a graded ternary Lie bracket, i.e. it

satisfies the graded Filippov-Jacobi identity.

Now we prove that if the graded ternary bracket (33) satisfies the graded Filippov–Jacobi identity, then

(h,ρ,V ) is a representation of 3-Lie superalgebra h. By other words, we assume that the expression (34)

vanishes. Vanishing of the h-component of this expression gives us nothing, because it reduces to the

graded Filippov-Jacobi identity in h, which already holds according to our assumption that h is a 3-Lie

superalgebra. From the equality to zero of the V -component, it immediately follows that the expression (36),

where u1,u2,u3,v,w are arbitrary vectors of V, is equal to zero. Taking u2 = u3 = v=w= 0, we get Ψ1(u1)=0

for any u1, which means that Ψ1 = 0. Hence, condition 3 of Definition 4.1 is satisfied. Analogously we can

prove that condition 4 is also satisfied and (g,ρ,V ) is a representation of 3-Lie superalgebra.

Recall that if a Lie algebra is equipped with a generalized trace, then one can construct the induced

ternary Lie algebra (Section 3). This method of constructing the induced ternary Lie algebras can be ex-

tended by means of a generalized supertrace to Lie superalgebras, as was shown in [1,2]. Let g = g0 ⊕ g1

be a Lie superalgebra and Sτ be a generalized supertrace of this Lie superalgebra. It can be proved then [2]

that the graded ternary bracket

[x,y,z] = Sτ(x) [y,z]+ (−1)x
∧

yz
∧

Sτ(y) [z,x]+ (−1)z
∧

xy
∧

Sτ(z) [x,y], x,y,z ∈ g (37)

determines the 3-Lie superalgebra on the super vector space of a Lie superalgebra g. We will call this 3-Lie

superalgebra constructed by means of a generalized supertrace induced 3-Lie superalgebra. Particularly,

if we have a representation π : g → sgl(V ) of a Lie superalgebra g, then we construct the induced 3-Lie

superalgebra (37) by simply using the supertrace of matrices in sgl(V ), i.e. we define the ternary bracket as

follows:

[x,y,z] = Str(π(x)) [y,z]+ (−1)x
∧

yz
∧

Str(π(y)) [z,x]+ (−1)z
∧

xy
∧

Str(π(z)) [x,y], x,y,z ∈ g. (38)

We will denote the induced 3-Lie superalgebra with graded ternary bracket (38) by tgπ . We can also extend

the method of constructing induced representations of induced 3-Lie algebras to induced 3-Lie superalge-

bras.

Theorem 5. Let g be a Lie superalgebra and π : g → sgl(V ) be a representation of g. Then mapping
ρ : g⊗g→ sgl(V ), defined by the formula

ρ(x,y) = Str(π(x))π(y)− (−1)x
∧

y
∧

Str(π(y))π(x), (39)

where x,y ∈ g, is a representation of induced 3-Lie superalgebra tgπ .

We will prove this theorem by means of Theorem 4 and the following lemma.

Lemma 6. Let g be a Lie superalgebra, π : g→ sgl(V ) be a representation of this Lie superalgebra. If we
equip the super vector space g⊕V with the graded skew-symmetric bracket

�x+ v,y+w� = [x,y]+π(x) ·w− (−1)x
∧

y
∧

π(y) · v, (40)

where x,y ∈ g, v,w ∈ V and [x,y] is a Lie bracket in g, then the direct sum of two super vector spaces
g⊕V becomes a Lie superalgebra, i.e. the graded skew-symmetric bracket (40) satisfies the graded Jacobi
identity.

Proof. The proof of this lemma is simply to verify the graded Jacobi identity for the bracket (40). In order

to simplify notations, we will denote μ1 = x1

∧

x2x3

∧

,μ2 = x2

∧

x1x3

∧

,μ3 = x3

∧

x1x2

∧

and ν = x1

∧

x2

∧

+x2

∧

x3

∧

+x1

∧

x3

∧

.

Then the first term of the graded Jacobi identity can be expanded as follows:

��x1 + v1,x2 + v2�,x3 + v3� = [[x1,x2],x3]+π([x1,x2]) · v3. . . . . . . . . . . . . .
− (−1)μ3π(x3)π(x1) · v2 +(−1)νπ(x3)π(x2) · v1.
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The second term of the identity gives

(−1)μ1��x2 + v2,x3 + v3�,x1 + v1� = (−1)μ1 [[x2,x3],x1]+ (−1)μ1π([x2,x3]) · v1 −π(x1)π(x2) · v3. . . . . . . . . . . . . . .

+(−1)x2

∧

x3

∧

π(x1)π(x3) · v2

and the third one yields the expression

(−1)μ3��x3 + v3,x1 + v1�,x2 + v2� = (−1)μ3 [[x3,x1],x2]+ (−1)μ3π([x3,x1]) · v2 − (−1)μ1π(x2)π(x3) · v1

+(−1)x1

∧

x2

∧

π(x2)π(x1) · v3. . . . . . . . . . . . . . . . . . . . . . . . .
.

If we now take the sum of the left hand sides of these relations, we get the left hand side of the graded

Jacobi identity for bracket (40). The sum of the right-hand sides of these relations gives zero. Indeed, terms

underlined by a solid line add up to zero, because the graded Jacobi identity holds in the Lie superalgebra

g. The terms underlined with dashed lines or not underlined at all also add up to zero due to the fact that the

terms in each group simply cancel each other.

Proof. Now we prove Theorem 5. According to Theorem 4, if we show that the graded ternary bracket (33),

where the first term at the right hand side of (33) is the graded ternary bracket (38) and ρ is (39), determines

3-Lie superalgebra on the direct sum g⊕V , then we prove that (39) is a representation of induced 3-Lie

superalgebra tgπ . Substituting (38) and (39) into (33), we find

[x1 + v1,x2 + v2,x3 + v3] = Str(π(x1))�x2 + v2,x3 + v3�+Str(π(x2))�x3 + v3,x1 + v1�

+Str(π(x3))�x1 + v1,x2 + v2�. (41)

According to Lemma 6, the bracket �x,y� determines the structure of Lie superalgebra on g⊕V . Thus,

the graded ternary bracket (41) has the form of a graded ternary bracket for an induced 3-Lie superalgebra

constructed with the help of a graded Lie bracket and the super trace. Hence, the graded ternary bracket

(41) determines the induced 3-Lie superalgebra on g⊕V and therefore, (39) is a representation of 3-Lie

superalgebra.

5. CONCLUSIONS

The goal of the present paper was to construct a 3-Lie superalgebra on the basis of a given binary Lie

superalgebra and study representations of constructed 3-Lie superalgebra induced by the representations

of an initial binary Lie superalgebra. The 3-Lie superalgebra constructed in this way is called induced

3-Lie superalgebra. In the present paper the ternary graded Lie bracket of induced 3-Lie superalgebra was

constructed with the help of a generalized trace and binary graded bracket of an initial Lie superalgebra. This

method is applied to a commutative superalgebra with involution and even degree derivation. Furthermore,

we proposed a method for constructing a representation of a 3-Lie algebra or superalgebra if a representation

of an initial binary Lie algebra or superalgebra is given. We call this representation of induced 3-Lie algebra

or superalgebra induced representation. It is shown that if a representation of an initial Lie algebra is

reducible, then the induced representation of the induced 3-Lie algebra is reducible as well. In the case of

the induced representation of induced 3-Lie superalgebra, we proposed conditions under which the induced

representation is irreducible. Our hypothesis is that for the irreducibility of the induced representation of

induced 3-Lie algebra, the irreducibility of an initial representation of a binary Lie algebra (without any

additional conditions) is sufficient and we plan to consider this question in subsequent publications.

+(−1)x2

∧

x3

∧

π(x1)π(x3) · v2,

+(−1)x1

∧

x2

∧

π(x2)π(x1) · v3. . . . . . . . . . . . . . . . . . . . . . . . .
.

+Str(π(x3))�x1 + v1,x2 + v2�.
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In the present paper we show that the induced representation of induced 3-Lie algebra maps the tensor
square of a Lie algebra to the Lie subalgebra of traceless matrices slN(C)⊂ glN(C), where N is the dimen-
sion of a representation space V . Next, assume π : g→ u(V ) is unitary representation of a Lie algebra g in
complex vector space V . Then π(x) for any x ∈ g is a skew-Hermitian matrix, i.e. (π(x))† = −π(x). Then
for any x,y ∈ g

(ρ(x,y))† = Tr(π(x)†)π(y)†−Tr(π(y)†)π(x)† = ρ(x,y),

where ρ is the induced representation of induced 3-Lie algebra. Hence, ρ(x,y) is a Hermitian matrix and
iρ(x,y) is a skew-Hermitian matrix, i.e. iρ(x,y) ∈ su(N). In the paper [6] the authors propose an analog of
infinitesimal gauge transformation defined by means of ternary commutator

δ A = i [X ,Y,A], (42)

where X ,Y,A are Nth order complex matrices and the ternary bracket is the ternary bracket (1) of induced
3-Lie algebra, where τ is the usual trace of a matrix. In (42) a matrix A plays the role of gauge field and
matrices X ,Y can be considered as parameters of infinitesimal gauge transformation. Here we consider Nth
order complex matrices as fundamental representations of Lie algebras sl(V ),u(V ),su(V ). It is important
that if we apply (1) to the right hand side of gauge transformation (42), then there appears the induced
representation ρ of induced 3-Lie algebra, which we introduced in the present paper, as follows:

δ A = [iρ(X ,Y ),A]+ iTr(A) [X ,Y ]. (43)

As iρ(X ,Y ) ∈ su(N), the first term at the right hand side of the above equation is the usual infinitesimal
su(N)-gauge transformation and the parameter of this transformation is ρ(X ,Y ). Thus, we see that, if we
construct analogues of gauge transformations using the ternary commutator of the induced 3-Lie algebra,
the representation of this induced 3-algebra makes it possible to establish a connection between these trans-
formations and usual su(N)-gauge transformations. We plan to develop further this connection of induced
representations of 3-Lie algebras with gauge theories.
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Indutseeritud 3-Lie algebrad, superalgebrad ja nende esitused

Viktor Abramov ja Priit Lätt

On näidatud, kuidas on kommutatiivse superalgebra A korral võimalik konstrueerida 3-Lie superalgebraid,
kasutades selleks esialgse algebra involutsiooni ja paarisgradueeringuga dervivatsiooni või neid mõlemaid
üheskoos. Artiklis on esitatud skeem Lie (super)algebra esituse ja (super)jälje põhjal vastava indutseeritud
3-Lie (super)algebra esituse konstrueerimiseks. Näitame, et 3-Lie algebra indutseeritud esitus on sisestatav
Lie algebrasse sl(V ), kus V on esituse ruum. Juhul kui esituse dimensioon on 2, on leitud tingimused,
mille korral vastava 3-Lie algebra indutseeritud esitus on taandumatu. On antud ka näide 3-Lie algebra
taandumatust esitusest teist järku kompleksarvuliste maatriksite näol.
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