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Abstract. The paper presents a brief overview of the most popular disturbance estimation techniques together with their application
to flatness-based control. Two disturbance estimation approaches, the basic disturbance observer and the extended state observer,
are described in a tutorial manner. Positive and negative aspects of both approaches are pointed out. Open research questions on
disturbance estimation are presented. In the second part of the paper it is demonstrated how to integrate disturbance estimation into
flatness-based control. The basic feedback linearization based approach, but also a novel event-based approach for differentially
flat systems, are described. It is shown that disturbance estimation can be integrated easily into both of these control approaches.
Finally, the results are demonstrated on three models: a heating, ventilation and air-conditioning; an active magnetic bearing; and
an underwater vehicle models.
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1. INTRODUCTION

Disturbances are inevitable part of almost any dynamical system. Since the behaviour of a disturbance
in time is usually unknown and often the disturbance is unmeasurable, it causes a lot of trouble when
designing controllers for the systems. Historically there exist two approaches to deal with disturbances.
First, to design a robust controller, which yields in satisfactory performance even under the influence of the
disturbances. Such control approaches are, for example: high-gain feedback; H∞ control; passivity-based
control; and sliding mode control. However, these approaches are robust, because they sacrifice some of the
control performance. Second, to avoid the influence of the disturbance, a disturbance decoupling approach
(see for instance [21,38]) is used. The goal here is to eliminate the influence of the disturbance from the
system output to be controlled. The classical disturbance decoupling approach, unfortunately, is not always
applicable. In the simple case of the single output it is important that the relative degree with respect to
the disturbance would be strictly larger than the relative degree with respect to the control input. The latter
is not necessary to solve the so-called almost disturbance decoupling problem [50], where the influence
of the disturbance is not eliminated, but minimized. This, in turn, has similarities with robust control
approaches, especially with the high gain feedback approach. However, there exists the third approach,
which has become more and more popular in dealing with disturbances: the disturbance-observer-based
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control (DOBC) [32]. The idea of this approach is to estimate the disturbance (and possibly a finite number
of time-derivatives of the disturbance) and then integrate this estimate into some control approach. In this
paper we address the DOBC approach.

When disturbance decoupling is not possible and robust approaches are not good enough, it is natural to
try to estimate disturbance signals. A historic overview of early results on disturbance estimation approaches
is described in [22]. An overview of later developments can be seen, for example, in [10]. Over the years
the disturbance estimation methods are called by many names: disturbance estimator, perturbation observer,
extended state observer, disturbance observer etc. In this paper we refer to all of them as disturbance
observers. Usually disturbance observers are studied in combination with DOBC. A positive aspect of
DOBC, compared to the robust control approaches, is that when an estimate of the disturbance is used in
the inner loop to compensate the effect of disturbance from system outputs, the performance of the outer
loop controller is not degraded. That is why disturbance observers are integrated into some of the robust
control methods, such as sliding mode control [49,54]. Also, the disturbance decoupling approaches have
been studied in the DOBC framework using the disturbance observers [4,18,53]. In this paper the focus is
on combination of disturbance observers with the flatness-based control approach.

The flatness or feedback linearization-based control is very natural to combine with disturbance ob-
servers. Flatness is a system property which allows to parametrize all system trajectories by the so-called
flat output and its time-derivatives. This is true when the system model is exact and no external disturbances
are present. If there are disturbances acting on the system equations, these disturbances (and possibly a finite
number of their time-derivatives) affect directly the parametrization of the system trajectories. Therefore, by
knowing how the disturbances affect the parametrization of the system trajectories, it is very easy to integrate
disturbance observers to the basic flatness-based control. While flatness-based control approach can deal
well with measurement noises, it is not, in general, robust against external disturbances and model uncer-
tainties. Extending the flatness or feedback linearization-based control by integrating disturbance observers
to the controller, one can increase the robustness of the approach. It is common that model uncertainties and
external disturbances are integrated into one lumped disturbance vector, which is then estimated and used in
the controller design.

The goals of the paper are as follows. First, to give a short overview of some most popular methods to
construct the disturbance observers for nonlinear control systems. The paper focuses on two approaches: the
basic disturbance observer (BDO), first developed in [9], and the extended state observer (ESO). Both ap-
proaches are described and then compared. Second, the paper demonstrates how the disturbance estimation
can be integrated into the flatness-based control approach. We address the classical feedback linearization
based approach, but also a novel event-based control approach, first introduced in [24], for differentially flat
systems. Note that up to the knowledge of the authors it is the first time when disturbance observers are
combined with an event-based control approach. Finally, the flatness-based control approaches combined
with the ESO and the BDO, are simulated on three examples: on a heating, ventilation and air-conditioning
system; an active magnetic bearing system; and on an underwater vehicle.

2. AN OVERVIEW OF DISTURBANCE OBSERVERS

A short overview of some popular methods of finding an estimate of a disturbance is provided. The strengths
and weaknesses of various methods are discussed. Note that a fairly good overviews of disturbance observers
for linear and nonlinear systems are already given in [8,10,37]. The paper [10] focuses on disturbance-
observer-based control methods, but addresses briefly the disturbance estimation methods for linear and
nonlinear systems. In [37] a nonlinear disturbance observer is constructed for Euler-Lagrange systems.
However, the paper also contains a fairly good overview of disturbance observers is general. The objective
of the paper [8] was to provide a historical viewpoint of the development of the so-called basic disturbance
observer (see below), the disturbance observer-based control; and to present the link between the disturb-
ance-observer-based control and nonlinear PID for a robotic manipulator under a number of assumptions.
Our paper is meant to give a tutorial overview of the most popular approaches for disturbance estimation
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Table 1. Overview of papers with different approaches for estimation of disturbance w
and assumptions made on disturbances

Disturbance dynamics known w(k) ≈ 0 w(k) bounded None
BDO [7,40] [9,52,55] [16,45,56] –
ESO [13] [31] [2,19,41] –
Sliding mode [34] – [20] –
Self-learning – – [25,26] –
Others [17] [28] [3,12,48] [1]

with a specific goal to apply these methods to improve the flatness-based control approaches. Note that the
overview restricts the attention only on the brief exposition of the basic ideas of the approaches. Implemen-
tation issues exceed the scope of this paper. However, it is worth pointing out that the paper [10] and the
references therein discuss such aspects quite thoroughly.

Disturbance observers are strongly connected to disturbance-observer-based control and in majority of
cases, the two are studied together. That is, one does not only find the estimate of a disturbance, but also
integrates the estimate to a controller design. Theoretical study of disturbance observers as a separate topic
is not much advanced and most of the research is done towards specific applications [10]. For nonlinear
disturbance observers there are two popular approaches: (1) the basic nonlinear disturbance observer (BDO)
proposed, for example, in [7,9]; (2) the extended state observer (ESO) [2,19,31,41,48]. In the first case only
the disturbance is estimated, though in general, the observer equations depend on system states and inputs.
So a state observer is necessary unless all the states are measurable. The idea of the ESO is to extend the
original state vector by the disturbance vector and possibly, some of its time-derivatives, and then design a
state observer for the extended system. There are also other types of disturbance observers, like, sliding-
mode-based [20,34], fuzzy [30], self-learning [25,26] and other specific [1,3,12] disturbance observers.
In this paper we focus mostly on the BDO proposed in [9] and on the ESO. The reason for such choice is
twofold. First, these are most popular approaches in the literature and second, they allow to estimate also the
time-derivatives of the disturbances. The latter is especially important in integrating disturbance observers
into the flatness-based control approach.

Another way of classifying the nonlinear disturbance observers is by the assumptions made on the dis-
turbance. Some papers [7,13,31,34,40,49] assume that the disturbance dynamics is known, other papers
assume that the disturbance and/or some of its time-derivatives are bounded [2,16,41]. It is often assumed
that the first [9] or some higher order [28,55] time-derivatives of the disturbance are approximately zero.
The assumption that the disturbance dynamics is known or the disturbance is generated by certain, usu-
ally linear, dynamics, means in practical terms that the incomplete system model is just improved. When
time-derivatives of the disturbance are assumed to be bounded, then most one can prove is that the error
dynamics (real minus the estimated disturbance) is also bounded. Obviously, the assumption that the first
time-derivative of the disturbance is approximately zero works well for constant or very slowly varying dis-
turbances. This limits applicability of this type of disturbance observers. A much weaker assumption is that
the kth order time-derivative of the disturbance is approximately zero. In principle, this assumption allows
to estimate all the disturbances, which behave as an analytic function on some (long enough) time-interval,
since such functions can be approximated by a polynomial on the given time-interval. An overview of dif-
ferent approaches for disturbance estimation based on the assumptions made on the disturbance w are given
in Table 1.

2.1. Basic disturbance observer

Consider a control-affine system of the form

ẋ = f (x)+g1(x)u+g2(x)w, (1)
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where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input and w(t) ∈ Rρ is the disturbance of the system. A
disturbance observer was proposed in [9] to estimate the disturbance w in (1) under the assumption that
ẇ = 0. The observer equations are as follows:

ż = −L(x)[ f (x)+g1(x)u+g2(z+ p(x))],
ŵ = z+ p(x), (2)

where z(t) ∈ Rρ is the observer state, ŵ(t) is the estimation of the disturbance w(t), p(x) and L(x) are the
observer gains to be chosen, satisfying

L(x) =
∂ p(x)

∂x
. (3)

It has been shown that the error e = w− ŵ dynamics is

ė =−L(x)g2(x)e.

Now, the gain L(x) must be chosen such that the error dynamics is stable for every x and p(x) is computed
from (3). A systematic way of choosing L(x) is described in [9] for a multilink robotic manipulator. Note
that in order to apply the disturbance observer (2), one has to assume that the system state x and input u are
known.

The disturbance observer (2) was quickly generalized for the case when the disturbance was generated
by a linear dynamics [7], in which case the assumption ẇ = 0 was not needed anymore. Also an approach
to choose the gain values L(x) was given in [7]. The approach has become popular in many applications,
see for instance [37,52]. The paper [55] tried to generalize the approach for the case when a higher order
time-derivative of the disturbance was assumed to be zero, but is shown to be incorrect [23]. In fact, the
correct generalization was already proposed in [16] and later in [6,45,56]. All these results consider the
case when the disturbance enters the system dynamics linearly, i.e. the case when g2(x) is constant or even
identity matrix. The paper [16] also assumes the nominal system to be in the Brunovsky canonical form.
An important property of the generalized basic disturbance observer is that it also gives estimates of the
time-derivatives of the disturbance.

Here we give the generalized basic disturbance observer for a more general class of systems (1). Assume
now that the kth time-derivative of w is zero, i.e., w(k) = 0. Then, the disturbance observer (2) is generalized
to

ż0 = −L0(x)[ f (x)+g1(x)u+g2(z0 + p0(x))]+ z1 + p1(x),
ż1 = −L1(x)[ f (x)+g1(x)u+g2(z0 + p0(x))]+ z2 + p2(x),

...
żk−2 = −Lk−2(x)[ f (x)+g1(x)u+g2(z0 + p0(x))]+ zk−1 + pk−1(x),
żk−1 = −Lk−1(x)[ f (x)+g1(x)u+g2(z0 + p0(x))],

ŵ = z0 + p0(x),
ˆ̇w = z1 + p1(x),

...

ŵ(k−1) = zk−1 + pk−1(x),

(4)

where for i = 0, . . . ,k−1, zi(t) ∈ Rρ is the observer state, ŵ(i) is the estimation of w(i), pi(x) and Li(x) are
observer gains to be chosen, satisfying

Li(x) =
∂ pi(x)

∂x
. (5)
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Now, let ei := w(i)− ŵ(i), i = 0, . . . ,k−1. Then, under the assumption w(k) = 0, one has

ė0 = e1−L0(x)g2(x)e0,
ė1 = e2−L1(x)g2(x)e0,

...
ėk−2 = ek−1−Lk−2(x)g2(x)e0,
ėk−1 = −Lk−1(x)g2(x)e0.

(6)

Choosing Li(x), i = 0, . . . ,k− 1, such that dynamical system (6) is stable for all x guarantees that ei, i =
0, . . . ,k− 1, stabilizes to zero. Then, pi(x) can be found from (5). To guarantee the stability of (6) for all
values of x is not, in general, a simple task. However, if g2(x)∈Rn×ρ , then one can also choose Li(x)∈Rρ×n

for i = 0, . . . ,k− 1. Then the error system (6) becomes a linear autonomous system and the gains Li,
i = 0, . . . ,k− 1, can be found such that the roots of the characterizing polynomial of the state transition
matrix are on the left-half of the complex plane.

2.2. Extended state observer

The basic disturbance observer (2) and the generalized disturbance observer (4) depend on the knowledge of
the system state x and the input u. The extended state observer (ESO) can be used to estimate the disturbance
under the same assumptions, i.e., ẇ≈ 0 or w(k) ≈ 0. However, the ESO does not need the knowledge of the
system state x, but also provides estimates of the state variables.

Consider the system (1) and assume that w(k) ≈ 0 for some k ∈ N. Extend the state vector of system (1)
to x̄ = (x,w, ẇ, . . . ,w(k−1))T , which yields the extended system equations

˙̄x = f̄ (x̄)+ ḡ1(x̄)u. (7)

Now, the state x, the disturbance w and its first k−1 time-derivatives w(i), i = 1, . . . ,k−1, for system (1) can
be estimated by constructing an observer for the extended system (7). Like in the basic disturbance observer
case, one can, instead of w(k) ≈ 0 assume that the dynamics of the disturbance is known and extends the
system accordingly.

Essentially, the state extension based methods rely (sometimes implicitly) on the property that the ex-
tended system (7) is observable. This can at times be a restrictive assumption. For instance, consider the
simple linear system

ẋ1 = x2 +d1,
ẋ2 = u+d2,
y = x1

(8)

and extend it with the dynamics of the disturbance

ḋ1 = 0,
ḋ2 = 0.

(9)

It is easy to check that the system (8)–(9) is not observable since observability matrix has rank three whereas
the number of extended states is four. Thus the disturbance vector to be added to nominal plant equations is
limited to the one with dimension 1. Even more, system (8)–(9) with d2 = 0 is still not observable. How-
ever, the case with d1 = 0 is observable. This situation corresponds to the so-called matched disturbance
case when the disturbance input does not show up earlier on the output than the control input. Therefore, ap-
plicability of ESO methods is limited and often scalar disturbances are considered [31]. A bit less restrictive
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is the case when the disturbance dynamics is assumed to be known. However, the observability assumption
is still necessary. If we assume that the disturbances in the system (8) are generated by the model

ξ̇1 = ξ2,

ξ̇2 = 0,
d1 = ξ1,
d2 = ξ2,

(10)

then one still cannot observe x1, x2, ξ1 and ξ2 from the output y and its time-derivatives.
Different approaches have been used to find the state observer for the extended system. In [2,31] the

standard Luenberger observer is constructed, while in [19,41,48] more advanced observers are used.

2.3. BDO versus ESO

In this subsection we discuss advantages and disadvantages of both, the basic disturbance observer (BDO)
and the ESO. The common feature of both is the assumption made for the disturbance: either a time-
derivative of the disturbance is assumed to be zero or the dynamics of the disturbance is assumed to be
known. Now, we compare both methods with respect to their applicability.
1. First, to apply the BDO, the system state and input have to be known, whereas it is not required to apply

the ESO. However, observability assumption of the extended system is needed in case of the ESO. Under
the assumption that the full state vector x is measured, the two methods are both applicable, since then
the extended system (7) is always observable. However, if this is not the case, the ESO can still be applied
(under the assumption that the extended system (7) is observable), but the BDO, in general, cannot be
used.

2. Second, choosing the gains Li(x) in BDO can be difficult if g2(x) is highly nonlinear. If the disturbance
is added in the system equations linearly, as often assumed in applications, then the gains Li(x) can be
chosen constants and the stability of the error dynamics can be easily guaranteed. The problematic aspect
of the ESO may be construction of the observer for the extended system (7). The reason is that the
extended system (7) can be highly nonlinear and observer construction for such systems is not a trivial
task. Then again, under the assumptions that all the state variables are measurable and the disturbance
is added in the system equations linearly, the extended system (7) is in the observer form, for which an
observer can be easily constructed.

3. Third, the BDO has been developed for disturbance affine systems, whereas, in principle, the ESO can
be used for general nonlinear systems, where the disturbance enters into the system dynamics in non-
affine manner.
Summarizing, under the same assumptions (the state vector x is measured and the disturbance is added

linearly), the BDO and ESO are approximately equally effective. However, the ESO can be, in general,
applicable for non-affine systems, while the BDO does not. It is still worth pointing out that constructing
the observer for the extended system in a non-affine case is a difficult problem itself.

Although we have assumed that in both cases – the BDO and the ESO – the kth time-derivative of
the disturbance w is zero, both methods succeed also when the assumption is not exactly satisfied. The
assumption was made primarily to guarantee the asymptotic stability of the error dynamics. Note that the
error dynamics can still be stable in the sense that ||e(t)||< ε , if the kth time-derivative of the disturbance is
assumed to be just bounded. Additionally, the value of ε can be lowered by choosing the higher gain values.

2.4. Other approaches

This subsection contains a brief discussion of some other approaches for the design of disturbance observers,
developed during the past few years.
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The paper [1] relies on the concept of tracking differentiators to define nonlinear disturbance observers.
The approach has similarities with the ESO. Instead of assuming that the time-derivative of the disturbance
is zero, the time-derivative of the disturbance is assumed to be generated by a tracking differentiator. The
authors claim that their disturbance observer can estimate almost all types of disturbances and does not
need any prior information about the disturbance. Nevertheless, the applicability of the approach remains
questionable, since only scalar systems (n = 1) were studied and no hint was given how to generalize the
approach for non-scalar case. Also, it seems that the knowledge on the state and input variables is necessary.

A totally different approach is presented in [12]. A specific matched disturbance, which affects directly
the input, is considered. Then the Hirschorn (left) inverse of the control system is used to compute the
estimate v̂ of the total input v := u+w. Since the inverse depends on the system states, a separate state
estimation is necessary. Then, v̂ is compared to the input u to receive an estimate of the disturbance w.
Low-pass filters are also used to estimate the time-derivatives of the output.

Finally, in [3] a state observer is constructed for systems with bounded exogenous inputs (disturbances
and sensor noise). Then an unknown input is estimated based on the observed and measured state variables.
However, only systems with specific structure and linear disturbances are considered.

2.5. Future research

A number of future research directions are named in [10] concerning disturbance (and uncertainty) estima-
tion and attenuation. As mentioned in [10], the theoretical research is still well behind the applications in
this research area. Many methods for disturbance estimation assume that the system state is measurable (for
example BDO). Also, most approaches are developed for control- and disturbance-affine systems or even
for systems with linear disturbances. Regarding the above restrictions the ESO is an exception; however, the
observer construction in such case may become very difficult if possible at all, since it requires constructing
an observer for a general nonlinear control system.

Finally, note that only a few papers [5,27,44] study disturbance observers for discrete-time systems.
An ESO was developed in [5] for linear discrete-time systems under the assumption that the disturbance is
slowly varying compared to the sampling time. The BDO was generalized in [27] to linear discrete-time
systems. Moreover, another observer, similar to the BDO, was given in [27] to relax the assumption that all
the states are available for the measurement. These results were further developed in [44].

3. FLATNESS-BASED CONTROL

In this section we describe the basic flatness-based control approach as well as a novel event-based con-
troller for differentially flat systems. The estimates of disturbances and possibly their time-derivatives are
incorporated to both controllers. The flatness-based control with disturbance observers has been used before
in [17,25,47]. Note that for mismatched disturbances the estimates of some time-derivatives of the disturb-
ance are necessary, whereas for matched disturbances it may not be necessary. Incorporation of disturbance
observers into these control schemes is not strictly necessary, but helps to improve the performance while
keeping control values smaller, which in many applications corresponds to lower energy usage.

Consider a nonlinear control system of the general form

ẋ = f (x,u), (11)

where x(t) ∈ X ⊆ Rn is the system state and u(t) ∈ U ⊆ Rm is the system input. It is assumed that the
function f is analytic and satisfies on some open and dense subset of X×U the condition rank[∂ f/∂u] = m,
meaning that there are no redundant inputs.

Recall the flatness property of system (11) as follows [29].
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Definition 1. System (11) is said to be flat if there exists an output function

y = h(x,u, . . . ,u(l)) l ≥ 0 (12)

(y(t) ∈ Rm), called flat output, such that

x = ϕx(y, . . . ,y(k)), (13)

u = ϕu(y, . . . ,y(k+1)) (14)

for some k ∈ N and functions ϕx, ϕu.

A more formal definition of flatness and more thorough discussion can be found, for example, from
[14,15,29]. The flatness-based control has attracted a lot of attention throughout last decades, see the books
[29,43]. It is known that any differentially flat system is also feedback linearizable by an endogenous state
feedback.

However, often disturbances affect the equations (11), i.e., one has

ẋ = f (x,u,w), (15)

for the disturbance w(t) ∈ Rρ . In this case the relations (13) and (14) are also affected by the disturbance
and some finite number of its time-derivatives, i.e.,

x = ϕ̃x(y, . . . ,y(k),w, . . . ,w(µ)), (16)

u = ϕ̃u(y, . . . ,y(k+1),w, . . . ,w(µ+1)). (17)

When the disturbance and its time-derivatives are not known or estimated, then the nominal model (11) and
corresponding relations (13), (14) are used in the control design. If the disturbance and its time-derivatives
are estimated, then one can use the more accurate relations (16) and (17) instead.

3.1. Feedback linearization based control

To simplify the situation, consider a single input system (11) with y = h(x) being the flat output. Then,
replace y and its first k time-derivatives in (14) (or (17)) by h(x) and its first k time-derivatives and y(k+1) by
a new control input v. This gives us the feedback

u = ϕu(h(x), . . . ,h(k)(x),v)

or
u = ϕu(h(x), . . . ,h(k)(x),v,w, . . . ,w(µ+1))

respectively, which yields a linear closed-loop system y(k+1) = v. Now, any linear control approach can be
used to control the closed-loop system. For example, one can take

v = r(k+1)−∑
k
i=0 qi(y(i)− r(i)), (18)

where r(t) is the reference trajectory of y and qi ∈ R, i = 0, . . . ,k, are chosen such that the error e = y− r
dynamics e(k+1)+qke(k)+ · · ·+q0e = 0 is stable.
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3.2. An event-based approach

A different, an event-based, approach for controlling differentially flat systems is briefly described in this

subsection. Assume for simplicity that the flat output y = h(x) is also the output-to-be-controlled of system

(11). Here, instead of replacing y = (y1, . . . ,ym)
T and its time-derivatives in (14) (or (17)) by h(x) and its

time-derivatives, we replace y = (y1, . . . ,ym)
T and its time-derivatives by a pre-defined trajectories

yir(t) = pi(t)e−Kit + ri(t), i = 1, . . . ,m, (19)

which converge to the desired trajectories ri(t) of yi, i = 1, . . . ,m. The polynomial pi(t) ∈ R[t] is used to

match the actual initial conditions of the system states and desired initial states, i.e., to guarantee that

x(0) = ϕx(yr(0), . . . ,y
(k)
r (0)),

u(0) = ϕu(yr(0), . . . ,y
(k+1)
r (0)),

(20)

where yr = (y1r, . . . ,ymr)
T . Finally, the constant parameters Ki, i = 1, . . . ,m, can be freely chosen and affect

the speed at which the output yir converges to the desired reference trajectory ri(t).
Then one gets a feedforward controller

u = ϕu(yr, . . . ,y
(k+1)
r )

or

u = ϕu(yr, . . . ,y
(k+1)
r ,w, . . . ,w(μ+1)),

which directs the system output y to follow the trajectory yr. Because uncertainties and disturbances affect

the system, the actual output trajectory starts to deviate from the desired one yr. If this happens, an event

is generated and a new desired trajectory yr is computed based on the actual measurements of the system

states. Since yr always converges to r = (r1, . . . ,rm), then, if Ki, i = 1, . . . ,m, are appropriately chosen, y
also converges to r.

4. EXAMPLES

In this section we demonstrate on three examples from different areas how the flatness-based control together

with disturbance estimation improves the system performance compared to the case when no disturbance

estimation is used. Also, up to the authors knowledge, this is the first time when disturbance observers

are integrated into an event-based control approach. Doing so we not only improve the performance of

the closed-loop system, but also reduce the number of events necessary to achieve such closed-loop per-

formance. The number of events, in turn, corresponds to communication load between the sensors and the

controller.

First, an ESO is constructed to estimate a slowly varying unmeasured thermal load acting on a heating,

ventilation and air-conditioning (HVAC) model. Second, a very fast disturbance and its time-derivative

are estimated to control an active magnetic bearing system. We show that although the assumptions of the

generalized BDO (4) are not satisfied (second derivative is not approximately zero) the observer (4) can still

be used to estimate the disturbance and its derivative. Third, a BDO is constructed to estimate disturbances

acting on an underwater vehicle and integrated to the event-based controller, described in Subsection 3.2.

4.1. Heating, ventilation and air-conditioning system

A model of heating, ventilation and air-conditioning system (HVAC) was given in [35] for one thermal zone

as follows:
ẋ1 =

cp
C1
(Ts − x1)u+ 1

C1R(x2 − x1)+
1

C1Ro
(To − x1)+w,

ẋ2 = 1
C2R(x1 − x2),

y = x1,

(21)

where the system variables and parameters are described in Table 2.

1
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Table 2. Descriptions of different variables and parameters in model (21)

Symbol Value Physical description
x1 State variable Air temperature of the thermal zone
x2 State variable Temperature of floors, walls, furniture etc.
u Input variable Mass flow rate of supply air
w Disturbance variable Unmeasured thermal load
cp 0.000281, kWh/kg*K Heat capacity of thermal zone air
C1 0.00275, kWh/K Thermal capacitance of air
C2 1.87733, kWh/K Thermal capacitance of floors, walls, furniture etc.
Ts 17, oC Temperature of supply air
R 2.08, K/kW Thermal resistance between C1 and C2
Ro 11.849, K/kW Thermal resistance between the thermal zone and outside air
To 27, oC Outside air temperature

We want to estimate w. Assuming that ẇ = 0, we extend the equations (21) with x3 = w, which yields
an extended system

ẋ = Ax+g(y,u),
y = x1,

(22)

where

A =

 − 1
C1R −

1
C1Ro

1
C1R 1

1
C2R − 1

C2R 0
0 0 0


and

g(y,u) =

 cp
C1
(Ts− y)u+ To

C1Ro
.

0
0

 .

System (22) is observable and moreover, in the observer form, thus one can construct an observer

˙̂x = Ax̂+g(y,u)+L(y− x̂1). (23)

Let the error be e = x− x̂, then the error dynamics becomes

ė = (A−LC)e,

where C = (1 0 0). The matrix L = (l1 l2 l3)T can be chosen such that A−LC is an asymptotically stable
matrix. The estimate x̂3 of (23) gives the estimate of w.

In model (21) we want to control the room temperature x1. Note that, x1 is not the flat output of the
system. Instead, y = x2 can be chosen as the flat output. Therefore, using the feedback linearization based
control approach we can only control directly the variable x2. Nevertheless, from the second equation of
(21), by driving x2 to a constant value, the variable x1 will achieve the same constant value. The goal is to
change room temperature x1 from 27 oC to 20 oC when outside temperature is 27 oC. The simulations in
Fig. 1 show that the observer (23) tracks the disturbance and that the feedback linearization control approach
is much improved compared to the case when no disturbance estimation is added to the controller.
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Figure 1. The disturbance (a) and state variables (b) for system (21).

4.2. Active magnetic bearing system

A voltage-controlled model of an active magnetic bearing (AMB) system is given in [36] and described by

the dynamics

ẋ1 = x2,
ẋ2 = ϑ1x3x4 +

1
m w,

ẋ3 = 1
N u1 +ϑ2x3 +ϑ3x1x4,

ẋ4 = 1
N u2 +ϑ2x4 +ϑ3x1x3,

y = x1,

(24)

where x1 is the rotor position [m], x2 is the rotor speed [m/s], x3 = φb, x4 = φc, for φb = φ1 + φ2, φc =
φ1 −φ2, where φ1 and φ2 are the electromagnetic fluxes [Wb] of two opposite electromagnets, respectively.

Moreover, ϑ1 =
1

μ0mA , ϑ2 =
−2s0R
μ0N2A and ϑ3

2R
μ0N2A are known constants, with system parameters described in

Table 3.

The flat output of system (24) can be chosen as y1 = x1 and y2 = x4. According to the feedback lin-

earization approach, we design the controller

u1 = N( v1

ϑ1x4
−ϑ2x3 −ϑ3x1x4 − x3v2

x4
− ẇ

mϑ1x4
),

u2 = N(v2 −ϑ2x4 −ϑ3x1x3),
(25)

where

v1 = −q12ÿ1 −q11ẏ1 −q10y1

= −q12(ϑ1x3x4 +
1
m w)−q11x2 −q10x1

v2 = −q20(y2 − yre f
2 ) =−q20(x4 −0.001).

(26)

The parameters q1 j, j = 0,1,2, and q20 are chosen such that the linearized system equations are stable.

In the current simulations we want the convergence to be fast, so we choose q10 = 64000, q11 = 4800,

q12 = 120 and q20 = 40. Note that the controller (25), (26) depends on the disturbance w and its first

time-derivative ẇ. To estimate them, we use the BDO approach, described in Subsection 2.1.

The disturbance observer (4) is constructed under the assumption that ẅ= 0. We choose L0 =(0,500,0,0)
and L1 = (0,16000,0,0), which yield stable error dynamics (6) and fast enough convergence of the disturb-

ance estimation. Thus, from (5) one has p0(x) = 500x2, p1(x) = 16000x2, and the disturbance observer

(a)

0 5 10 15 20

t [h]

-1

0

1

2

3

w

disturbance
disturbance estimate

(b)

0 5 10 15 20
15

20

25

30

x 1
 [

o
C

]

without disturbance estimation
with disturbance estimation

0 5 10 15 20

t [h]

15

20

25

30

x 2
 [

o
C

]

Figure 1. The disturbance (a) and state variables (b) for system (21).

(a) (b)

   t, h     t, h

  
 x

2
 , 

°C
  
 x

1
 , 

°C

 

Fig. 1. The disturbance (a) and state variables (b) for system (21). 

,

  t (h)

 (
ºC

)
 (

ºC
)

  t (h)



68 Proceedings of the Estonian Academy of Sciences, 2020, 69, 1, 57–73

Table 3. Values and descriptions of AMB system parameters

Symbol Value Physical description

s0,m 0.0004 Air gap

m,kg 2.5 Mass of the rotor

Lo,H 0.0025 Coil inductance

Ls,H 0.0005 Coil inductance losses

R,Ω 0.5 Coil resistance

N 108 Number of turns of wire in the coil

μ0,H/m 1.25×10−6 Permeability of free space

A,m2 0.0014 Cross sectional area of air gap

ki,N/A 15.625 Current stiffness

ks,N/m 97656.25 Displacement stiffness

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1

0

1

w

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-20

0

20

40

60

dw
/d

t

actual disturbance
disturbance estimate

0.6 0.65 0.7

0.6

0.8

1

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-5

0

5

x 1

10-4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.01

0

0.01

x 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

x 3

10-5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

0

1

2

x 4

10-3
without disturbance estimation
with disturbance estimation

Figure 2. (a) Disturbance w, its time-derivative ẇ and their estimate; (b) The state trajectories compared to the case when there is

no disturbance estimation added to the control design.

ż0 = −500[ϑ1x3x4 +
1
m(z0 +500x2)]+ z1 +16000x2,

ż1 = −16000[ϑ1x3x4 +
1
m(z0 +500x2)],

ŵ = z0 +500x2,
ˆ̇w = z1 +16000x2.

(27)

Now, the estimates ŵ and ˆ̇w are integrated to controller (25), (26). The actual disturbance is simulated

as a sinusoid with constant frequency and amplitude. Figure 2 shows the simulation results. In Fig. 2a the

disturbance and its time-derivative together with their estimates is presented. Note that since the assumption

(ẅ = 0) made in the disturbance observer construction is not actually satisfied, the error does not converge

to zero, but is bounded around zero. Figure 2b presents the state variables of the closed loop system in two

cases: when the feedback linearization based control is combined with the disturbance observer (27) and

when it is not. Clearly, the addition of disturbance observer to the controller improves the performance of

the closed-loop system significantly.

Note that there are many papers (for example, [11,17,33,39,40,46,51]) that present results on controlling

the AMB system where a disturbance observer is integrated into the control scheme. Some of the papers

([11,33,39,40,46]) consider linear voltage-controlled models, others [17,51] nonlinear current-controlled

models. Also, different methods for disturbance estimation are being used. For example, the BDO [40,

46], the ESO [33,51] or inversion-based method with low-pass filters [39]. Moreover, different control

approaches are implemented, such as flatness-based-control [17], a linear state feedback [40,46], an output
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no disturbance estimation added to the control design.
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Figure 2. (a) Disturbance w, its time-derivative ẇ and their estimate; (b) The state trajectories compared to the case when there is

no disturbance estimation added to the control design.

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1

0

1

w

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-20

0

20

40

60

dw
/d

t

actual disturbance
disturbance estimate

0.6 0.65 0.7

0.6

0.8

1

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-5

0

5

x 1

10-4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.01

0

0.01

x 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

x 3

10-5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

0

1

2

x 4

10-3
without disturbance estimation
with disturbance estimation
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ż0 = −500[ϑ1x3x4 +
1
m(z0 +500x2)]+ z1 +16000x2,

ż1 = −16000[ϑ1x3x4 +
1
m(z0 +500x2)],

ŵ = z0 +500x2,
ˆ̇w = z1 +16000x2.

(27)

Now, the estimates ŵ and ˆ̇w are integrated to controller (25), (26). The actual disturbance is simulated

as a sinusoid with constant frequency and amplitude. Figure 2 shows the simulation results. In Fig. 2a the

disturbance and its time-derivative together with their estimates is presented. Note that since the assumption

(ẅ = 0) made in the disturbance observer construction is not actually satisfied, the error does not converge

to zero, but is bounded around zero. Figure 2b presents the state variables of the closed loop system in two

cases: when the feedback linearization based control is combined with the disturbance observer (27) and

when it is not. Clearly, the addition of disturbance observer to the controller improves the performance of

the closed-loop system significantly.

Note that there are many papers (for example, [11,17,33,39,40,46,51]) that present results on controlling

the AMB system where a disturbance observer is integrated into the control scheme. Some of the papers

([11,33,39,40,46]) consider linear voltage-controlled models, others [17,51] nonlinear current-controlled

models. Also, different methods for disturbance estimation are being used. For example, the BDO [40,

46], the ESO [33,51] or inversion-based method with low-pass filters [39]. Moreover, different control

approaches are implemented, such as flatness-based-control [17], a linear state feedback [40,46], an output
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Table 4. Values of the parameters for U-CAT model

Parameter Value Parameter Value

C1 –40 C2 59

C3 59 C4 40

C5 –19 C6 2.8179

Xuu 56 Yvv 551

Nrr 0.7226

feedback control law [51], H∞ control [39] etc. However, up to the authors knowledge, there are no papers,

where a disturbance-observer-based control method is applied to a nonlinear voltage-controlled model, such

as (24).

4.3. Underwater vehicle

A model of an underwater vehicle, called U-CAT, is proposed in [42]. It has two motion modes, denoted by

SLOW and FAST, which depend on how the four fins of the vehicle are configured. The state space model

for SLOW mode is as follows:

ẋ1 = x2 cos(x5)− x4 sin(x5),

ẋ2 = −C1

C2
x4x6 − Xuu

C2
x2|x2|+ u1

C1
+w1,

ẋ3 = x2 sin(x5)+ x4 cos(x5),

ẋ4 = −C3

C4
x2x6 − Yvv

C4
x4|x4|+ u2

C4
+w2,

ẋ5 = x6,

ẋ6 = −C5

C6
x2x4 − Nrr

C6
x6|x6|+ u3

C6
+w3,

(28)

where w = [w1,w2,w3]
T represents the unknown disturbance vector. The parameter values of the model (28)

are displayed in Table 4.

The flat outputs of the system (28) are chosen as y1 = x1, y2 = x3, and y3 = x5, which we also want to

control. The relations (16) do not depend on the disturbance. The relation (17) depends on the disturbance w,

but not on the time-derivatives of the disturbance. Thus, only the estimates of the disturbances are necessary.

The BDO (4) is constructed to estimate the disturbances wi, i = 1,2,3, in (28). Note that these dis-

turbances are simulated as noisy signals and the disturbance observer estimates only their mean value.

However, this is fine for us, since the event-based control approach, described in Subsection 3.2, can deal

with the noise in the disturbances.

The situation, where the underwater vehicle starts from the point (−4;4) on a (x1,x3)-plane with x5 =
x2 = x4 = x6 = 0 and does circles around 0 with radius 2, is simulated. At the same time, the angle x5 will go

from 0 to the new set point π/2. The parameters Ki, i = 1,2,3, are all taken equal to 2. The error threshold

is chosen as ε = 0.05. Two situations are considered: first, when the disturbance estimate is continuously

sent to the controller. Second, when the disturbance estimate is sent to the controller only at the event times.

The results of the case when disturbance estimate is continuously sent to the controller are displayed in

Fig. 3. The disturbance and its estimate are presented (a) together with the output trajectories compared to

their reference trajectories (b).

Second, the case when the disturbance estimate information is sent to the controller only on the event

times, was simulated. The disturbance estimate is as before (Fig. 3a), however, the output trajectories are

displayed in Fig. 4a.

Finally, if no disturbance estimate is used in the controller design, then the corresponding output trajec-

tories are displayed in Fig.4b. The number of event times in all three cases are given in Table 5. As one can

expect, addition of disturbance observer reduces the number of events significantly.

feedback control law [51], H∞ control [39] etc. However, up to the authors knowledge, there are no papers,

where a disturbance-observer-based control method is applied to a nonlinear voltage-controlled model, such

as (24).

4.3. Underwater vehicle

A model of an underwater vehicle, called U-CAT, is proposed in [42]. It has two motion modes, denoted by

SLOW and FAST, which depend on how the four fins of the vehicle are configured. The state space model

for SLOW mode is as follows:
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Second, the case when the disturbance estimate information is sent to the controller only on the event
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displayed in Fig. 4a.
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Figure 3. (a) The disturbance estimation results for the U-Cat model; (b) The output trajectories of the U-Cat model in the case

when continuous disturbance estimate signal is sent to the controller.

(a)

0 5 10 15 20 25 30
-5

0

5

y 1

0 5 10 15 20 25 30
-5

0

5

y 2

0 5 10 15 20 25 30

t

0

1

2

3

y 3

reference

actual

(b)

0 5 10 15 20 25 30
-5

0

5

y 1

0 5 10 15 20 25 30
-5

0

5

y 2

0 5 10 15 20 25 30

t

0

1

2

3

y 3

reference
actual

Figure 4. (a) The output trajectories of the U-Cat model in the case when disturbance estimate signal is sent to the controller only

at event times; (b) The output trajectories of the U-Cat model in the case when no disturbance estimate is sent to the controller.

Table 5. Number of event times in different scenarios

Scenario Number of events

No disturbance estimate added to the controller 64

Constant disturbance estimate sent to the controller 15

Disturbance estimate sent to the controller at event times 20
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Figure 3. (a) The disturbance estimation results for the U-Cat model; (b) The output trajectories of the U-Cat model in the case

when continuous disturbance estimate signal is sent to the controller.
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event times; (b) The output trajectories of the UCat model in the case when no disturbance estimate is sent to the controller.
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5. CONCLUSIONS

A brief overview of disturbance observer approaches was given with focus on two of the most popular ones:

the basic disturbance observer and the extended state observer. These methods were described in detail

and compared with respect to their applicability. Then the disturbance estimates were integrated into the

flatness-based control (feedback linearization based and event-based approaches) and the effectiveness of

the combination was demonstrated on three practical examples: the HVAC, the AMB and the underwater

vehicle models.

Some future research directions for disturbance observers were mentioned in Subsection 2.5. As for the

event-based control together with the integrated disturbance observer, it remains to prove the stability of the

closed-loop system.
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14. Fliess, M., Lévine, J., Martin, P., and Rouchon, P. Flatness and defect of nonlinear systems: introductory theory and examples.

Int. J. Control, 1995, 61(6), 1327–1361.
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Lühiülevaade häiringu vaatlejatest mittelineaarsetes süsteemides: rakendus lameduse
omadusel põhinevale juhtimisele

Arvo Kaldmäe ja Ülle Kotta

On antud lühiülevaade populaarsetest häiringu hindamise meetoditest ja näidatud, kuidas seda hinnangut

on võimalik kasutada süsteemi lameduse omadusel põhineva juhtimismeetodi täpsemaks muutmisel. Algul

on antud üldine ülevaade häiringu hindamise deterministlikest meetoditest, seejärel on kirjeldatud lähemalt

kaht kõige populaarsemat meetodit eeldusel, et leidub häiringu lõplikku järku tuletis, mis on null. Esi-

mene neist on nn tavaline häiringu vaatleja. Lihtsustatult öeldes põhineb antud vaatleja süsteemi olekute

mõõdetud väärtuste ja mudeli poolt ennustatud väärtuste võrdlemisel. Seega eeldab antud meetod, et kõik

süsteemi olekud oleksid mõõdetavad. Teine meetod häiringu hindamiseks on nn laiendatud olekutaastaja

konstrueerimine. Antud juhul laiendatakse süsteemi olekuruumi häiringute ja mingi lõpliku arvu häiringute

tuletistega. Laiendatud süsteem eeldatakse olevat häiringuvaba ja sellise laiendatud süsteemi jaoks konst-

rueeritakse olekutaastaja, mis muuhulgas hindab ka esialgse süsteemi häiringuid ning selle tuletisi. Artiklis

on põhjalikumalt võrreldud neid kaht meetodit nende rakendamise võimalikkuse vaatepunktist. Töö teises

pooles on näidatud, kuidas häiringute hinnanguid saab kasutada lamedate süsteemide juhtimiseks. Häiringu

vaatleja kombineeritakse tagasisidega lineariseerimisel põhineva juhtimismeetodi ja uudse sündmuspõhise

juhtimismeetodiga, mille tulemusel saavutatakse täpsem tulemus. Töö viimases osas on näidatud kolmel

praktilisel näitel (kütte- ja ventilatsioonisüsteemil, aktiivsel magnetlaagersüsteemil ning veealusel robotil)

eelkirjeldatud häiringu hindamise kui ka täiustatud juhtimismeetodite tulemuslikkust.
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