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Abstract. The propagation of signals in nerves is characterized by complexity where the interactions between the electrical signal
and accompanying mechanical and thermal effects must be taken into account. That is why in the modelling of wave phenomena
the knowledge from physiology, physics, and mathematics must be cast into a whole. In this paper the wave phenomena in nerves
are characterized from the viewpoint of complexity and interdisciplinarity, followed by the analysis of principles and criteria in
the modelling of biological systems. The central part is the description of the step-by-step approach in building up a coupled
mathematical model of signal propagation in axons. Attention is paid to the coupling forces which link the single waves into an
ensemble. The mathematical description of the model is presented in the Appendix.
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1. INTRODUCTION

Modelling in science means building a description of
a system which could help to understand the reality in
an abstract way. The conceptual models aim at better
understanding of the object or process, the mathematical
models use the language of mathematics for the descrip-
tion of reality. The strength of mathematics in modelling
is emphasized by Stewart [36] by listing the equations
“that changed the world”. The growing understanding of
the complexity of the world has influenced significantly
the ideas of modelling because one should be aware of
possible unpredictability, bifurcations, the role of inter-
actions, the emergence of novel structures, etc. [15,30].
The problem of causality needs clear analysis while pos-
sible simplifications of a model may also overlook the es-
sential links and the intuition often fails. This means that
the modelling in complex systems needs careful analysis
of criteria with a clear set of assumptions and hypotheses.

In what follows attention is focused on a special
field of systems biology – the propagation of nervous

signals. Although traditionally nervous signals are ana-
lysed from the viewpoint of physiology, the in silico
modelling based on mathematics is gaining more and
more importance in systems biology and also in studies
on nervous signals [31]. So the studies on signal propa-
gation in nerves should be based on many disciplines
involving physiology, mathematics, and also physics and
chemistry. In other words, these studies are at the inter-
face of the physical and life sciences.

Further we try to systemize the ideas and structures
of mathematical models by describing nerve pulse propa-
gation in axons with accompanying mechanical and ther-
mal effects. In general, focus is on wave phenomena in
complex media. We shall first describe briefly the inter-
disciplinarity in the analysis of waves in mechanics [8,9]
and then continue with systems biology. Summing up,
general principles characterizing the wave phenomena in
complex media are formulated. A wave model for the
action potential (AP) serves as an example explaining the
general principles.
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In Section 2 the problems of modelling are discussed
from the viewpoint of interdisciplinarity in complex sys-
tems. Section 3 is devoted to the principles and crite-
ria in the modelling of biological systems. In Section 4,
the central part of this paper, the modelling of the AP
and accompanying effects is analysed. Section 5 pro-
vides general conclusions reflecting the specific features
of modelling the signals in nerves from the viewpoint of
complexity science. The system of coupled equations is
presented in the Appendix.

2. COMPLEXITY AND INTERDISCIPLINARITY

Complexity means that the systems are composed of
smaller subsystems or constituents which are coupled to
each other. The coupling means interactions between the
constituents and due to interactions new qualities of the
system as a whole may emerge [15,30]. The interactions
are, as a rule, nonlinear and that is why the properties of
a complex system cannot be summed up by the proper-
ties of the constituents. In dynamical processes the inter-
actions are of wave–wave, wave–field or wave–internal
structure types [8]. The proper modelling of such inter-
actions is crucial and casts significant insight into under-
standing the phenomena.

In general terms, models represent phenomena or
processes. Leaving aside the fictional models like for
example the Bohr model of the atom or the Schrödinger
cat, we discuss here the mathematical models of real pro-
cesses. This means describing the process in mathemati-
cal terms. The main task is to first determine the variables
in the process and then to model how these variables are
linked to each other and how they are changing in space
and time. Proper models should be able to explain the
existing observations and to predict future observations
with certain accuracy. Experiments in silico with mathe-
matical models are cheaper than natural experiments.

The mathematical cornerstones in the modelling of
processes are the classical equations of mathematical
physics: hyperbolic, parabolic, and elliptic equations.
These partial differential equations are able to model
the wave-like and diffusion-like dynamical processes
and static equilibrium states, respectively. The standard
forms of these equations correspond to simple ideal cases
and are usually modified for describing the more compli-
cated cases (for wave equations, see [8,24]).

In mechanics the conservation laws of mass, mo-
mentum, moment of momentum, and energy together
with entropy inequality govern all the processes [16]. In
solid mechanics one is mostly interested in how the de-
formation and stress in a structure are changing under
the given impact and environment. The scale is impor-
tant and thermodynamics governs the processes. The
basis for modelling is related to Newton’s laws which
also describe the causality – for every action there is an
equal and opposite reaction. The importance of forces
in a system follows also from Newton’s laws. An ex-
cellent example is the wave equation with interaction

forces derived by Maugin [24] using the concept of the
Eshelby stress. It is not surprising that waves in solids
and in fluids are, in principle, described by similar math-
ematical equations [9], although often written in differ-
ent forms. When the processes with temperature changes
are analysed, then, given the diffusive character of heat
production, the problem is how to combine wave-type
and diffusion-type equations. In the modelling of waves
in microstructured materials the concept of internal
variables enables overcoming this difficulty [2]. The
overview of the complexity and interaction of waves and
fields characteristic of engineering and natural sciences
is given by Engelbrecht [8].

The processes are much more complicated in life sci-
ences, being related to the functioning of species and
to studying the role of their organs and their building
blocks over a large scale. In this context systems biol-
ogy uses a holistic approach involving the interactions
within biological systems and, according to Kohl et al.
[21], is more an approach to bioresearch. Nevertheless,
it takes account of the functional integration of parts into
a whole involving physiological, physical, and chemical
processes. Mathematical modelling and extensive use
of in silico analysis helps to understand the complexity
and the functions of the biological entities [21]. Inte-
grative biological modelling involves many areas, rang-
ing from organs and organ systems to smaller molecu-
lar and atomic scales [27]. The scales are hierarchically
coupled and that is why modelling across the different
scales is important. It is stressed that the interactions
between the components are to be taken into account
and the biological processes are forced to obey physico-
chemical principles (conservation laws). It means a clear
need for interdisciplinarity involving physics and mathe-
matics into studies of biological processes. The physio-
logical modelling nowadays is very much following this
line because of “the increasing demand in quantitative as-
sessment of element inter-relations in complex biological
systems” [17, p. 1099].

One of the characteristic features of complex sys-
tems is nonlinearity that has many consequences: non-
additivity, possible unpredictability, multiple equilibrium
states, etc. [15,30]. Actually, the methods and principles
of “nonlinear science” are clearly interdisciplinary and
have opened many possibilities in other fields of research
[35]. Indeed, it is not only the chaos theory and nonlinear
dynamics, it is also condensed-matter physics, chemical,
and biochemical phenomena, fluid dynamics, nonlinear
biology including neuroscience, etc. What must be espe-
cially stressed is the causality in nonlinear systems. Ac-
cording to Scott [35], the causality must be analysed with
care because the relations between the cause and effects
in systems with multiple equilibria need special atten-
tion.

To sum up, complexity is characteristic of many
fields of studies and involves many common fundamen-
tal ideas. This is the reason why interdisciplinarity plays
such a leading role in contemporary research: physical
sciences, biological sciences, social sciences, etc. [34].
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Further below we use interdisciplinary ideas for building
a mathematical model for signals in nerve fibres account-
ing for electrical, mechanical, and thermal effects.

3. PRINCIPLES AND CRITERIA IN
BIOLOGICAL SYSTEMS

In addition to signatures of complexity of physical sys-
tems [15,30], in biological systems one should take sev-
eral conceptual foundations into account [32]. In short,
one can list several issues characteristic of biological
systems [11]: (i) there is a need for energy exchange
with the surrounding environment and between the con-
stituents; (ii) many chemical reactions and transfer mech-
anisms that are often characterized on the molecular level
are involved; (iii) different time scales, adaptivity, and
hierarchies should often be taken into account; (iv) non-
linearities, diffusive effects, excitability, spatio-temporal
coupling, etc. may have a significant role. All that may
give rise to mathematical models where the synchroniza-
tion of time scales is needed. Criteria for deriving such
models are described by Noble [31], starting from the de-
scriptive level collecting the data. The next level is inte-
grative – how all elements or constituents interact. This
is the most important question to answer in modelling
because in many cases there are still guesses based on
experimental results. As a real signature of complexity,
interactions lead to a system which works as a whole.
The final level of criteria [31] is explanatory and predic-
tive.

At the integrative level hierarchies characteristic of
biological systems must be distinguished [7,9,27]. First,
there are structural hierarchies which involve strong de-
pendence across physical scales of biological structures.
The fundamental sequence of the structural hierarchy is:
atom – molecule – cell – tissue – organ – human. At the
tissue level one can again distinguish the structural hier-
archy. For example, the structural hierarchy in the heart
has many levels and sublevels [27]. One sublevel is re-
lated to the contraction: sarcomeres – myofibrils – fibres
– myocardium – contraction. Second, one must stress the
functional hierarchy which is related to various dynam-
ical processes across the multiple scale. For the same
example of heart contraction the functional hierarchy is:
oxygen consumption – energy transfer – Ca2+ signals –
cross-bridge motion – tissue motion.

The existence of many scales in structural hier-
archies of biological systems can be compared with the
microstructured materials in continuum mechanics [9].
In order to model the behaviour of the macrostructure,
the microstructure is described by the concept of internal
variables [25]. This concept takes into account that
besides observable (measurable) variables there are un-
observable internal variables describing the behaviour
of the internal structure. These variables compensate
our inability to precisely describe the properties of a
microstructure. The governing equations of internal
variables are derived from thermodynamical consider-
ations [2,25]. As shown in [26] it is possible to use

the formalism of internal variables also in the analy-
sis of the Hodgkin–Huxley (HH)and FitzHugh–Nagumo
(FHN) equations. Indeed, the “phenomenological” vari-
ables in the HH equations [19] or the “recovery” variable
in the FHN equation [29] can be treated as internal vari-
ables. In addition, the concepts of internal variables and
functional hierarchy have been combined for the descrip-
tion of the active stress in myocardium, starting from
the Ca2+ signal as an internal variable which influences
the next-order internal variable – the number of activated
cross-bridges, followed by the next-order internal vari-
ables – the number of force producing cross-bridges [14].
Combining the ideas of continuum mechanics with the
modelling of biological systems is a clear sign of inter-
disciplinarity.

An important notion in science and philosophy is the
notion of paradigm which means a distinct set of thought
patterns. The contemporary understanding of paradigms
in science goes along the ideas of Kuhn [22]. Accord-
ing to him, the normal evolution of science is based on
a widely accepted framework of certain understandings
using the well-known experiments and theories. Many
paradigms are known in biology, such as the paradigms
of evolution (C. Darwin), blood circulation (W. Har-
vey), etc. From the paradigms in biophysics, Noble [32]
stresses the HH paradigm on the electro-physiological
nature of nerve signals. This viewpoint is supported by
Drukarch et al. [5]. However, Hodgkin [20] himself has
noted the need for thinking about the physical basis of
the action potential paying attention also to unexplained
observations which have been neglected for one reason
or another. The criticism of the HH model has brought
over the ideas of the mechanical character of the ner-
vous signal by Heimburg and Jackson [18]. Currently
there is no consensus about the role of electrical and
non-electrical manifestations but the discussion clearly
indicates the essence of interdisciplinarity in modelling.
In this context there is really a need “to frame a theory
that incorporates all observed phenomena in one coher-
ent and predictive theory of nerve signal propagation” [1,
p. 112].

To sum up, multilevel analysis, working at the inter-
face of physiology, physics, and mathematics, and mas-
tering in silico simulations are all tools for the better
understanding of biological processes. The best way is
not to exaggerate the role of one or another approach but
to combine them into a whole. The mathematical mod-
elling is a powerful tool to understand the reality because
“to think is to model” [21, p. 29].

4. MODELLING OF AN ACTION POTENTIAL

Further the ideology for modelling signal propagation in
nerve fibres is presented using the interdisciplinary ap-
proach. The modelling is performed at the interface of
physiology, physics together with thermodynamics, and
mathematics.

Here we follow the HH paradigm based on contem-
porary understandings on axon physiology [3,4] – the
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action potential (AP) carries information and is accom-
panied by other effects. As signal propagation is re-
lated to wave motion, the basic models of the electrical
pulse are wave-type governing equations. Both the ba-
sic HH and simplified FHN equations are derived from
the telegraph equations neglecting the inductance. The
metabolic pump generates the voltage gradient that is re-
sponsible for driving the AP along the axon. The exist-
ence of ion currents in the process means that the gov-
erning equations are of the diffusion-reaction type which
involves the finite velocity of an AP.

The ideas from continuum mechanics are used for
modelling the mechanical effects in the surrounding
biomembrane and axoplasm. Longitudinal waves in the
biomembrane (lipid bilayer) are modelled by the wave
equation (conservation of momentum). Heimburg and
Jackson [18] have modified the wave equation with spe-
cial nonlinearities taking into account that the velocity
depends on changes in density which could be treated
as longitudinal displacement. These displacement-type
nonlinearities are different from gradient-type nonlinear-
ities in conventional solids [7]. Heimburg and Jackson
also added a dispersive term which reflects the elasticity
of the biomembrane. Based on ideas of wave motion in
microstructured solids, the Heimburg–Jackson model has
been modified by an additional dispersion term which
reflects the inertia of the microstructure, i.e., inertia of
lipid molecules [12]. This improved Heimburg–Jackson
model follows the general understanding of continuum
mechanics – all effects of the same order should be taken
into account, and in a “microstructured” bilayer the elas-
ticity and inertia of the internal structure must both be
taken into account. In some sense, the biomembrane
acts as a wave-guide (cf. [33]). The pressure wave in
the axoplasm which can be modelled like a viscous fluid
could be governed by Navier–Stokes equations. How-
ever, as it has been shown experimentally that the am-
plitude of a pressure wave is very small [40], the usual
wave equation with a viscous term added will be suffi-
cient for simulations. For modelling the measured trans-
verse displacements [38] again the idea from mechanics
is used. The theory of rods states that longitudinal and
radial transverse displacements have a functional link –
the transverse displacement is a space derivative of the
longitudinal displacement [33].

Finally, the temperature changes accompanying the
propagation of an AP should obey the principles of ther-
modynamics. Consequently the diffusion-type models
should be constructed and Fourier’s law must be satis-
fied.

In such a way an electrical signal and accompanying
effects are modelled by equations which can be deduced
from the classical equations of mathematical physics
(see Section 2) by using the interdisciplinary ideas from
physiology, physics, and mathematics. However, the cru-
cial question is now: how are these waves and accompa-
nying effects coupled? In terms of complexity science it
means that the interactions must be modelled as precisely
as possible in order to get a general picture. According

to a recent state-of-art overview by Drukarch et al. [5],
there is no general consensus about the possible mecha-
nisms of interactions.

Starting from physical considerations, the balance
of momentum involves forces. Apart from the classical
wave equation, the additional forces reflect the possible
influences from the environment, like the modified wave
equation in terms of the Eshelby stress modelling waves
in microstructured materials [24]. Following this idea in
the analysis of nerve signals, the additional forces should
be added in all the single equations modelling the sep-
arate waves. This is actually the requirement from the
viewpoint of the balance of momentum. Note that the
ion currents are added to the HH or FHN equations in
order to satisfy the physiological considerations.

The next question is about the functional form of
these forces. Here a strong hypothesis was introduced by
Engelbrecht et al. [13]: the mechanical waves in the axo-
plasm and surrounding biomembrane are generated due
to changes in electrical signals (the AP or ion currents).

In mathematical terms, the changes mean non-zero
space or time derivatives. Note that, in principle, the
electrical signals are pulse-type, i.e., uni-polar (leaving
aside the refractory part of the AP). It means that their
derivatives are bi-polar and in this way energetically bal-
anced. Supposing a uni-polar force leads to the energy
pump which is not acceptable.

As a proof of the concept, a general coupled model
where the AP and the mechanical waves in the axo-
plasm and biomembrane are united into one system is
formulated, completing the mathematical description of
the whole process of signal propagation in axons. The
overview of basic and derived equations of such a model
is presented in the Appendix. The numerical simulations
without [10,11,13] and with [37] temperature changes
have demonstrated that this model is able to qualitatively
explain the observations obtained experimentally.

5. FINAL REMARKS AND CONCLUSIONS

The consecutive steps of modelling the propagation of
an AP were presented in Sections 2–4. These steps are
based on mathematical and physical considerations ap-
plied to the physiological process following the second
level of criteria [31] – the integrative level. As a re-
sult, a coupled mathematical model was derived where
the interactions have the crucial role. Simulations have
demonstrated that based on the HH paradigm, widely
used in axon physiology, a wave ensemble is generated
which has primary (i.e., wave-like) and secondary (i.e.,
not wave-like) components. The primary components are
the AP itself, the pressure wave in the axoplasm, and the
longitudinal wave in the surrounding biomembrane. The
secondary components are the transverse displacement of
the biomembrane and temperature change, which are not
governed by wave-type equations. The hypothesis that
the interaction forces between the primary components
and also in the diffusion equation for temperature change
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depend on changes in variables and not on their absolute
values is of fundamental importance. This gives also the
insight into the causality but surely more experiments are
needed in order to establish the quantitative parameters
and the physical mechanisms which have a role in these
interactions.

The ideas from interdisciplinarity permitted us to im-
prove the accuracy of model equations. For example,
when the internal inertia of a biomembrane in the im-
proved Heimburg–Jackson equation is accounted for, the
width of a solitary wave may be much narrower and
closer to physiological reality [12]. Another mathemat-
ical feature is the bi-polarity of coupling forces for en-
suring the energetically balanced solution. As the AP is
described by the FHN model, the activation and inacti-
vation of sodium and potassium currents must be taken
into account in order to improve the predictive power of
this model. In the present model, the aim was to get a
correct shape of an AP which was then used in interac-
tion forces.

The authors are of the opinion that such an interdis-
ciplinary approach could give a better insight into the
interaction of effects accompanying the propagation of
an AP and goes in line with challenges in systems biol-
ogy [32]. In general terms, as pointed out in the Report of
the US National Research Council [41], a mathematical
model can highlight basic conceptions and identify key
factors or components of a biological system. In addi-
tion, models enable formalizing the intuitive understand-
ings and “link what is known to what is yet unknown”.
The modelling of the AP with accompanying effects, de-
scribed above, serves clearly these ideas at the frontiers
of the interface between biology and mathematics. The
ensemble of waves includes electrical and mechanical
components together with the accompanying tempera-
ture change. The ensemble is energetically stable but
the energy transfer between the components needs fur-
ther detailed analysis after the mechanisms of coupling
are proved by experiments.
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APPENDIX

BASIC EQUATIONS

The wave ensemble in an axon has primary and sec-
ondary components. The primary components are gov-
erned by wave-type equations: the action potential (AP),

the longitudinal wave in the biomembrane (LW), and the
pressure wave (PW) in the axoplasm. All the primary
components possess finite velocities. The secondary
components have no independent velocities: the trans-
verse displacement (TW) of the biomembrane is derived
from the LW and the temperature (Θ) change is governed
by the diffusion process. Below the corresponding gov-
erning equations are presented. The starting wave equa-
tions are also described for primary components.

Action potential. The AP is an electric signal and
the derivation starts from the hyperbolic telegraph equa-
tions. Following Lieberstein [23], these equations are the
following:

πa2Ca
∂v
∂ t

+
∂ ia
∂x

+2πaI = 0,

L
πa2

∂ ia
∂ t

+
∂v
∂x

+
R

πa2 ia = 0.
(1)

Here v is the potential difference across the biomem-
brane, ia is the axon current per unit length, I is ion cur-
rent density, Ca is the axon self-capacitance per unit area
per unit length, L is the axon-specific self-inductance,
and R is the axon-specific resistance. As usual, x and
t are space coordinate and time, respectively, and a is the
radius.

It is possible to rewrite system (1) in the form of one
second-order equation:

∂ 2v
∂x2 −LCa

∂ 2v
∂ t2 = RCa

∂v
∂ t

+
2
a

RI +
2
a

L
∂ I
∂ t

. (2)

In the electrophysiology of axons it is assumed that in-
ductance L is so small that it can be neglected. Then a
parabolic equation follows from hyperbolic equation (2):

∂ 2v
∂x2 = RCa

∂v
∂ t

+
2
a

RI. (3)

Equation (3) is the basis for the HH model as well as for
the FHN model. If inductance is not neglected, it is pos-
sible to derive from system (1) or equation (2) an evo-
lution equation [6] which is a one-wave equation. The
corresponding stationary profile is described then by a
Liénaŕd-type equation.

In the HH model [19] the ion currents involve three
phenomenological variables: m,h,n denoting sodium
activation, sodium inactivation, and potassium activat-
ion. These variables are governed by reaction equations
where the relaxation time and equilibrium values are de-
termined by expressions obtained to match experiments.
Further in our model we follow the FHN model [29]
where only one general ion current is taken into account.

Leaving aside the details of derivation, the FHN
equation in our model in dimensionless variables is the
following:

ZT = DZXX +Z(Z −A1 −Z2 +A1Z)− J,
JT = ε(A2Z − J). (4)
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Here Z is potential, J is the abstracted ion current, A1,A2
are activation coefficients, D and ε are coefficients. As
ion channels can in principle be activated electrically and
mechanically [28], it is possible to use A1 = a1 +b1 and
A2 = a2 + b2, where ai,bi are “electrical” and “mechan-
ical” activation coefficients. In the present model the
“mechanical” activation coefficient bi =−βiU , where βi
are coefficients and U is membrane density change intro-
duced below. It can be noted that bi could include also
influence form the pressure inside the axon which could
also be considered as “mechanical” influence. Here and
further, indices X and T denote the differentiation with
respect to space and time, respectively.

Longitudinal wave in the biomembrane. The starting
point for deriving the governing equation for the LW is
the wave equation in terms of the density change ∆ρ = u
[18]:

∂ 2u
∂ t2 =

∂
∂x

(
c2

b
∂u
∂x

)
, (5)

where the velocity cb depends on variable u:

c2
b = c2

0 + pu+qu2. (6)

Here p,q are coefficients satisfying p < 0, q > 0 [18]. In
order to obtain a soliton-type solution, a dispersion term
reflecting the elasticity of the biomembrane is added.
Engelbrecht et al. [12] showed that for such a “micro-
structured” bi-layer the inertia of the microstructure must
also be added.

The final form of the governing equation for the LW
in dimensionless variables is

UT T = c2UXX +NUUXX +MU2UXX +N (UX )
2

+2MU (UX )
2 −H1UXXXX +H2UXXT T +F1 (Z,J,P) . (7)

Here U is the longitudinal density change, P is the pres-
sure in the axoplasm, c is the dimensionless sound vel-
ocity of the unperturbed state in the lipid bi-layer, M and
N are nonlinear coefficients, H1 and H2 are dispersion co-
efficients (note that the term with H1 describes elasticity
and the term with H2 describes inertia of the microstruc-
ture). The force F1(Z,J,P) describes the influence on the
LW from the AP and PW. According to the hypothesis
(see Section 4), we use

F1 = γ1PT + γ2JT − γ3ZT , (8)

where γi are the coupling coefficients.
Pressure wave in the axoplasm. Pressure wave PW

is derived by the usual dimensionless wave equation with
additional force and viscosity terms

PT T = c2
f PXX −µPT +F2 (Z,J,T ) . (9)

Here P is pressure, c f is sound velocity in the axoplasm,
and µ is the dampening coefficient. Force F2 is deter-
mined by

F2 = η1ZX +η2JT +η3ZT , (10)

where ηi are coupling coefficients.
Transverse displacement. Transverse displacement

TW belongs to the secondary components of an ensem-
ble. As explained in Section 4, TW is related to the lon-
gitudinal deformation

W = kUX , (11)

where W is TW and k is the coefficient. Note that in the
theory of rods [33] it is related to the Poisson ratio.

Temperature change. We propose to use the diffu-
sion (parabolic) equation for calculating temperature Θ.
In dimensionless form this equation is

ΘT = αΘXX +F3 (Z,J,U) , (12)

where α is the combined coefficient determining the
diffusion speed for thermal energy in the environment.
While presently there is no consensus for the mechanism
of heat production, we propose the equation

F3 = τ3ZT + τ4JT , (13)

where τi are the coupling coefficients. Expression (13)
is able to produce temperature change [37] qualitatively
similar to the Tasaki and Byrne [39] experiment. As tem-
perature change is not governed by a wave-like equation,
it can be considered as a secondary component in the
wave ensemble like the transverse displacement of the
biomembrane.

The system of model equations is solved numerically
using the initial condition for governing the AP:

Z(X ,0) = Z0sech2B0X , (14)

where Z0, B0 are constants and Z0 is above the thresh-
old needed for generating the AP. Other variables have
initially zero values (the system is at rest). The re-
sults of numerical simulation based on using the pseudo-
spectral method are presented in our earlier publications
[10,11,13]. The block diagram of the coupled model and
numerically calculated profiles of some of the modelled
quantities are shown in Fig. 1.



282 Proceedings of the Estonian Academy of Sciences, 2019, 68, 3, 276–283

40 60 80 100 120 140
X - dimensionless space

0

0.5

1

N
or

m
al

iz
ed

 v
al

ue
s

Fig. 1. Left panel – the wave ensemble block diagram. Right panel – action potential Z, pressure P, longitudinal density change U ,
and temperature Θ left-propagating profiles: an example from [37]. Temperature profile corresponding to the case F3 = τ3ZT +τ4JT .
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Lainelevi modelleerimise kriteeriumid komplekssüsteemides: signaalid närvikiududes

Jüri Engelbrecht, Kert Tamm ja Tanel Peets

Lainelevi modelleerimisel närvikiududes tuleb arvestada komplekssüsteemide iseärasustega, sest elektriline signaal
on interaktsioonide kaudu seotud mehaanikaliste efektide ja temperatuuri muutustega. Seetõttu tuleb ühendada füsio-
loogia, füüsika ja matemaatika ideed ühtseks tervikuks. Käesolevas artiklis ongi lainelevi analüüsil närvikiudude
näitel kirjeldatud kõigepealt vajalikud komplekssüsteemide ja interdistsiplinaarsuse põhimõtted ning siis esitatud bio-
loogiliste süsteemide modelleerimise printsiibid ja kriteeriumid. Kesksel kohal on närvikius leviva signaali matemaati-
lise mudeli koostamine samm-sammult, alates üksikute efektide mudelitest kuni nende seostamiseni tervikuks. Suur
osa sellises mudelis on kontaktjõududel, mis seovad üksikud lained ansambliks. Mudeli matemaatiline kirjeldus on
esitatud lisas.


