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Abstract. The paper suggests a simple energy saving controller for heating, ventilation, and air-conditioning (HVAC) systems that
combines information on occupancy and weather with predictive control to save energy in buildings. The controller uses a pulse
width modulation strategy and turns on/off the HVAC system based on the optimal decisions of the model predictive controller. The
suggested controller is simple yet optimal (in a certain sense), and therefore suitable for residential and small commercial buildings
where the cost of the controller is a key factor. The effectiveness of the proposed scheme is illustrated using simulations, whereas
the model of the building thermal dynamics was identified based on data from experiments.
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1. INTRODUCTION

Optimized consumption of energy in buildings helps to
reduce energy costs and the carbon footprint. Recent
research proved that information on climate forecasts,
human occupancy, energy costs, and thermal storage can
be employed in heating, ventilation, and air-conditioning
(HVAC) control for improving the energy efficiency and
reducing the costs [3,9,14–19,21,23,25,26]. To the best
of the authors’ knowledge the first effort to use climate
forecasts to increase the efficiency of energy consump-
tion in a HVAC system was addressed in [21] for in-
tegrated building automation systems. Industrial im-
plementation of the HVAC control with prior informa-
tion can be traced back to rule-based controllers from
Siemens Automation [13]. The available results on
the HVAC control can be grouped into two categories:
(i) proactive controllers that employ prior information
on climate, occupancy, building conditions, and stor-

age [3,16–19,23,25,26], and (ii) reactive controllers that
use measurements from a building [28,31]. The model
predictive controller (MPC) is a widely used proactive
controller (see [2] and the references therein); signifi-
cant contributions in this direction are given in [8,17–
19,21,25,26,29]. The simplest proactive controller is the
smart thermostat (ST), proposed in [15], which uses oc-
cupancy predictions for reducing energy consumption in
residential buildings. Although the results in [15] show a
significant reduction in energy consumption, optimality
of the solution is not guaranteed.

More recently, a simple controller that switches
on/off depending on the minimum error between the
average temperature and the desired temperature, the
minimum temperature deviation from the desired tem-
perature, and the minimum number of compressor starts
per hour for a HVAC system was proposed in [32]. This
approach solved a multi-objective optimization prob-
lem for computing the switching times. The obtained
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results proved that by properly selecting the on/off strat-
egy, a cheap and optimal controller that can save energy
in buildings can be designed. Although the proposed
controller combines desirable features such as optimal-
ity and simplicity, the method does not accommodate oc-
cupancy and ambient temperature forecast information,
which has been proved to reduce energy consumption.
Furthermore, the controller lacks predictive capabilities,
which are essential for dealing with unforeseen distur-
bances. Actually, no controller that combines the on/off
strategy, the MPC, and predictions on weather and oc-
cupancy has been reported in the literature. The goal of
this paper is to suggest a simple, yet optimal controller
for HVAC systems that integrates prediction on weather
and occupancy to save energy in buildings. Such con-
trollers are required for residential and small commercial
buildings, where the cost of a controller is a key factor.

Our controller incorporates (i) a modified one-
dimensional Kalman filter (MODKF) for numerical tem-
perature prediction, (ii) a Hidden Markov Model (HMM)
based occupancy prediction algorithm, (iii) a Predic-
tive Smart Thermostat Controller (PSTC) that combines
the features of the MPC and pulse-width modulation
(PWM) technique to design a simple on/off controller for
a HVAC system in buildings.

The paper is organized as follows. The HVAC
model and problem formulation are presented in Sec-
tion 2. Temperature prediction using the MODKF and
occupancy prediction using the HMM are presented in
Section 3. The PSTC algorithm is presented in Sec-
tion 4. The approach suggested in this paper is compared
regarding energy savings with the simple conventional
thermostat controller in Section 5 using simulations on a
building thermal model. The model itself was developed
based on data from experiments. The future course of
the study together with the conclusions are presented in
Section 6.

2. PROBLEM FORMULATION

2.1. HVAC system

The HVAC system consists of a heater and an air
conditioner with a single speed compressor that con-
sumes full power when turned on and no power other-
wise. Although a heater is a conventional part of HVAC
systems, we do not take it into account as in this paper
only the process of cooling is considered. The air condi-
tioner consists of internal and external units. The external
unit houses the compressor and condenser coils, and the
internal unit has the blower. To simplify the analysis,
we ignore the power consumed by the blower because
the energy input to the air conditioner is mainly used by
the compressor. The air conditioner is controlled using
a thermostat. A small dead zone is given in the thermo-
stat to avoid frequent switchings. The thermostat is the
cheapest HVAC controller and our goal is to modify this
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Fig. 1. Pulse-width modulation control of a HVAC system.

simple controller in such a way that the designed con-
troller also accommodates climate and occupancy fore-
casts in its design. This is achieved by modifications
shown in Fig. 1. The control computer turns on and off
the compressor using a relay circuit, and the thermostat
is used for maintaining the temperature within the com-
fort range defined by the consumer. Door firings and the
temperature sensor are used to measure occupancy and
temperature, respectively, and the database (DB) stores
the historical information on occupancy and the weather
information from the Internet.

2.2. The model of building thermal dynamics

In our analysis, we employ the linearized sampled data
model of the HVAC system, proposed in [5,20],

x(k+1) = ax(k)−bu(k)+ k1w(k)+ k2v(k), (1)

where k indicates the discrete time instant, x(k) is the
building temperature at the time instant k in degrees of
Celsius. We use the sampling time T = 15 min. The pa-
rameter a> 0 denotes the building thermal time constant;
the parameter b denotes the temperature change over the
period T due to the control input u(k), i.e. models the
effect of control input on the building temperature; the
parameters k1 and k2 capture the effect of weather and oc-
cupancy on the building temperature; the variables w(k)
and v(k) model the heating effects of weather and occu-
pancy on the building thermal model, respectively [20].
Model (1) describes the thermal dynamics of the building
following Newton’s law of cooling. A similar model is
employed in [3] for the HVAC control. A comprehensive
review of modelling methods for HVAC systems can be
found in [1].

2.3. Estimation of model parameters

To estimate the parameters of the building model (1),
data were collected from a laboratory building for over
12 different working days from 8:30 a.m. to 10:00 p.m.
by placing sensors in the four corners of the building.
The occupancy level changed during the working hours
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and in the evenings; also data were collected on different
days of the week to capture possible scenarios. The lab is
actively used by students during regular working hours,
after which the room has fewer students without much
noticeable change in temperature. To model the system,
a pseudo-random binary sequence input, generated from
MATLAB, was used as the switching function and the
HVAC was switched on and off manually depending on
the generated sequence to record temperature values (see
Fig. 2 for a typical period of 24 hours and 28 ◦C as the
setpoint).

Observe that in (1) only the variables x, w, and u are
measurable or known and the model is linear with respect
to the parameters a, b, and k1. The disturbance term v
models the heating due to occupancy and other equip-
ment in the building. Although v(k) varies non-linearly
in time, a non-linear model would make the MPC diffi-
cult to apply [20]. Therefore, we first estimate the param-
eters a, b, and k1 using the least absolute shrinkage and
selection operator (LASSO). Then, the difference be-
tween the actual (measured) and estimated temperatures
gives v(k). Figure 3 shows the estimated and the actual
building temperature along with the model error. One
can see from Fig. 3b that the error with the LASSO esti-
mated building model is within ±1 ◦C, which is a reason-
able estimate considering the working temperature of the
building. The error term is then used as the measurement
of v to determine the parameter k2 in the model. Since
the disturbance term v behaves non-linearly in time, esti-
mating the parameter k2 is not straightforward. Analysis
of data obtained from the experiment in the building
and variation of weights in the weighted least squares
suggested the existence of threshold values of the param-
eters k1 and k2 below which a linear thermal model of the
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Fig. 2. Room temperature response to the HVAC.

building provides a reasonable prediction error. As a re-
sult, this modified estimates of the parameters a and b
as well. The important outcome of this modification is
that the linear model can be used in the MPC, thereby
significantly reducing the computation complexity. Fur-
ther, with the linear model, the MPC computations can be
simplified by computing the prediction matrices off-line.

LASSO is a regression analysis method that per-
forms regularization to enhance the accuracy of estima-
tion via shrinking large regression coefficients to reduce
overfitting. The LASSO estimate of the building model
parameters can be formulated as an optimization problem

min
z

1
N
∥Az−β∥2 (2)

subject to

|a|+ |b|+ |k1| ≤ t, (3)

where t is a prespecified free parameter that determines
the amount of regularization, z = (a,b,k1)

T is the vector
of parameters in (1) to be estimated, A is the N×3 regres-
sion matrix, and β stands for the measurement vector. In
this paper we reformulate the constrained optimization
problem (2) as a quadratic programming problem with
the cost function

J(z) = zTATAz−2βTAz (4)

subject to (3).
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Fig. 3. Room temperature estimation with LASSO.
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3. TEMPERATURE AND OCCUPANCY
PREDICTION

3.1. Temperature prediction

Our controller needs the estimate of temperature w(k)
in (1) for computing the control input u(k). The one-
dimensional Kalman filter has proved to be a good tool
for that purpose [10,11,22,23,27]. Note that in this sub-
section the sampling time T is not the same as in the
model of building thermal dynamics (1). The Kalman
filter actually works at a lower frequency (time step
1 h) because the outside temperature is not expected to
vary significantly within one hour, or at least not to in-
fluence the building thermal dynamics. Moreover, in
the Metropolis–Hastings (MH) sampler the discrete time
step is 12 hours. We assume, like in [10], that the dynam-
ics of temperature is random, yielding the system and ob-
servation (measurement) equations as

w(k) = w(k−1)+ ε(k)

and
y(k) = w(k)+µ(k),

respectively. The Kalman filter estimates recursively the
unknown variable w(k), based on observations y up to
the time instant k. The prediction equations of the one-
dimensional Kalman algorithm have the form

ŵ(k | k−1) = ŵ(k−1)

and
P(k | k−1) = P(k−1)+ s2

ε(k). (5)

The updating equations are given as

ŵ(k) = ŵ(k | k−1)+α(k) [y(k)− ŵ(k | k−1)] ,

α(k) =
P(k | k−1)

P(k | k−1)+ s2
µ(k)

,

P(k) = [1−α(k)]P(k | k−1).

(6)

Note that the variances of the noise terms ε(k) and
µ(k), i.e. s2

ε(k) and s2
µ(k), affect crucially the outcome

of the Kalman algorithm whereas the choice of the initial
values w(0) and P(0) does not. We update the vari-
ances once in every 12 hours using the 72 hour climate
forecast, i.e. the computation of s2

ε(k) and s2
µ(k) is based

on the samples of 7 values of ε and µ , respectively. Then
these values are used in equations (5) and (6) until the
next update.

To get the samples of ε and µ , we rely on the MH
sampler (see [30] and references therein). The MH sam-
pler is an algorithm that generates a random sample from
a distribution for which direct sampling is difficult. The
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Fig. 4. Temperature estimation based on MODKF.

key idea is to construct a Markov chain that converges to
the given target distribution (in our case Gaussian), start-
ing with simulating a ‘candidate’ sample from a proposal
distribution (in our case uniform).

The Kalman filter combined with a MH sampler is
called the modified Kalman filter (MODKF). To illus-
trate the accuracy of the MODKF, temperature profiles
obtained from the forecast, the MODKF prediction, and
the measurements for a period of three days in Tallinn
are shown in Fig. 4.

3.2. Occupancy prediction

Another estimate one needs is that of occupancy [6,24],
denoted by v(k) in (1). Recently HMM, first proposed
in [7], has emerged as a promising tool for modelling
occupancy. For this purpose the forward HMM method
was employed in [6]. In this investigation, we use the
backward HMM method to compute the probability of
occupancy being in low, medium, and high states, based
on observations (door firings, historical occupancy rates,
type of working day, time of day with 6 h window, etc.).

The HMM is described by the triplet Π = {Ttr,X ,Y},
where Ttr denotes the transition probability matrix, X de-
notes the observations, and Y the states. For a period of
one day we used

Ttr =

[0.3 0.7 0
0.2 0.3 0.5
0.1 0.2 0.7

]
,

X =

[
low low medium high high
high high high high medium

]
.

Given the HMM and an observation sequence, the most
probable occupancy state is computed. The observed
variables are type of working day (classified as Fat, Nor-
mal, Vacant, and Vacate based on historical information),
the time of the day, type of the day, and occupation meas-
urements via door firings (see more in [29]).
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4. PREDICTIVE SMART THERMOSTAT
CONTROL

4.1. PSTC description

We combine the MPC and the PWM and refer to the re-
sulting controller as a predictive smart thermostat con-
troller (PSTC). In principle, the PSTC is a controller
whose on/off decisions are computed from the solu-
tion of an optimization problem. Additionally, the con-
troller integrates predictions on outside temperature and
occupancy forecast from the MODKF and the HMM,
respectively, proposed in Section 3. The PSTC is
shown schematically in Fig. 5. Measurements on inside
temperature and door firings, necessary for occupancy
prediction, are obtained from sensors in a building. In
implementation, the PSTC algorithm has four steps:
measure, update, compute, and apply. The variables w(k)
and v(k) in the building model (1) are updated using the
MODKF and the HMM.

The MPC is based on model (1) and the predictions
ŵ(k) and v̂(k). The optimization problem for a given pre-
diction horizon is then solved under constraints imposed
on the HVAC system.

4.2. PSTC algorithm

In principle, the PSTC (in implementation) is a PWM
controller whose on/off decisions are computed from the
solution of an optimization problem. Therefore, formula-
tion of the optimization problem defines the energy sav-
ing capability of the PSTC. In order to implement the
PSTC, first the prediction horizon N is defined. The MPC
is a control strategy that solves an on-line optimal control
problem in a receding horizon manner. The approach can
be summarized in the following steps [12]:
(i) At time k and for given state x(k), the open-loop opti-

mal control problem is solved over the N-step pre-
diction horizon, taking into account the current and
future constraints.

(ii) The first element u(k) in the optimal solution
U = (u(k), . . . ,u(k+N −1)) is applied.

(iii) The procedure is repeated at the time instant k + 1
using the state x(k+1).

Given model (1), compute min
U

J1 (N,x(k),U), where

J1 (N,x(k),U)

=
k+N−1

∑
l=k

(
x̂(l)TFx̂(l)+u(l)THu(l)

)
(7)

subject to

x̂(l +1) = ax̂(l)−bu(l)+ k1ŵ(l)+ k2v̂(l) (8)

and

Xmin ≤ x̂(l)≤ Xmax, (9a)
Umin ≤ u(l)≤Umax, (9b)
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Fig. 5. Predictive smart thermostat controller.

where H and F are positive definite matrices, x̂(k) is
the temperature estimated from (1) by using the estimate
of the temperature ŵ(k)−1 from the MODKF and occu-
pancy estimate v̂(k)−1 from the HMM. The PSTC with
the cost function (7) is referred to as PSTC 1. Such
controller leads, unfortunately, to a severe computation
load. A penalty method replaces a constrained optimiza-
tion problem (7)–(9) by a series of unconstrained opti-
mization problems, whose solutions (ideally) converge
to the solution of the original problem. The measure of
violation is non-zero when the constraints are violated
and zero otherwise. For that, penalty functions (i.e. spe-
cial terms consisting of a penalty parameter multiplied
by a measure of violation of the constraint) are added to
J1 (N,x(k),U). We rewrite constraint (9a) as

ϒ1(l) := Xmax

− (ax(l)−bu(l)+ k1ŵ(l)+ k2v̂(l))≥ 0,
ϒ2(l) :=−Xmin

+ax(l)−bu(l)+ k1ŵ(l)+ k2v̂(l)≥ 0.

(10)

Then, using the penalty function approach, proposed in
[4], PSTC 1 can be reformulated as

J := J1 (N,x(k),U)+
k+N−1

∑
l=k

(
λ1(l)max(ϒ1(l),0)

2

+λ2(l)max(ϒ2(l),0)
2 +λ3(l)max(Umax −u(l),0)2

+λ4(l)max(−Umin +u(l),0)2), (11)

where λi’s are penalty parameters.

Assumption 1. The optimization problem with the cost
function (11) has a solution for all positive values of λi’s.

Under Assumption 1 one can solve the optimization
problem in three steps: (i) initialization of the penalty
parameters λi(l), (ii) solution of the unconstrained op-
timization problem, (iii) updating the penalty parameter
λi(l +1) that violates the constraint in (10).



296 Proceedings of the Estonian Academy of Sciences, 2018, 67, 3, 291–299

The limitation of PSTC 1 is that the user preferences
during different hours of the day are not taken into ac-
count. The optimizer tries to save energy throughout the
day and even during periods of low energy consumption
in grids (when the price of electricity is low), which is
also undesirable from the grid perspective. The user pref-
erences can be incorporated in the controller by adding
into the cost function (11) a ‘comfort term’ JC(k), de-
fined by

JC(k) := e(k)Te(k),

where e(k) = xr − x(k) models the temperature variation
from the setpoint xr. In addition to JC(k), two weights α
and β can be tuned by the consumer up to the restriction
α + β = 1. The resulting optimization problem, called
PSTC 2, is defined as min

U
J2 (N,x(k),U), where

J2 (N,x(k),U) = βJ1 (N,x(k),U)+αJC(k) (12)

subject to (8) and (9). The constrained optimization
problem can again be solved using the penalty method.

The objective of the PSTC was to combine the ex-
isting thermostat controller to the MPC without affecting
the existing hardware. This requires that the final con-
trol element, the thermostat, should not be modified and
that we be only left with the option of changing the on
and off time of the air conditioner. The PWM is a tech-
nique that generates continuous signals using on/off ac-
tuation signals and is an effective method for obtaining a
quasi-continuous output, suitable for an on/off type actu-
ator such as the single speed compressor. Hence, we are
motivated to use a PWM controller that varies the power
based on the duty cycle δ (k) := Ton(k)/T = u(k)/um,
where 0 ≤ Ton ≤ T is the period when the continuous
output is delivered, T is the total period considered, Ton
corresponds to the period of cooling, u(k) is the input sig-
nal obtained by the MPC, and um is the maximum value
of the applied input. The control input from the PWM is
determined by

u(t) =
{

umsgn(δ (k)) , k ≤ t < k+ |δ (k)|T,
0, k+ |δ (k)|T ≤ t < k+T,

(13)
where sgn(δ (k)) indicates the direction of the signal
(‘+’ for cooling and ‘−’ for heating). Usually in HVAC
systems the compressor cycle time (the time required for
the compressor to complete one cycle) is used for com-
puting T . The control input u(t) thus models the duty
cycle of the PWM controller. The PWM is implemented
using a simple relay circuit that turns on/off, based on
the signals generated by the control computer. Since fre-
quent switching will lead to reliability issues due to chat-
tering and incomplete compression, the sampling rate of
T = 15 min as in [3,5] was chosen for reliability.

5. RESULTS AND DISCUSSION

In illustrating the proposed approach, for simplicity we
consider only the cooling of the building. The perfor-

mance of the controllers PSTC 1 and PSTC 2 was com-
pared with the conventional thermostat controller based
on MATLAB simulations, and climate forecasts were ob-
tained from the Internet. Forecasts were entered to the
data-log computer and transmitted to the control com-
puter. Door sensor firings were used for occupancy
predictions, while occupancy measurements were done
manually by counting the people entering and leaving the
building. The setpoint temperature of 22 ◦C was used in
the simulation with an upper comfort margin of 25 ◦C
and lower margin of 20 ◦C.

The performance of the PSTC 1 algorithm for 10
hours on a normal day is shown in Fig. 6. Predicted and
measured occupancy are shown in Fig. 6b. One may ob-
serve that the occupancy predicted by the HMM is accu-
rate enough and the predictions improve in time as the
HMM uses the occupancy measurements. The status of
the HVAC unit shown in Fig. 6a indicates whether it is on
or off, the number 1 corresponds to on and 0 to off. When
both the temperature and occupancy of the building are
low, the length of the cooling period Ton is short, and as
occupancy increases its length increases. This indicates
the energy saving performance of the PSTC 1. Tempera-
ture variation in the room with the PSTC 1 for 24 hours
is shown in Fig. 6c. It illustrates that the PSTC 1 not only
maintains the temperature within the comfort region but
also uses it effectively for minimizing energy costs, i.e.
uses the lower comfort margin to cool the building at a
low occupancy and uses the upper margin for a high oc-
cupancy level.

Performance of the PSTC 2 for 10 hours on a normal
day is shown in Fig. 7. Energy savings can be observed
from the status of the HVAC system, shown in Fig. 7a.
The additional comfort term in (12) improves the tem-
perature profile significantly as shown in Fig. 7c. The
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simulation points to the fact that when in (12) β > α , the
energy savings and predictive performance of the PSTC 2
are better than those of the PSTC 1. This can also be
seen in Fig. 7a: the occupancy is predicted to be medium,
and so there is a reduction in the length of Ton with the
PSTC 2, whereas the PSTC 1 continues to apply the input
during this time period, as shown in Fig. 6a. Comparison
of the PSTC 1 and PSTC 2 control inputs by increasing
α in (12) is shown in Fig. 8. One may observe that the
energy savings and predictive behaviour of the PSTC 2
are significantly reduced. This is an expected behaviour
as a greater impact of the comfort level increases energy
consumption. Thus, the choice of α determines the per-
formance of the PSTC 2.

The energy consumed in a HVAC system can be ex-
pressed via the following equation:

E ≈ Ess +Etr,

where Ess and Etr represent the steady-state and transient
energy consumption in the compressor motor, respec-
tively. The HVAC system consists of a water-cooled 10
horsepower single speed compressor (tonnage 10 TR,
380–415 V, 50 Hz, 16 A, COP 3.15–3.35). Denoting
the power rating (nominal power) of the compressor mo-
tor by P, the steady-state energy consumption in kWh is
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Fig. 8. Comparison of the PSTC 1 and PSTC 2 inputs.

Table 1. Energy consuption in the PSTC 1 and
PSTC 2 for 1 h in kWh

Day Thermostat PSTC 1 PSTC 2
Fat 5.8 3.8 3.72
Normal 4.6 2.93 2.86
Vacant 2.8 1.24 1.02
Vacate 1.5 0.95 0.88

Ess = P× 0.746× δa × T̃ , where δa is the average duty
cycle for the time period T̃ . The energy consumption
is high for a short transient period at the beginning and
is computed as Etr = 1.25×P× 0.746× δtr × T̃ , where
δtr is the ratio of the transient period (computed from the
mechanical time constant of the motor) to the total period
considered (T ). In order to compute the total energy, we
need to remove the component of the transient part ac-
counted in the steady state part. This is done by using a
compensation term χ = 0.25×P× 0.746× (δa −δtr)×
T̃ . Thus, the total energy consumed in the HVAC system
is

Etotal ≈ Ess +Etr −χ. (14)

Using (14), we compute the energy consumed by the
PSTC 1 and PSTC 2 for a period T̃ = 1 h in the room (a
laboratory with a ground floor, a mezzanine, and a first
floor) of the size 12 m×10 m×10 m for different kinds
of days in our repository with a high occupancy during
the period for which the energy consumption is calcu-
lated and record the energy consumption in Table 1.

6. CONCLUSIONS

In this paper, a simple yet optimal controller for the
HVAC control is proposed, called the predictive smart
thermostat controller (PSTC). This controller combines
the MPC with the PWM approach, leading to a simple
on/off implementation. Furthermore, it integrates infor-
mation on occupancy and weather forecasts to save en-
ergy. The controller does not require modification of the
hardware.

To obtain the parameters of the building model, data
collected from the test building were used. The data col-
lected during the experiments showed that due to occu-
pancy, the heating varies non-linearly in time. The pres-
ence of parameter threshold values models the distur-
bance below which the model is linear. To obtain the lin-
ear model, the parameter identification task was treated
as a LASSO problem, and solved using a quadratic pro-
gramming approach. The resulting model showed rea-
sonable accuracy and was used in the MPC.

Next, since the implementation of the MPC requires
accurate estimates of outside temperature, i.e w(k) in
(1), a modified one-dimensional Kalman filter (MODKF)
was designed to predict the outside temperature using the
weather forecasts. Our simulation results showed that
the MODKF leads to a significant improvement in the
numerical weather prediction accuracy. Occupancy was
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predicted using the Hidden Markov Model, which pre-
dicts the future state using the current measurements and
information on the building occupancy for different days.
As a result, an information updating mechanism was
introduced in the occupancy prediction and the proposed
model showed good prediction accuracy of occupancy.

Finally, two Predictive Smart Thermostat Con-
trollers, denoted as PSTC 1 and PSTC 2, were proposed
to optimize the control inputs based on a constrained op-
timization problem, using the building model and dis-
turbance estimation to reduce the energy consumption.
The PSTC 1 optimizes a quadratic cost function under
the constraints. Although the controller shows significant
energy savings, it does not enable taking into considera-
tion user preferences. To overcome this shortcoming, the
cost function of the PSTC 2 includes an additional com-
fort term and two weights that can be tuned by the user.
Both controllers showed energy savings compared with
the traditional thermostat controller.

The results further demonstrated that the PSTC 1 and
PSTC 2 were not only able to save energy, but their im-
plementation was also simple. As a result, the proposed
controllers can be implemented in residential buildings
where the controller cost is a major obstacle to the adap-
tation of energy saving controllers.
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Ennustava nutitermostaadiga kontroller kliimasüsteemide jaoks

Mallikarjun Soudari, Vadim Kaparin, Seshadhri Srinivasan, Subathra Seshadhri ja Ülle Kotta

On leitud lihtne ja energiasäästlik kontroller kliimasüsteemide jaoks. Kontroller kombineerib ruumi hõivatuse ja
välistemperatuuri hinnanguid mudelipõhise ennustava optimaaljuhtimisega. Kliimasüsteemi sisse- ja väljalülitamiseks
kasutatakse pulsilaiusmodulatsiooni lähenemist, mis põhineb ennustava kontrolleri optimaalsel lahendil. Viimane
võimaldab saada lihtsa kontrolleri, mis ei vaja riistvara väljavahetamist. Pakutud kontroller on teatud mõttes opti-
maalne, aga vaatamata sellele lihtne, mistõttu sobib nii elu- kui ka keskmise suurusega ärihoonete jaoks, kus kontolleri
madal hind on oluline. Kontrolleri efektiivsust illustreeritakse simulatsioonide abil ja hoone soojusdünaamika mudeli
identifitseerimine põhineb eksperimentaalsetel andmetel.


