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Abstract. The conditions when C0(X)⊗Y is dense in C0(X ,Y ) in the compact-open topology on C0(X ,Y ) are given. This result
is used for describing the properties of topological Segal algebras.
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1. INTRODUCTION

Let K denote either the field R of real numbers or the field C of complex numbers, X a topological space and
Y a topological linear space over K (shortly, a topological linear space), C(X ,Y ) the set of all continuous
maps from X to Y , and C0(X ,Y ) the subset of all such f ∈ C(X ,Y ) that vanish at infinity. In case we want
to specify the topology of a topological space X , we write instead of X a pair (X ,τX), where τX denotes the
topology of X .

In [1], some results about Segal algebras were obtained, where one of the conditions that had to be
fulfilled was that the set C0(X ,K)⊗B (the full definition of this set will be given further in this paper) had to
be dense in C0(X ,B) (in the compact-open topology) for a topological algebra B. In [2], a result (Theorem 1
on page 27) is given describing the density of a subset of C(X ,K)⊗Y in C(X ,Y ) for a Tikhonov space X and
topological linear Hausdorff space Y over K (again in the compact-open topology). In [10], some similar
results (Theorem 1 on page 98, Corollaries 1 and 2 on page 99) are presented for a compact Hausdorff
space X and a topological linear space Y . It appeares that some of the ideas of [2] were such that they
could be modified in order to obtain the density needed in our case. The present paper gives some sufficient
conditions on a topological space X and a topological linear space Y under which the set C0(X ,K)⊗Y is
dense in C0(X ,Y ) in the compact-open topology. The obtained results will be applied to the results of [1] at
the end of the paper.
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2. PRELIMINARY DEFINITIONS AND RESULTS

Let Y be a topological linear space and K a subset of Y .

Definition 2.1. A map L : K → Y is said to be finite-dimensional1 if there exist a positive integer n and an
n-dimensional subspace Z of Y such that L(K) ⊆ Z. Moreover, a finite-dimensional map L : K → Y , which
can be represented in a form L(y) = λ1(y)e1 + · · ·+λn(y)en for every y ∈ K, where {e1, . . . ,en} is a basis
of Z, is said to have continuous coordinate functions if the maps λi : K → K are continuous for every
i ∈ {1, . . . ,n}. A topological space Y is said to have continuous coordinate functions if every continuous
finite-dimensional map L : Y → Y has continuous coordinate functions.

Definition 2.2. It is said that a topological linear space Y is Klee admissible if for every compact set K ⊆Y
and for every neighbourhood O of zero in Y there exists a continuous finite-dimensional map L : K →Y such
that L(y)− y ∈ O for every y ∈ K.

Let us recall some definitions of approximation properties.

Definition 2.3. A topological linear space Y has
(a) the approximation property if for every compact set K ⊆ Y and for every neighbourhood O of zero in

Y there exists a continuous finite-dimensional linear map L : Y → Y such that L(y)− y ∈ O for every
y ∈ K;

(b) the nonlinear approximation property if for every compact set K ⊆ Y and for every neighbourhood O
of zero in Y there exists a continuous finite-dimensional map L : Y → Y such that L(y)− y ∈ O for every
y ∈ K.

Remark 2.4. The term ‘nonlinear approximation property’ was suggested for that class of topological linear
spaces already by Waelbroeck in [12] in 1972.

It is easy to see that every topological linear space that has the approximation property has also the
nonlinear approximation property, and that every topological space that has the nonlinear approximation
property is Klee admissible.

In [5], p. 826, the authors claim that every locally convex space is Klee admissible and pose an open
problem to find out whether every topological linear space is Klee admissible.

In the proofs of the present paper we need some ‘stronger’ versions of the Klee admissibility and
nonlinear approximation property.

Definition 2.5. We will say that a topological linear space Y
(a) is strongly Klee admissible if for every compact set K ⊆Y and for every neighbourhood O of zero in Y

there exists a continuous finite-dimensional map L : K∪{θY}→Y such that L(θY ) = θY and L(y)−y∈O
for every y ∈ K;

(b) has the strong nonlinear approximation property if for every compact set K ⊆ Y and for every
neighbourhood O of zero in Y there exists a continuous finite-dimensional map L : Y → Y such that
L(θY ) = θY and L(y)− y ∈ O for every y ∈ K.

Note that the condition L(θY ) = θY gives for a finite-dimensional map L : Y → Y , which can be written
as L(y) = λ1(y)e1 + · · ·+λn(y)en, that λ1(θY ) = · · ·= λn(y) = θY .

Definition 2.6. Let X ,Y be topological spaces. It is said that a map f : X → Y vanishes at infinity if for
every neighbourhood U of zero in Y there exists a compact set K ⊂ X such that f (x)∈U for every x ∈ X \K.

The following lemmas and corollary will be used in the proofs later.

1 In some books (see, for example, [8]) it is assumed that a finite-dimensional map has to be also continuous.
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Lemma 2.7. Let X be a topological space and Y a topological linear space. If f ∈C0(X ,Y ) and λ ∈C(Y,K)
is such that λ (θY ) = 0, then λ ◦ f ∈C0(X ,K).

Proof. It is clear that λ ◦ f ∈ C(X ,K). Take any neighbourhood O of zero in K. As λ (θY ) = 0 and λ is
continuous, there exists a neighbourhood U of zero in Y such that λ (U) ⊆ O. Since f ∈ C0(X ,Y ), there
exists a compact set K ⊂ X such that f (x) ∈U for every x ∈ X \K. Hence, there exists a compact set K ⊂ X
such that (λ ◦ f )(x) = λ ( f (x)) ∈ λ (U)⊆ O for every x ∈ X \K. Therefore, λ ◦ f ∈C0(X ,K) .

Now let us discuss the property of continuous coordinate functions.

Lemma 2.8. Let Y be a Hausdorff topological linear space, n a positive integer, and L : Y →Y a continuous
n-dimensional map. Hence, there exists an n-dimensional subspace Z of Y (equipped with the subspace
topology) with basis {e1, . . . ,en}, satisfying L(Y ) ⊆ Z such that L(y) = λ1(y)e1 + · · ·+ λn(y)en for every
y ∈ Y . Then the maps λi : Y → K, where i ∈ {1, . . . ,n}, are continuous, i.e. L has continuous coordinate
functions.

Proof. By Theorem 1 from [6], p. 141, we know that Z is isomorphic to Kn via the homeomorphism
F : Z 7→Kn, where

F(λ1(y)e1 + · · ·+λn(y)en) = (λ1(y), . . . ,λn(y))

for all y ∈ Y . Note that the maps pi : Kn →K, defined by pi((λ1, . . . ,λn)) = λi for every i ∈ {1, . . . ,n}, are
projections, hence, continuous maps.

Using the notations defined above, we see that λi = pi ◦F ◦L is a continuous map for every i ∈ {1, . . . ,n}
because it is a composition of three continuous maps. Hence, L has continuous coordinate functions.

Corollary 2.9. Every Hausdorff topological linear space has continuous coordinate functions.

Proof. Let Y be a Hausdorff topological linear space and L : Y → Y an arbitrary continuous finite-
dimensional map. Then there exist a positive integer n, an n-dimensional subspace Z of Y , and basis
{e1, . . . ,en} of Z such that L(y) = λ1(y)e1 + · · ·+ λn(y)en for every y ∈ Y . But then, by Lemma 2.8, L
has continuous coordinate functions. Since L : Y → Y was an arbitrary continuous finite-dimensional map,
all continuous finite-dimensional maps L : Y → Y have continuous coordinate functions. Therefore, Y has
continuous coordinate functions.

Definition 2.10. A topological space X is a completely regular Hausdorff space if for every closed subset
Z of X and every x ∈ X \Z there is a continuous map f : X → [0,1] such that f (x) = 0 and f (z) = 1 for
every z ∈ Z.

Lemma 2.11. Let Y be a topological linear Hausdorff space, K a compact subset of Y , and f ∈ C(K,K).
Then there exists f ∈C(Y,K) such that f |K= f , i.e. every continuous K-valued map on a compact subset K
of Y has a continuous extension to the whole space Y .

Proof. Every Hausdorff topological linear space is a Hausdorff topological group, which is a completely
regular (Hausdorff) space by Theorem 5 in [7], p. 49. Every compact set in a completely regular (Hausdorff)
space is C-embedded (which means that every continuous real-valued function on a compact subset of a
completely regular space can be extended to a continuous real-valued function on the whole space) by 3.11
(c) in [4], p. 43.

Hence, every continuous real-valued map on a compact subset K of a Hausdorff topological linear space
Y has a real-valued extension to the whole space Y and the case for K= R is proved.

Let f ∈C(K,C). Then we can write f = fr+ i fi, where fr, fi ∈C(K,R) are defined as fr(y)= a, fi(y)= b
for every y ∈ K with f (y) = a+ bi. Now, by the first part of the proof, there exist continuous extensions
fr, fi ∈ C(Y,R) of fr and fi, respectively. Defining f = fr + i fi, we see that f ∈ C(Y,K) is a continuous
extension of f to the whole space Y .
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3. RESULTS CONNECTED WITH THE DENSITY PROPERTY

Let X be a locally compact Hausdorff space and (Y,τY ) a topological linear space. Consider the algebra
(C0(X ,Y ),cY ) of all continuous maps f : X → Y vanishing at infinity equippped with the compact-open
topology cY , where the subbase of the topology cY on C0(X ,Y ) consists of all sets of the form

{S(K,U) : K ⊂ X ,K is compact,U ∈ τY},

where S(K,U) = { f ∈C0(X ,Y ) : f (K)⊆U}.
Define a map ⊗ : C0(X ,K)×Y →C0(X ,Y ) by

(⊗(ϕ ,y))(x)≡ (ϕ ⊗ y)(x) := ϕ(x)y

for every ϕ ∈ C0(X ,K),y ∈ Y , and x ∈ X . Let C0(X ,K)⊗Y be the linear span of the set {ϕ ⊗ y : ϕ ∈
C0(X ,K),y ∈ Y}.

Next, we will give three results similar to Theorem 1 (β ) from [2], p. 27.

Proposition 3.1. Let X be a locally compact Hausdorff space and Y a topological linear space that has the
strong nonlinear approximation property. If Y is a Hausdorff space or has continuous coordinate functions,
then C0(X ,K)⊗Y is dense in C0(X ,Y ) in the compact-open topology.

Proof. Take any f ∈C0(X ,Y ) and fix a neighbourhood O( f ) of f in C0(X ,Y ). Then there exist a compact
subset K ⊂ X and a neighbourhood U of zero in Y such that f +S(K,U)⊆ O( f ). Now, f (K) is a compact
subset of Y . Since Y has the strong nonlinear approximation property, there exists a continuous finite-
dimensional map L : Y → Y such that L(θY ) = θY and L(y)− y ∈U for every y ∈ f (K). Hence, there exists
a positive integer n and a subspace Z of Y with the basis {e1, . . . ,en} such that L(Y )⊆ Z.

If Y is a Hausdorff space, then it has continuous coordinate functions by Corollary 2.9. Since in both
cases Y has continuous coordinate functions, the map L has the form L(y) = λ1(y)e1 + · · ·+λn(y)en and the
maps λi : Y →K are continuous with λi(θY ) = 0 for all i ∈ {1, . . . ,n}.

Take g1 = λ1 ◦ f , . . . ,gn = λn ◦ f . Then, by Lemma 2.7, g1, . . . ,gn ∈C0(X ,K).
Note that( n

∑
i=1

(gi ⊗ ei)
)
(x)− f (x) =

n

∑
i=1

gi(x)ei − f (x) =
n

∑
i=1

λi( f (x))ei − f (x) = L( f (x))− f (x) ∈U

for each x ∈ K. Hence, for every f ∈ C0(X ,Y ) and every neighbourhood O( f ) of f in C0(X ,Y ) there exist
integer n > 0, g1, . . . ,gn ∈C0(X ,K), and e1, . . . ,en ∈ Y such that

n

∑
i=1

(gi ⊗ ei) ∈ f +S(K,U)⊆ O( f ).

Therefore, C0(X ,K)⊗Y is dense in C0(X ,Y ) in the compact-open topology.

As every topological space that has the approximation property has also the strong nonlinear
approximation property, we obtain the following corollary.

Corollary 3.2. Let X be a locally compact Hausdorff space and Y a topological linear space that has the
approximation property. Then C0(X ,K)⊗Y is dense in C0(X ,Y ) in the compact-open topology.

Proof. Exactly as in the proof of Proposition 3.1, we choose any f ∈C0(X ,Y ), fix neighbourhood O( f ) of
f , and find a compact subset K ⊂ X and a neighbourhood U of zero in Y . Since Y has the approximation
property, the map L : Y → Y will be not only continuous and finite-dimensional, but also linear. Therefore,
L(θY ) = θY , which implies that λi(θY ) = 0 for every i ∈ {1, . . . ,n}. It is known (see e.g. [8], Part II, Chapter
XIII, 4.5) that a continuous linear finite-dimensional map has continuous coordinate functions. Hence, the
maps λi are continuous for every i∈{1, . . . ,n}. Therefore, we can now proceed as in the proof of Proposition
1 and see that C0(X ,K)⊗Y is dense in C0(X ,Y ) in the compact-open topology.
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Next, we shall prove a version of Proposition 3.1 for the case of strongly Klee admissible Hausdorff
topological linear spaces.

Proposition 3.3. Let X be a locally compact Hausdorff space and Y a strongly Klee admissible Hausdorff
topological linear space. Then C0(X ,K)⊗Y is dense in C0(X ,Y ) in the compact-open topology.

Proof. Note that Y , as a Hausdorff topological linear space, has continuous coordinate functions by
Corollary 2.9. Take any f ∈ C0(X ,Y ) and fix a neighbourhood O( f ) of f in C0(X ,Y ). Exactly as in the
proof of Proposition 3.1, we obtain that there exist a compact subset f (K)⊂ Y , a neighbourhood U of zero
in Y , a continuous finite-dimensional map L : f (K)∪{θY}→ Y with L(θY ) = θY , a positive integer n, and a
subspace Z of Y with the basis {e1, . . . ,en} such that f +S(K,U)⊆ O( f ), L(y)− y ∈U for every y ∈ f (K)
and L( f (K)) ⊆ Z. Since Y has continuous coordinate functions, the maps λ1, . . . ,λn ∈ C( f (K)∪{θY},K).
As L(θY ) = θY , then λ1(θY ) = · · ·= λn(θY ) = 0.

Now, by Lemma 2.11, there exist the extensions λ1, . . . ,λn ∈ C(Y,K) of λ1, . . . ,λn to the space Y ,
respectively.

Similarily as in the proof of Proposition 3.1, we define gi = λi ◦ f ∈ C0(X ,K) for i ∈ {1, . . . ,n} and
obtain that

n

∑
i=1

(gi ⊗ ei) ∈ f +S(K,U)⊆ O( f ).

Hence, C0(X ,K)⊗Y is dense in C0(X ,Y ) in the compact-open topology also when Y is a strongly Klee
admissible Hausdorff topological linear space.

Recall that for a topological space X , one writes dim(X) = n if n is the smallest nonnegative integer
such that for any finite open cover of X one can choose a finite open refinement of that cover such that every
x ∈ X is contained in maximally n+ 1 elements of that refinement. If there exists a nonnegative integer
n such that dim(X) = n, then it is said that dim(X) (or, the topological dimension of X , or the Lebesgue
covering dimension of X) is finite.

Remark 3.4. In the mathematical literature, there are actually several definitions of the Lebesgue covering
dimension: in some books it is assumed that one can choose an open refinement for any open cover of X , in
other books it is assumed that an open refinement should exist only for any finite open cover of X , and in
others that a finite open refinement should exist for any finite open cover of X . In Remark 1 in [3], p. 165,
it is claimed that the last two definitions coincide.

Let us recall that for a map f : X → K from a topological space X to the field K of real or complex
numbers, the closure of the set of elements x ∈ X for which f (x) ̸= 0, was called the support of f and was
denoted by supp( f ). In order to prove the next result, we will use another known result.

Lemma 3.5. Let X be a locally compact Hausdorff space, K a compact subset of X, and V1, . . . ,Vn
open subsets of X such that K ⊆ V1 ∪V2 ∪ ·· · ∪Vn. Then there are continuous functions hi : X → [0,1],
i = 1,2, . . . ,n, all of compact supports, such that supp(hi)⊆Vi, for all i, and

n

∑
i=1

hi(k) = 1

for all k ∈ K.

Proof. See the proof of Theorem on slide 10 of [11]. The cited proof copies actually Rudin’s ideas of the
proof of Theorem 2.13 from [9], p. 40. One has just to notice in the proof of Rudin that the supports supp(hi)
of the constructed functions hi are compact sets (a closed subset of a compact set is compact).

The collection {h1, . . . ,hn} of functions hi, given in Lemma 3.5, is also called a partition of unity of X .
Now we are ready to present a result similar to Theorem 1 (γ) from [2], p. 27.
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Proposition 3.6. Let X be a locally compact Hausdorff space and Y a topological linear space. If dim(X)
is finite, then C0(X ,K)⊗Y is dense in C0(X ,Y ) in the compact-open topology.

Proof. As in the proof of Proposition 3.1, fix any f ∈ C0(X ,Y ), its neighbourhood O( f ), compact subset
K ⊂ X , and a neighbourhood U of zero in Y such that f +S(K,U)⊆ O( f ).

If dim(X) is finite, then there exists a nonnegative integer n such that dim(X) = n. Since the addition is
continuous in Y , there exists an open balanced neighbourhood V of zero in Y such that

V + · · ·+V︸ ︷︷ ︸
n+1 summands

⊆U.

Now, f (x)+V is an open neighbourhood of f (x) for every x ∈ X . Since f is continuous, then

O(x) = f−1( f (x)+V ) = {z ∈ X : f (z) ∈ f (x)+V}

is an open neighbourhood of x for every x ∈ X . Hence, the set A = {O(x) : x ∈ K} is an open cover of K.
As K is a compact set, there exists a finite subcover B = {O(z1), . . . ,O(zl)} of A, with l < ∞ a positive

integer, which is still a cover of K. In a Hausdorff space, every compact set is closed. Hence, X \K is open
and C = {X \K,O(z1), . . . ,O(zl)} is a finite open cover of X .

Since dim(X) = n, we can find a finite open subcover D = {O1, . . . ,Om} of C, which is still a cover of
X and where every x ∈ X is contained in maximally n+ 1 elements of the cover D. For every x ∈ K, let
Ix = {i ∈ {1, . . . ,m} : x ∈ Oi}. Then it is clear that the sets Ix can have at most n+1 elements.

As X is a locally compact Hausdorff space and K ⊂ X = O1 ∪·· ·∪Om, then, by Lemma 3.5, there exist
a partition of unity α1, . . . ,αm ∈C(X , [0,1])⊂C(X ,K) and compact sets K1, . . . ,Km (supports of α1, . . . ,αm)
such that for every i ∈ {1, . . . ,m} and every x ∈ X \Ki hold Ki ⊆ Oi, αi(x) = 0 and for every x ∈ K holds
α1(x)+ · · ·+αm(x) = 1. Hence, α1, . . . ,αm ∈C0(X , [0,1])⊂C0(X ,K).

For every i ∈ {1, . . . ,m}, either there exist k ∈ {1, . . . , l} such that Oi ⊆ O(zk) or Oi ⊆ X \K. In the first
case, take xi = z j, where j ∈ {1, . . . , l} is a minimal such index that Oi ⊆ O(z j). In the second case, take
xi = θX .

Now, for every x ∈ K we have(
m

∑
i=1

(αi ⊗ f (xi))

)
(x)− f (x) =

m

∑
i=1

(αi(x) f (xi))−
m

∑
i=1

(αi(x) f (x)) =
m

∑
i=1

αi(x)( f (xi)− f (x))

= ∑
i∈Ix

αi(x)( f (xi)− f (x)) ∈ ∑
i∈Ix

αi(x)V ⊆ V + · · ·+V︸ ︷︷ ︸
n+1 summands

⊆U.

Hence,
m

∑
i=1

(αi ⊗ f (xi)) ∈ f +S(K,U)⊂ O( f ).

On the other hand, it is clear that
m

∑
i=1

(αi ⊗ f (xi)) ∈C0(X ,K)⊗Y.

Hence, C0(X ,K)⊗Y is dense in C0(X ,Y ) in the compact-open topology.
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4. APPLICATIONS OF THE DENSITY RESULTS FOR THE CASE OF SEGAL ALGEBRAS

A topological algebra is a topological vector space over K, where the multiplication is separately continuous.

Definition 4.1. A topological algebra (A,τA) is a left (right or two-sided) topological Segal algebra if
there exists a topological algebra (B,τB) and an algebra homomorphism f : A → B such that
(1) the image of A by f is dense in B, i.e. clB( f (A)) = B;
(2) τA ⊇ { f−1(U) : U ∈ τB};
(3) f (A) is a left (respectively, right or two-sided) ideal of B.

Since for a topological algebra (A,τA) there might exist several different topological algebras (B,τB)
and algebra homomorphisms f : A → B fulfilling the conditions of the definition, we say that “(A,τA) is a
left (right or two-sided) topological Segal algebra in (B,τB) via f : A → B”, when we want to specify
which of the possibly many algebras (B,τB) and maps f : A → B we consider in the particular case.

By Propositions 3.1, 3.3, and 3.6, we will have now some new results for topological Segal algebras.

Proposition 4.2. Let X be a locally compact Hausdorff space, A,B topological algebras, and ι : A → B a
map. Consider the algebras (C0(X ,A),cA) and (C0(X ,B),cB) equipped with the compact-open topologies
cA and cB and define a map ω : C0(X ,A)→C0(X ,B) by ω( f ) := ι ◦ f for every f ∈C0(X ,A). Suppose that
the multiplication in B is jointly continuous, ι is continuous and open algebra monomorphism, and ι(A) is
a dense left (right or two-sided) ideal of B. If one of the conditions
(a) B has the approximation property,
(b) B has the strong nonlinear approximation property and either B is a Hausdorff topological linear space

or has continuous coordinate functions,
(c) B is a strongly Klee admissible Hausdorff topological algebra,
(d) dim (X) is finite
is satisfied, then C0(X ,A) is a left (respectively, right or two-sided) topological Segal algebra in C0(X ,B)
via ω .

Proof. Using Corollary 3.2 in case (a), Proposition 3.1 in case (b), Proposition 3.3 in case (c), and
Proposition 3.6 in case (d), we see that in all cases C0(X ,K)⊗B is dense in C0(X ,B) in the compact-open
topology. Hence, the result follows from Proposition 3 (f) in [1].

Proposition 4.3. Let X be a locally compact Hausdorff space and A,B topological algebras such that A is
a subalgebra of B. If the multiplication in B is jointly continuous, A is a left (right or two-sided) topological
Segal algebra in B via the identity map 1A, and one of the conditions
(a) B has the approximation property,
(b) B has the strong nonlinear approximation property and either B is a Hausdorff topological linear space

or has continuous coordinate functions,
(c) B is a strongly Klee admissible Hausdorff topological algebra,
(d) dim(X) is finite
is satisfied, then C0(X ,A) is a left (respectively, right or two-sided) topological Segal algebra in C0(X ,B)
via the identity map 1C0(X ,A).

Proof. As in the proof of Proposition 4.2, we see that in all cases C0(X ,K)⊗B is dense in C0(X ,B) in the
compact-open topology. Hence, the result follows from Corollary 1 in [1].

Proposition 4.4. Let X be a locally compact Hausdorff space, A,B topological algebras such that A is a
subalgebra of B and the multiplication in B is jointly continuous. Consider the algebras (C0(X ,A),cA) and
(C0(X ,B),cB) equippped with the compact-open topologies cA and cB, respectively. Suppose that one of the
conditions
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(a) B has the approximation property,
(b) B has the strong nonlinear approximation property and either B is a Hausdorff topological linear space

or has continuous coordinate functions,
(c) B is a strongly Klee admissible Hausdorff topological algebra,
(d) dim(X) is finite
is satisfied. Then the following conditions are equivalent:
(1) A is a left (right or two-sided) topological Segal algebra in B via 1A;
(2) C0(X ,A) is a left (respectively, right or two-sided) topological Segal algebra in C0(X ,B) via 1C0(X ,A).

Proof. As in the proof of Proposition 4.2, we see that in all cases C0(X ,K)⊗B is dense in C0(X ,B) in the
compact-open topology. Hence, the result follows from Corollary 2 in [1].

5. CONCLUSIONS

We found some sufficient conditions for a Hausdorff space X and a topological linear space Y ensuring that
C0(X ,K)⊗Y is dense in C0(X ,Y ) in the compact-open topology. This allowed us to specify the class of
topological algebras for which A is a topological Segal algebra in B if and only if C0(X ,A) is a topological
Segal algebra in C0(X ,B).
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Toimetised, 1987, 770, 26–37.

3. Aleksandrov, P. S. and Pasynkov, B. A. Introduction to Dimension Theory (in Russian). Nauka, Moscow, 1973.
4. Gillman, L. and Jerison, M. Rings of Continuous Functions. The University Series in Higher Mathematics. D. Van Nostrand

Co., Inc., Princeton, N.J.–Toronto–London–New York, 1960.
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Bruxelles, Brussels, in September 1972 (Waelbroeck, L., ed.). Lecture Notes in Math., 331. Springer-Verlag, Berlin–New
York, 1977, 1–40.



290 Proceedings of the Estonian Academy of Sciences, 2018, 67, 3, 282–290

Kõikjal tiheduse omadusest pidevate lõpmatuses hääbuvate funktsioonide algebras

Mart Abel

Olgu K kas reaalarvude või kompleksarvude korpus ja Y topoloogiline vektorruum üle K. Artiklis on leitud
mõningad piisavad tingimused topoloogilise ruumi X ja topoloogilise algebra Y jaoks, mille korral algebra
C0(X ,K)⊗Y on kõikjal tihe pidevate lõpmatuses hääbuvate funktsioonide algebras C0(X ,Y ).

Nende tulemuste rakendusena saadakse, et topoloogiline algebra A on topoloogiline Segali algebra
topoloogilises algebras B siis ja ainult siis, kui pidevate lõpmatuses hääbuvate funktsioonide algebra
C0(X ,A) on topoloogiline Segali algebra pidevate lõpmatuses hääbuvate funktsioonide algebras C0(X ,B).


