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Abstract. The equivalence transformations are applied to bring a system of nonlinear input–output (i/o) equations into a nonlinear
equivalent of the Popov form, called the strong Popov form, under the assumption that the i/o equations already are in the strong
row-reduced form.
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1. INTRODUCTION

The representation of nonlinear input–output (i/o) equations in the strong Popov form is a good starting
point both for theoretical studies and implementation since such representation makes the computation of
shift operators explicit. The strong Popov form simplifies the definition of the field of functions, associated
with the nonlinear control system and also the software development.

This paper builds on two earlier papers [9] and [1] that address the transformation of the set of equations
into the row-reduced and the strong row-reduced form, respectively. The transformations are the equivalence
transformations that, by definition, do not change the zeros (solutions) of the system equations. Note that
in [9] only linear transformations defined over the field of certain functions are applied. The field elements
are meromorphic functions of system output and input variables and their shifts. Unfortunately, though
linear transformations are enough to transform the system equations into the row-reduced form, they do not
always result in the strong row-reduced form. The reason is that the concept of the row-reduced form in the
nonlinear case is related rather to the linearized system equations than the original equations themselves.
The paper [1] extends the results of [9], allowing the nonlinear equivalence transformations.

In this paper the same tools as in [9,1] are applied to transform the system equations into the (strong)
Popov form. First, the linearized system description Pdy−Qdu = 0 in terms of two polynomial matrices P
and Q will be found. Under the assumption that the matrix P̄, related closely to P, is in the row-reduced form
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(and respective i/o equations are in the strong row-reduced form), P̄ will be transformed into the Popov form,
multiplying from the left by a certain unimodular matrix. Then the obtained unimodular transformation
matrix is applied to the original system equations. This approach works well in many situations. However,
there exist numerous examples when this method leads to equations in the Popov form, which contain
higher-order shifts of output variables than allowed by the definition of the strong Popov form. The reason
is that the Popov form is actually a property of linearized equations and not the property of equations
themselves, whereas the strong Popov form is the property of equations. In particular, the set of i/o equations
is said to be in the Popov form if and only if its linearization is in the Popov form. However, in general,
the Popov form of the linearized equations cannot be easily translated back to the system equations, i.e. to
the strong Popov form. When the resulting equations are not in the strong Popov form, one has to look for
nonlinear transformations, like in [1].

For linear time-varying systems the transformation of the system equations into the Popov form has been
addressed in numerous papers (see for instance [4,6,10] and the references therein). Though general ideas
in our approach are similar to those used in the theory of linear time-varying systems, the application of the
results from linear time-varying theory requires special attention and is not, in most cases, directly realizable.
A few issues need additional attention. First, whereas the coefficients of polynomials in the linear time-
varying case belong to the field R(t), those in the nonlinear case are from the field of meromorphic functions
in independent system variables. Moreover, as a result of computations it may happen that the dependent
variables show up and these have to be replaced via the independent ones, otherwise the presented approach
does not yield correct results. Second, in the construction of the respective field in the nonlinear case, a
multiplicative set S has been introduced, depending on system variables. This means that certain expressions
in system variables belonging to this set are not allowed to be equal to zero. Third, transforming an arbitrary
nonlinear system into the strong Popov form may require nonlinear transformations, as mentioned earlier.
In this case, it can happen that one may be able to transform the system equations into the strong Popov
form only locally. That is, in different domains the equations may take different forms.

The paper is the extension of the conference paper [2]. Compared to [2], the following additions are
made in this paper. (i) The algorithm for the Popov form has been improved. Now it also constructs a set S
of inequations, ensuring that certain expressions are nonzero. (ii) The motivation behind the strong Popov
form has been discussed in more details; comparison of the Popov and strong Popov forms has been added
as well as the algorithm, transforming the set of i/o equations into the strong Popov form. (iii) Examples
have been elaborated.

The paper is organized as follows. Section 2 introduces essential algebraic structures, related to the set
of i/o equations. In Section 3 the Popov form and the strong Popov form of the set of i/o equations are
discussed, whereas two examples are presented in Subsection 3.4. Section 4 draws the conclusions.

2. PRELIMINARIES

2.1. System of implicit i/o equations

We recall first the concepts and the language introduced in [9]. Consider the infinite sequences Y =
(. . . ,y(−1),y(0), y(1),y(2), . . . ,) and U = (. . . ,u(−1), u(0),u(1),u(2), . . .), where y(k) ∈Rp and u(k) ∈Rm

for k ∈ Z. We think of components of Y and U as independent variables. Let A be the set of all analytic
functions with real values depending on finitely many elements of Y and U . Each function may depend
on different elements of Y and U . A is a ring with addition and multiplication. Let δ ∶A→A be defined
as follows: δyi(k) = yi(k+ 1), δui(k) = ui(k+ 1) and for φ ∈ A, (δφ)(Y,U) ∶= φ(δY,δU), where δY =
Ỹ ∶= (. . . , ỹ(0), ỹ(1), ỹ(2), . . .), ỹ(k) ∶= y(k+1), and δU = Ũ ∶= (. . . , ũ(0), ũ(1), ũ(2), . . .), ũ(k) ∶= u(k+1).
Then A is a difference ring with a difference operator δ . Observe that δ is injective and onto, so it is an
automorphism. Moreover, δ−1Ỹ =Y where y(k) = ỹ(k−1) and δ−1Ũ =U where u(k) = ũ(k−1).

Let S be a multiplicative subset of the ring A. This means that 1 ∈ S, 0 ∉ S and if a and b belong to
S, so does ab. We shall assume that S is invariant with respect to both δ and δ−1. Then S−1A denotes
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the localization of the ring A with respect to S. It consists of meromorphic functions whose denominators
belong to S. Observe that S−1A is an inversive difference ring with the difference operator δ and, via the
natural injection α ↦ α

1 , S may be interpreted as a subset of S−1A.
Consider a discrete-time multi-input multi-output nonlinear system, described by the set of implicit

higher-order difference equations, relating the inputs uk, k = 1, . . . ,m, the outputs yi, i = 1, . . . , p, and a finite
number of their time shifts:

φi(y j(t),y j(t +1), . . . ,y j(t +ni j),uk(t),uk(t +1), . . . ,uk(t + sik)) = 0, (1)

where i, j = 1, . . . , p, k = 1, . . . ,m, and φi is a real meromorphic function belonging to S−1A, defined on an
open and dense subset of R(n+1)(p+m). If the ith equation does not depend on y j(t + ℓ), ℓ = 0,1, . . . , we set
ni j ∶= −∞. Let ni be the highest output shift in the ith equation, i.e. ni ∶=max j ni j and let n be the highest
output shift of the system, i.e. n ∶=maxi, j ni j. Hereinafter we use the notation ξ for a variable ξ(t), ξ [k] for
its k-step time shift ξ(t +k), k ∈Z.

For system (1) we define the matrix

M ∶=
⎡⎢⎢⎢⎢⎣

∂φi

∂y[ni]
j

⎤⎥⎥⎥⎥⎦i j

and integers mi ∶= n−ni for i = 1, . . . , p. By diag{δ m1 , . . . ,δ mp} we mean the diagonal operator matrix with
the elements δ m1 , . . . ,δ mp on the main diagonal. The matrix L ∶= diag{δ m1 , . . . ,δ mp}M is called the leading
coefficient matrix of system (1).

Definition 1. The set of i/o equations (1) is said to be in the strong row-reduced form if its leading coefficient
matrix has full rank.

Assumption 1. In this paper it is assumed that system (1) is in the strong row-reduced form.

Note that an arbitrary implicit system of the form (1) can be transformed into the strong row-reduced
form as shown in [9,1], though analytic transformation may not always exist.

Let us recall that an ideal I of a commutative ring A is a subset of A with the property that if a,b ∈ I, then
a+b ∈ I and if c ∈ A and a ∈ I, then ca ∈ I. If A is a difference ring, then an ideal I of A is a difference ideal of
A if it is closed with respect to the difference operator.

Let Φ = {φ1, . . . ,φp} be a finite subset of S−1A. Φ may be interpreted as a system of implicit i/o
equations. Let ⟪Φ⟫S denote the smallest ideal of S−1A that contains all the shifts δ k(φi) for i = 1, . . . , p
and k ∈ Z, i.e. the forward and backward shifts of φi. Observe that ⟪Φ⟫S is a difference ideal of S−1A and
δ(⟪Φ⟫S) = ⟪Φ⟫S = δ−1(⟪Φ⟫S). Observe that Φ may be considered as a subset of S̃−1A for some other
multiplicative set S̃. For that reason we put S in the notation of the ideal ⟪Φ⟫S. We make the following
assumption:

Assumption 2. The ideal ⟪Φ⟫S is prime, i.e. if α,β ∈ S−1A and αβ ∈ ⟪Φ⟫S, then α ∈ ⟪Φ⟫S or β ∈ ⟪Φ⟫S,
and is proper, i.e. different from the entire ring.

The properness of the ideal ⟪Φ⟫S is equivalent to the condition S∩⟪Φ⟫S =∅. In particular, numerators
of φi’s do not belong to S. Let S−1A/⟪Φ⟫S be the quotient ring. It consists of cosets φ̄ = φ +⟪Φ⟫S for
φ ∈ S−1A. We define “+” and “⋅” in this new ring by φ̄ + ψ̄ ∶= φ +ψ and φ̄ ⋅ ψ̄ ∶= φ ⋅ψ. These definitions
do not depend on the choice of a representative in a coset. In particular φ̄i = 0, for i = 1, . . . , p. Since,
by Assumption 2, ⟪Φ⟫S is a prime ideal, S−1A/⟪Φ⟫S is an integral ring. Now we can redefine δ on
S−1A/⟪Φ⟫S (denoted now by δΦ to indicate its dependence on Φ) as follows: δΦφ̄ = δφ . This again is well
defined, for if φ̄ = ψ̄ , then φ +⟪Φ⟫S = ψ +⟪Φ⟫S. Since δ(⟪Φ⟫S) ⊂ ⟪Φ⟫S and δ(⟪Φ⟫S)+⟪Φ⟫S = ⟪Φ⟫S,
δφ + δ(⟪Φ⟫S) = δψ + δ(⟪Φ⟫S). Moreover, the operator δΦ is bijective, so δ−1

Φ is well defined on
S−1A/⟪Φ⟫S. Let QΦ

S denote the field of fractions of the ring S−1A/⟪Φ⟫S. As δΦ can be naturally extended
to the field of fractions, QΦ

S is now an inversive difference field with the difference operator δΦ.
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Proposition 1. [9] Assume that S and S̃ are multiplicative subsets ofA and S ⊂ S̃, invariant with respect to δ
and δ−1. Let Φ ⊂ S−1A and the ideal ⟪Φ⟫S be prime and proper. Let S̃∩⟪Φ⟫S̃ =∅. Then (a) S−1A ⊂ S̃−1A,
(b) the ideal ⟪Φ⟫S̃ of S̃−1A is prime and proper, (c) there is a natural monomorphism of difference rings
τ ∶ S−1A/⟪Φ⟫S→ S̃−1A/⟪Φ⟫S̃, and (d) τ may be extended to a monomorphism of difference fieldsQΦ

S →QΦ
S̃ .

2.2. Non-commutative polynomials

The field QΦ
S and the shift operator δΦ induce the ring of polynomials in a variable Z over QΦ

S , denoted by
QΦ

S [Z;δΦ]. A polynomial a ∈QΦ
S [Z;δΦ] is written as a = aµZµ +aµ−1Zµ−1 + . . .+a1Z +a0, where ai ∈QΦ

S
for 0 ⩽ i ⩽ µ . The addition of polynomials from QΦ

S [Z;δΦ] is standard. The multiplication is defined by
the linear extension of the following rules Z ⋅a ∶= (δΦa)Z and a ⋅Z ∶= aZ, where a ∈QΦ

S and δΦa means δΦ
evaluated at a (so for example (aZµ) ⋅(bZν) = a(δ µ

Φ b)Zµ+ν ). Observe that an element a ∈QΦ
S ⊂QΦ

S [Z;δΦ]
does not commute with Z in general, so the ring QΦ

S [Z;δΦ] is non-commutative. It is called the twisted
polynomial ring and it satisfies both the left and right Ore conditions, i.e. it is an Ore ring [7]. Moreover, for
the polynomials a and b it holds that deg(a ⋅b) = dega+degb. Let us define the action of the ringQΦ

S [Z;δΦ]
on the field QΦ

S by the linear extension of the formula Zs ↱ a ∶= δ s
Φa, where a ∈QΦ

S .
LetQΦ

S [Z,δΦ]p×q be the set of p×q-dimensional matrices, whose entries are polynomials inQΦ
S [Z,δΦ].

Definition 2. For the matrices from QΦ
S [Z,δΦ]p×q we define the following elementary row operations: (1)

interchange of rows i and j, (2) multiplication of the row i by non-zero scalar from QΦ
S , (3) replacement of

the row i by itself plus any polynomial multiplied by any other row j.

Observe that all elementary row operations are invertible and any elementary row operation on matrix
W ∈QΦ

S [Z,δΦ]p×q is equivalent to premultiplication (left multiplication) of W by an appropriate invertible
matrix E ∈ QΦ

S [Z,δΦ]p×p. A matrix U ∈ QΦ
S [Z,δΦ]p×p is called unimodular if it has an inverse matrix

U−1 ∈QΦ
S [Z,δΦ]p×p such that UU−1 =U−1U = Ip, where Ip is identity matrix.

2.3. Linearized i/o equations

Our goal is to represent system (1) in terms of polynomials from S−1A[Z;δΦ]. For that purpose we apply
the differential operation d to (1) to obtain ∑p

j=1∑
n
α=0(∂φi/∂y[α]j )dy[α]j +∑

m
k=1∑

n
β=0(∂φi/∂u[β]k )du[β]k = 0

for i = 1, . . . , p. Defining Zαdy j ∶= dy[α]j and Zβ duk ∶= du[β]k like in [9] enables us to rewrite (1) as

P(Z)dy+Q(Z)du = 0, (2)

where P ∈ S−1A[Z;δ ]p×p and Q ∈ S−1A[Z;δ ]p×m are polynomial matrices, whose elements pi j,qik ∈
S−1A[Z;δ ] are pi j = ∑n

α=0(∂φi/∂y[α]j )Z
α , qik = ∑n

β=0(∂φi/∂u[β]k )Z
β and dy = [dy1, . . . ,dyp]T, du =

[du1, . . . ,dup]T. Equation (2) describes the (globally) linearized system, associated with equations (1).
Let eΦ

S denote the map S−1A → QΦ
S ∶ φ ↦ (φ +⟪Φ⟫S)/1 (later we usually skip the denominator). If

p =∑i piZi with pi ∈ S−1A, then we define eΦ
S (p) ∶=∑i e

Φ
S (pi)Zi. This is a polynomial in QΦ

S [Z;δΦ]. For a
matrix P with elements in S−1A[Z;δ ], we define the matrix P̄ ∶= eΦ

S (P) where eΦ
S (P)i j ∶= eΦ

S (pi j).

3. POPOV FORM

3.1. Linearized equations in the Popov form

Let us denote the ith row of the matrix W ∈QΦ
S [Z,δΦ]p×q by wi●. For the non-zero row wi● we define its

degree degwi● ≡ σi as the exponent of the highest power in Z present in wi● for i = 1, . . . , p. If wi● ≡ 0,
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we define σi = −∞. The vector of the row degrees is denoted by σ ∶= [σ1, . . . ,σp]. The column degrees
τ1, . . . ,τq are defined as the row degrees of the matrix W T. The degree of the matrix W is defined as
degW ∶=max{σ1, . . . ,σp}. Let N = degW , e = [1, . . . ,1], and M = [m1, . . . ,mp] ∶=N ⋅e−σ . By ZM we denote
the diagonal p× p matrix with the diagonal elements Zm1 , . . . ,Zmp .

Definition 3. The matrix Lrow(W) such that ZMW = Lrow(W)ZN+ lower degree terms is called the leading
row coefficient matrix of W .

The matrix W ∈QΦ
S [Z,δΦ]p×q is said to have full rank if rankW =min(p,q).

Definition 4. [3,9,10] A polynomial matrix W ∈QΦ
S [Z,δΦ]p×q with non-zero rows is called row-reduced if

its leading row coefficient matrix Lrow(W) has full row rank over the fieldQΦ
S . If W contains zero rows, then

W is called row-reduced if its submatrix consisting of non-zero rows is row-reduced.

Definition 5. [3] A polynomial matrix W ∈ QΦ
S [Z,δΦ]p×q is said to be in the weak Popov form if the

leading coefficient of the submatrix formed from the non-zero rows of W is in upper triangular form up to
row permutations.

Definition 6. [8,10] Matrix W ∈QΦ
S [Z,δΦ]p×q is in the Popov form if W is row-reduced with the rows

sorted with respect to their degrees (σ1 ⩽ ⋅ ⋅ ⋅ ⩽ σp) and for all non-zero rows wi● there is a column index ji
(called the pivot index) such that

(I) wi ji is monic
(II) degwik < degwi ji , if k < ji

(III) degwik ⩽ degwi ji , if k ⩾ ji
(IV) degwk ji < degwi ji , if k ≠ i
(V) if degwi ji = degwk jk and i < k, then ji < jk (if the degrees of the rows are equal, then the pivot indices

are increasing).

Proposition 2. [10] For any matrix W ∈QΦ
S [Z,δΦ]p×q there exists a unimodular matrix U ∈QΦ

S [Z,δΦ]p×p

such that U ⋅W is in the Popov form.

Remark 1. Every matrix in the Popov form is also in the weak Popov form while converse is not necessarily
true. If we relax Definition 6 so that the condition σ1 ⩽ ⋅ ⋅ ⋅ ⩽ σp is dropped and (I), (IV), and (V) are replaced
by the requirement that pivot indices are different ( ji ≠ jk whenever i ≠ k), then we obtain the definition for
the weak Popov form.

Definition 7. The set of i/o difference equations (1) is said to be in the Popov form if there is a multiplicative
subset S̃ of A, S̃ ⊇ S, such that the matrix P̄ = eΦ

S̃
(P) is in the Popov form over QΦ

S̃
[Z;δΦ].

3.2. Algorithm: transforming the matrix into the Popov form

The following algorithm transforms the matrix W into the Popov form under the assumption that the p×q
matrix W is row-reduced and its row degrees are non-decreasing: 0 ⩽ σ1 ⩽ σ2 ⩽ ⋅ ⋅ ⋅ ⩽ σp. The algorithm is a
straightforward extension of the respective procedure for the linear time-varying case [10], except the steps
related to the construction of the set S0.

Algorithm 1
Input: Matrix W
Output: Matrix W̃ in the Popov form and unimodular matrix U , such that W̃ =U W
Step 1. W̃ ∶=W , U ∶= Ip, S0 ∶= {1}
Step 2. i ∶= 1
Step 3. Fix the column index ji such that degw̃i ji = σi and ji is minimal of all possible columns
Step 4. k ∶= 1
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Step 5. If k ≠ i And degw̃k ji ⩾ σi Then
(a) Find γ and r such that w̃k ji = γw̃i ji + r and degr < σi
(b) E ∶= Ip
(c) Ek,i ∶= −γ
(d) W̃ ∶= E ⋅W̃
(e) U ∶= E ⋅U
(f) Add denominators of coefficients of γ to S0 (if they are not in S0 already).
End If

Step 6. k ∶= k+1
Step 7. If k ⩽ p Then Goto Step 6
Step 8. i ∶= i+1
Step 9. If i < p Then Goto Step 4
Step 10. If condition (IV) of Definition 6 is not fulfilled, Then Goto Step 2
Step 11. Make the pivot elements of W̃ monic:

(a) Let α1, . . . ,αp be the leading coefficients of the pivot elements w̃1 j1 , . . . ,w̃p jp

(b) Let A be the diagonal matrix with 1
α1
, . . . , 1

αp
on the main diagonal

(c) W̃ ∶= A ⋅W̃
(d) U ∶= A ⋅U
(e) Add functions α1, . . . ,αp to S0 (if they are not in S0 already).

Step 12. Return W̃ , U

When we start, some functions φi in (1) may have denominators that, together with their forward and
backward shifts, should be included in the set S. If the functions are analytic, one may set S ∶= {1}, meaning
that S−1A = A. Of course, additional denominators that show up in the reduction algorithm should also
be included in S together with their shifts and powers; this means denominators both in the equivalence
transformations and in transformed matrix W̃ . That is, we extend our initial S by adding an infinite number
of elements.

In extension one has to be careful not to include in S the denominators that may cancel the functions
φi. This is guaranteed by the use of the field QΦ

S (in the algorithm) whose elements are fractions
with non-zero denominators. Since we work with cosets with respect to ⟪Φ⟫S, the denominators are
represented by functions that do not belong to ⟪Φ⟫S. Since we multiply the functions φi by the functions,
being representatives of the cosets, the functions φi cannot be cancelled (because they cannot appear in
denominators). This explains why the property S⋂⟪Φ⟫S =∅ must always be satisfied.

Remark 2. The infinite set S can be compactly described by its generator set S0. The set S0 generates S if
each element of S can be obtained from a finite number of elements of S0 by applying a finite number of
multiplications and backward and forward shifts to these elements. For the sake of simplicity, we present in
examples below rather the generator set S0 than S itself.

If the assumptions of Algorithm 1 are not fulfilled, the pivot indices ji can change during the execution
of the algorithm. To avoid possible misunderstanding, we show that if the assumptions are satisfied, the
pivot indices keep their values.

Lemma 1. Assume that the matrix W is row-reduced and its row degrees satisfy 0 ⩽ σ1 ⩽ ⋅ ⋅ ⋅ ⩽ σp. Consider
the transformation on Step 5(a) of Algorithm 1, which can be written as

w̃k● ∶=wk●−γwi●, (3)

where wk● is the old kth row and w̃k● is the transformed row. Transformation (3) does not change the pivot
indices that are already fixed on Step 3.
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Proof. One has to show that transformation (3) does not change the pivot indices j1, . . . , ji−1, ji+1, . . . , jp.
Without loss of generality we assume in this proof that all fixed pivot indices are on the main diagonal, i.e.
jℓ = ℓ for ℓ = 1, . . . , p.

Case 1, k < i. We show that after applying transformation (3) to matrix W the pivot index of the row w̃k●
is still k. First, we show that the transformed elements w̃kν ∶=wkν −γwiν , ν = 1, . . . ,k−1 satisfy the condition
degw̃kν < σk. Since σ1 ⩽ ⋅ ⋅ ⋅ ⩽ σp, the transformation (3) occurs only if σk = σi and thus degwki = degwii and
degγ = 0. Thus degw̃kν =max{degwkν ,degwiν} <σk. Second, we consider the element w̃kk ∶=wkk−γwik and
show that degw̃kk = σk. The degree of w̃kk would be less than σk only if the leading terms of wkk and γwik
would be equal, but this cannot happen, since degwik < degσi = degσk = degwkk and degγ = 0.

Case 2, i < k. Note that when passing the main loop (Steps 2–9) for the first time, the pivot indices are
not yet fixed for the rows wi+1,●, . . . ,wp●, thus the proof makes sense for the second or further execution of
the main loop. We show that after applying transformation (3) to matrix W the pivot index of the row w̃k● is
still k. First, we show that the transformed elements w̃kℓ ∶= wkℓ − γwiℓ, ℓ = 1, . . . ,k−1, satisfy the condition
degw̃kℓ < σk. The sum of two polynomials cannot have the degree higher than the addends. Thus,

degw̃kℓ ⩽max{degwkℓ, deg(γwiℓ)}. (4)

Since pivot of wk● is k,
degwkℓ < σk, ℓ = 1, . . . ,k−1. (5)

The polynomial γ is determined in Step 5(a) as the right quotient of wki and wii such that wki = γwii + w̃ki,
and degw̃ki < degwii. Then degγ = degwki−degwii and thus

deg(γwiℓ) ⩽ degwki−degwii+wiℓ. (6)

Knowing that degwki < σk, degwii = σi, and degwiℓ ⩽ σi for ℓ = 1, . . . , p allows us to deduce deg(γwiℓ) < σk.
Due to (5) and (6) the inequality (4) yields degw̃kℓ <σk for ℓ= 1, . . . ,k−1. Second, we show that degw̃kk =σk.
By (3), w̃kk = wkk − γwik, and since the pivot index of wk● is k, one knows that degwkk = σk. It is possible to
get degw̃kk <σk if the leading terms of wkk and γwik are equal, but this would mean that the rows of Lrow(W)
are dependent and thus W is not row-reduced, which contradicts the assumption. ◻

Theorem 1. Assume that the matrix W is row-reduced and its row degrees satisfy the inequalities 0 ⩽ σ1 ⩽
σ2 ⩽ ⋅ ⋅ ⋅ ⩽ σp. Application of Algorithm 1 transforms W into the Popov form.

Proof. Passing Steps 1–9 of the algorithm for the first time transforms matrix W̃ into the form, where
pivot indices ji are fixed for each row and conditions (II) and (III) of Definition 6 are fullfilled. Due to
Lemma 1, if the pivot index is once fixed, it cannot change later. Executing Steps 1–9 transforms the
leading row coefficient matrix Lrow(W̃) into the upper triangular form (up to permutation of the rows) so
that the elements Lrow(W̃)i, ji , corresponding to the pivot indices, are non-zero, and those located left from
Lrow(W̃)i, ji are zero. It means that W̃ is in the weak Popov form.

Step 10 checks whether condition (IV) is fulfilled. In the case of a negative answer Steps 2–9 are
repeated until condition (IV) is satisfied. Condition (V) of Definition 6 is guaranteed, since on Step 3 we
choose ji as the smallest possible. Finally, Step 11 makes the pivot elements of W̃ monic. ◻

Remark 3. The weak Popov form can be obtained as an intermediate step of computing the Popov form.
For the weak Popov form, we remove Step 10 from Algorithm 1. For the Popov form the outer loop (Step
2–Step 9) of the algorithm is passed at most p−1 times, but for the weak Popov form these steps are passed
just once.

3.3. Strong Popov form

The definition of the Popov form as given in Definition 7 is actually a property of linearized i/o equations (2)
(where the matrix P is replaced by P̄) and not the property of the original system equations (1). In particular,
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the set of i/o equations is said to be in the Popov form if the polynomial matrix P̄ is in the Popov form. To
transform the linearized i/o equations (2) into the Popov form, linear i/o equivalence transformation, as
constructed in Algorithm 1, is used. Such transformation is defined in terms of unimodular polynomial
matrix over the difference field of meromorphic functions QΦ

S̃
in independent system variables and the

polynomial indeterminate may be interpreted as a forward shift operator. Finally, the unimodular matrix
defines the operator that will be applied to system equations (1). The application of the unimodular matrix
to the system equations corresponds to the linear transformations (over QΦ

S ) of the equations, however,
sometimes nonlinear transformations are necessary to bring the system into the explicit form, see Example
3. This approach works well in many situations. However, sometimes this method leads to equations in the
Popov form, which cannot be transformed into the explicit form. For this reason we introduce below the
strong Popov form.

Definition 8. The set of i/o equations (1) is said to be in the strong Popov form if
(a) 0 ⩽ n1 ⩽ n2 ⩽ ⋅ ⋅ ⋅ ⩽ np;
(b) for each φi, ni ⩾ 0, there exists a variable y ji such that the following conditions hold: (i) ∂φi/∂y[ni]

ji = 1;
(ii) nik < ni, if k < ji; (iii) nik ⩽ ni, if k ⩾ ji; (iv) nk ji < ni, if k ≠ i; (v) if ni = nk and i < k, then ji < jk.

Comparing Definitions 6 (Popov form) and 8 (strong Popov form) reveals that conditions (I)–(V) in
Definition 6 regarding the degrees of polynomials match conditions (i)–(v) in Definition 8 regarding the
structural indices ni j of system (1). Though the definitions are analogous, it is important to note that the
Popov form of system (1) is, by Definition 7, determined by matrix P̄, whose entries do not necessarily
satisfy the condition deg p̄i j = ni j, but rather deg p̄i j = deg(eΦ

S̃
(pi j)) ⩽ deg pi j = ni j. Moreover, note that in the

Popov form of matrix P̄ zero rows are allowed while in the strong Popov form we require that all indices
ni > −∞. Thus the strong Popov form of system (1) implies the Popov form, but the converse is not true, in
general. An example of the system, being in the Popov but not in the strong Popov form, can be found in
Example 3 below.

If system (1) is in the strong Popov form, it can be represented in the explicit form

y[ni]
ji = ϕi(y j, . . . ,y

[νi j]
j ,uk, . . . ,u

[sik]
k ), i = 1, . . . , p, (7)

where j = 1, . . . , p, k = 1, . . . ,m, and

νi j ∶=
⎧⎪⎪⎨⎪⎪⎩

ni j, if j ≠ ji
ni j −1, if j = ji.

Example 1. In the special case p = m = 2, assume, for the sake of simplicity, that j1 = 1 and j2 = 2. By
Definition 8 this system is in the strong Popov form if the following conditions hold:
(a) since ji = i, one has n1 ∶= n11 and n2 ∶= n22, which have to satisfy n1 ⩽ n2;
(b) (i) ∂φ1/∂y[n1]

1 = 1 and ∂φ2/∂y[n2]
2 = 1; (ii) n21 < n2; (iii) n12 ⩽ n1; (iv) n12 < n2 and n21 < n1; (v) in case

ji = i, the condition is always satisfied.

The following algorithm transforms the implicit i/o equations (1) into the strong Popov form using linear
transformations, whenever possible.

Algorithm 2
Input: Implicit equations (1) in strong row-reduced form
Output: System φ̃i = 0 in the strong Popov form
Step 1. Find the matrix P̄ = eΦ

S̃
(P)

Step 2. Transform the row-reduced matrix P̄ into the Popov form by Algorithm 1. It means multiplying P̄
by the unimodular matrix U ∈QΦ

S [Z,δΦ]p×p. Denote P̃ ∶=UP̄
Step 3. Apply U as an operator to system (1): [φ̃i, . . . , φ̃p]T ∶=U ↱ [φ1, . . . ,φp]T
Step 4. If System φ̃i = 0 is in the strong Popov form, i.e. Definition 8 is satisfied
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Then Return φ̃i
Else Print: “The system cannot be transformed into the strong Popov form via linear

transformations.”

Proposition 3. An arbitrary nonlinear system (1) can be transformed (at least locally) in the strong Popov
form (with possible zero rows), using either linear or nonlinear transformations.

3.4. Examples

Example 2. Consider the system

φ1 ≡ u2+y[1]2 +y[1]3 = 0, φ2 ≡ y2+u1y[2]2 +y3 = 0, φ3 ≡ u[1]3 +y[3]1 +y1y[3]3 = 0. (8)

Since no denominators appear in equations (8), we may set S = S0 ∶= {1}. The polynomial matrix

P = P̄ =
⎡⎢⎢⎢⎢⎢⎣

0 Z Z
0 u1Z2+1 1

Z3+y[3]3 0 y1Z3

⎤⎥⎥⎥⎥⎥⎦
. (9)

The leading row coefficient matrix

Lrow(P̄) =
⎡⎢⎢⎢⎢⎢⎣

0 1 1
0 u[1]1 0
1 0 y1

⎤⎥⎥⎥⎥⎥⎦
(10)

is of full rank, thus (8) is row-reduced, however, the conditions of Definition 6 are not fulfilled and therefore,
the system is not in the Popov form. The row degree vector of the matrix P̄ is σ = [1, 2, 3], thus row degrees
are in non-decreasing order. Following Algorithm 1, we take the matrix P̃ ∶= P̄, U = I3, and i = 1. Since
σ1 = 1, the pivot element of the 1st row is p̃12, i.e. j1 = 2. Next, the aim of Steps 4–6 is to make the degrees
of all the elements below p̃12 strictly less than σ1 = 1. For the 2nd row (k = 2) we obtain p̃22 = γ p̃12 + r,
consequently γ = u1Z, r = 1, and

E =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
−u1Z 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
. (11)

Since γ has no denominators, the generator set S0 ∶= {1} remains unchanged. Multiplying P̃ = P̄ by E from
the left corresponds to multiplying the 1st row by −γ and adding it to the 2nd row, resulting in

P̃ ∶=
⎡⎢⎢⎢⎢⎢⎣

0 Z Z
0 1 −u1Z2+1

Z3+y[3]3 0 y1Z3

⎤⎥⎥⎥⎥⎥⎦
. (12)

We also let U ∶= E ⋅U = E. For k = 3 the degree condition deg p̃32 = −∞ ⩾ σ1 = 1 is fulfilled, therefore the
Then-part in Step 5 is skipped.

Taking i = 2 yields that j2 = 3 – the pivot element of the second row is p̃23. For k = 1 the degree condition
is fulfilled, but for k = 3 we obtain γ = − y1

u[1]1

Z and r = y1

u[1]1

Z, yielding

E ∶=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 y1

u[1]1

Z 1

⎤⎥⎥⎥⎥⎥⎦
, P̃ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 Z Z
0 1 −u1Z2+1

Z3+y[3]3
y1

u[1]1

Z
y1

u[1]1

Z

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Due to the division by u[1]1 we set S0 = {1,u1}. The matrix

U ∶= E ⋅U =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
−u1Z 1 0
−y1Z2 y1

u[1]1

Z 1

⎤⎥⎥⎥⎥⎥⎥⎦

.

For i = 3 the pivot element is p̃31. Since deg p̃11 = deg p̃21 = −∞ < deg p̃31 = 3, the degree conditions are
satisfied. We have reached Step 10, where we ascertain that condition (IV) of Definition 6 is not fulfilled
and thus return to Step 2. For i = 1 and j1 = 2 Steps 5 and 6 give the following results: if k = 2, the degree
condition is fulfilled, if k = 3, then γ = y1

u[1]1

Z, r = 0 and thus

E ∶=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
− y1

u[1]1

0 1

⎤⎥⎥⎥⎥⎥⎦
, P̃ ∶=

⎡⎢⎢⎢⎢⎢⎣

0 Z Z
0 1 −u1Z2+1

Z3+y[3]3 0 0

⎤⎥⎥⎥⎥⎥⎦
.

The transformed matrix P̃ fulfils conditions (I)–(V) of Definition 6. Note that the row and column degrees
of P̃ are equal now, if regarding the position of the pivot elements. That is σ1 = τ2 = 1, σ2 = τ3 = 2, σ3 = τ1 = 3.
The unimodular matrix is

U ∶= E ⋅U =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
−u1Z 1 0

−y1Z2− y1

u[1]1

y1

u[1]1

Z 1

⎤⎥⎥⎥⎥⎥⎥⎦

. (13)

The application of U to the vector function φ = [φ1,φ2,φ3]T yields the system in the strong Popov form1:

U(Z) ↱
⎡⎢⎢⎢⎢⎢⎣

φ1
φ2
φ3

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2+y[1]2 +y[1]3

u[1]2 +y[2]3 −
y2+y3

u1
u[1]3 −

u2y1

u[1]1

−u[2]2 y1+y[3]1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

To transform (8) into the strong Popov form (14), it is necessary that all the variables from the set S,
generated by S0 = {1,u1}, are non-zero, see Remark 2. From (14) one can easily express the highest time-
shifts of the output variables:

y[1]2 = −u2−y[1]3 , y[2]3 = −u[1]2 +
y2+y3

u1
, y[3]1 = −u[1]3 +u[2]2 y1+

u2y1

u[1]1

.

Example 3. Consider the model of the 27 tray binary distillation column, operating in high-purity regime
[11], where u1 is modular reflux, u2 is steam flow rate (moles/minute), y1 and y2 are temperatures2:

φ1 ∶=y[1]2 −0.0018+0.22u1+1.7u2
2−0.92y2−30.4u2y2

2 = 0,

φ2 ∶=y[3]1 −0.0012+0.18u[2]1 −1.1u[2]2 y1−0.98y[2]1 +1.8u[2]1 y[2]2 = 0.
(15)

1 For ↱ see Subsection 2.2.
2 To guarantee the condition deg p̄1● ⩽ deg p̄2●, we have reversed the order of equations, compared with the original equations in

[11]. Note that though the condition deg p̄1● ⩽ deg p̄2● is not necessary for the weak Popov form, it is required later for nonlinear
transformation.
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The generator set is S0 ∶= {1}. The matrix

P̄ = P = [
0 Z−60.8u2y2−0.92

Z3−0.98Z2−1.1u[2]2 1.8u[2]1 Z2 ] (16)

and its leading row coefficient matrix

Lrow(P̄) = [
0 1
1 0] .

Thus, (16) is row-reduced and in the weak Popov form, but it is not in the Popov form, since condition (IV)
of Definition 6 is not fulfilled. Indeed, for i = 1, j1 = 2, k = 2 we obtain deg p̄22 = 2 ≮ deg p̄12 = 1, whenever
u[2]1 ≠ 0. However, since P is in the weak Popov form and the pivot indices j1 = 2, j2 = 1 are fixed, system
(15) can be rewritten in the form below:

y[1]2 = 0.0018−0.22u1−1.7u2
2+0.92y2+30.4u2y2

2, (17a)

y[3]1 = 0.0012−0.18u[2]1 +1.1u[2]2 y1+0.98y[2]1 −1.8u[2]1 y[2]2 . (17b)

The first equation is in the proper form while the second is not, since it involves y[2]2 . Substituting y[2]2 in
(17b) by the right-hand side of forward-shifted (17a) gives y[3]1 = 0.0012−0.18u[2]1 +1.1u[2]2 y1 +0.98y[2]1 −

1.8u[2]1 + [0.0018−0.22u[1]1 −1.7(u[1]2 )
2
+0.92y[1]2 +30.4u[1]2 (y

[1]
2 )

2
] . The latter equation still depends on

y[1]2 , which has to be again substituted by the right-hand side of (17a). That way one obtains the explicit
equations

y[1]2 =0.0018−0.22u1−1.7u2
2+0.92y2+30.4u2y2

2, (18a)

y[3]1 =0.0012−0.18u[2]1 +1.1u[2]2 y1+0.98y[2]1

−1.8u[2]1 +[0.0018−0.22u[1]1 −1.7(u[1]2 )
2
+0.92A+30.4u[1]2 A2] , (18b)

where A = 0.0018−0.22u1−1.7u2
2+0.92y2+30.4u2y2

2.
The application of Algorithm 1 leads to a transformation: for i = 1, j1 = 2 and k = 2 we obtain

from p̄22 = γ p̄12 + r the right quotient γ = 1.8u[2]1 Z − 1.8u[2]1 (0.92+60.8u[1]2 y[1]2 ), the right remainder

r = 1.8u[2]1 (0.92+60.8u2y2)(0.92+60.8u[1]2 y[1]2 ), and the unimodular matrix

U =
⎡⎢⎢⎢⎣

1 0
−1.8u[2]1 Z+1.8u[2]1 (0.92+60.8u[1]2 y[1]2 ) 1

⎤⎥⎥⎥⎦
.

Assume that u[ℓ]1 ≠ 0,ℓ ∈Z. Multiplying U and P̄ yields

P̃ ∶=UP̄ =
⎡⎢⎢⎢⎣

0 Z−60.8u2y2−0.92
Z3−0.98Z2−1.1u[2]2 1.8u[2]1 (0.92+60.8u2y2)(0.92+60.8u[1]2 y[1]2 )

⎤⎥⎥⎥⎦
.

The matrix P̃ is in the Popov form. However, if one tries to find the transformed equations using the linear
transformation as

[φ̃1
φ̃2
] ∶=U(Z) ↱ [φ1

φ2
] = [00] , (19)
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then one encounters a failure. Namely,

φ̃2 =y[3]1 −0.0012+0.18u[2]1 −1.1u[2]2 y1−0.98y[2]1

+1.8u[2]1 [0.0018−0.22u[1]1 −1.7(u[1]2 )
2
+0.92A+60.8Au[1]2 y[1]2 −30.4u[1]2 (y

[1]
2 )

2
]

still depends on y[1]2 ; moreover, it also contains (y[1]2 )
2
, which cannot be removed by any linear

transformation (over the polynomial ring). Thus, (19) is in the Popov form (since P̃ is in the Popov form),
but not in the strong Popov form, since 1 = n22 ≮ n1 = 1 and condition (iv) of Definition 8 is not satisfied.
This example illustrates the difficulties of adapting the theory of linear (time-varying) systems for nonlinear
systems.

To transform equations (15) into the strong Popov form, one has to use nonlinear transformations
in analogy with [1]. However, the simple structure of equations (15) enables one to find the nonlinear
transformation almost by direct inspection. For system (15) the indices are: n11 = 0, n11 = 1, n21 = 3, n22 = 2.
For the strong Popov form it is necessary to make n22 equal to zero. Our aim is to construct the nonlinear
function χ(φ1,φ

[1]
1 ) such that φ̂2 ∶= φ2 −χ(φ1,φ

[1]
1 ) does not depend on y[2]2 ,y[1]2 , i.e. for φ̂2 one gets the

index n22 = 0. On the first step, to remove dependency on y[2]2 , note that the coefficient of y[2]2 is c1 ∶= 1.8u[2]1 .
Compute

φ̃2 ∶=φ2−c1φ[1]1 = y[3]1 −0.0012+0.18u[2]1 −1.1u[2]2 y1−0.98y[2]1

+1.8u[2]1 [0.0018−0.22u[1]1 −1.7(u[1]2 )
2
+0.92y[1]2 +30.4u[1]2 (y

[1]
2 )

2
] ,

which obviously does not depend on y[2]2 , i.e. for φ̃2 the index n22 = 1. On the second step we remove
the term (y[1]2 )

2. Note that the coefficient of (y[1]2 )
2 is c2 ∶= 1.8 ⋅ 30.4u[2]1 u[1]2 = 54.72u[2]1 u[1]2 . Compute

˜̃φ2 ∶= φ̃2−c2φ2
1 . The explicit expression of ˜̃φ2 is omitted due to its complexity, but we indicate that ˜̃φ2 does

not involve (y[1]2 )
2 any more. We also indicate that ˜̃φ2 depends on y[1]2 linearly while the coefficient of y[1]2

is c3 ∶= 1.8u[2]1 (0.92+60.8u[1]2 A). On the third step y[1]2 is removed by linear transformation φ̂2 ∶= ˜̃φ2−c3φ1

and thus for φ̂2 the index n22 = 0. To conclude, the nonlinear transformation, bringing equations (15) into
the strong Popov form, is

φ̂1 ∶= φ1, φ̂2 ∶=F(φ1,φ
[1]
1 ,φ2) = φ2−c1φ[1]1 −c2φ2

1 −c3φ1

=φ2−1.8u[2]1 φ[1]1 −54.72u[2]1 u[1]2 φ2
1 −1.8u[2]1 (0.92+60.8u[1]2 A)φ1.

The transformed φ̂2 is

φ̂2 =y[3]1 −0.0012+0.18u[2]1 −1.1u[2]2 y1−0.98y[2]1

+1.8u[2]1 [0.0018−0.22u[1]1 −1.7(u[1]2 )
2
+0.92A+30.4u[1]2 A2] .

The result coincides with (18b), obtained from the weak Popov form, when we express y[3]1 as function of
the other variables.

4. CONCLUSIONS

In this paper two algorithms were developed for transforming the set of nonlinear higher-order i/o difference
equations into the Popov and the strong Popov form, respectively, using the equivalence transformations
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that, by definition, do not change the solutions of the system equations. The transformed system description
includes, in general, in addition to system equations, also a number of inequations that guarantee certain
expressions to be non-zero. That is, unlike the typical approaches assuming the generic setting (see for
instance [5]), in our case the open and dense subset where the results are valid is specified by a certain set
of functions S, being the byproduct of the developed algorithms. To resume, our linear transformations are
valid globally in the entire space with removed zeros of functions from the set S. The approach avoids using
the implicit function theorem, yielding only local results as in [12] for continuous-time nonlinear systems.
However, when one needs to apply nonlinear transformations, the strong Popov form is not necessarily
defined globally.

As for future research directions, the strong Popov form allows, in principle, finding explicit equations
of the inverse system when the set of original equations will be transformed into the Popov form with respect
to the control variables.
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Mittelineaarsete sisend-väljundvõrrandite tugev Popovi kuju

Zbigniew Bartosiewicz, Ewa Pawłuszewicz, Małgorzata Wyrwas, Ülle Kotta ja Maris Tõnso

On välja töötatud kaks algoritmi mittelineaarse diskreetajaga süsteemi sisend-väljundvõrrandite teisen-
damiseks (lineaarsete või mittelineaarsete ekvivalentsiteisendustega) vastavalt kas Popovi või tugevale
Popovi kujule. Ekvivalentsiteisendused ei muuda definitsiooni põhjal süsteemi lahendeid. Teisendused
eeldavad algse süsteemi esitust tugeval reapõhiselt taandatud kujul, mis varasemate tulemuste põhjal alati
eksisteerib. Popovi (ja tugev Popovi) kuju sisaldab peale võrrandite veel avaldisi, mis ei tohi võrduda
nulliga. Kui lineaarteisendusest piisab, on algoritmi tulemuseks vastav lineaarteisendus (üle meromorfsete
funktsioonide korpuse). Mittelineaarse ekvivalentsiteisenduse leidmise algoritm on ka konstruktiivne, v.a
samm, mis nõuab osatuletistega diferentsiaalvõrrandite süsteemi lahendamist. Viimane aspekt iseloomustab
paljude mittelineaarsete juhtimisülesannete lahendusi. Lisaks ei pruugi tugev Popovi kuju globaalselt
eksisteerida. Teoreetilisi tulemusi on illustreeritud mitme näitega.


