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Abstract. The paper focuses on the adaptation of the Newton observer for the estimation of the magnetic flux in the feedback
control of a nonlinear active magnetic bearing (AMB) system. The Newton observer is constructed for the exact discrete-time
model of the AMB system and is presented in a detailed and simple algorithm ready for implementation. The observer is combined
with three controllers, and the effectiveness of the observer-based control scheme is verified via numerical simulations.
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1. INTRODUCTION

Active magnetic bearing (AMB) applications are frequently controlled by the feedback, depending on the
magnetic flux. The flux measurement requires additional expensive sensors to be integrated mechanically
into the AMB poles [10]. Therefore, the so-called sensorless control has emerged, where traditional
sensors are replaced by a signal from a dynamic estimator. Nowadays, the ‘self-sensing’ magnetic bearing
technology is employed in many commercial applications, see for instance [24,11]. It has been found that
the position and speed signals may be used to estimate the electrical information as the magnetic flux [20].

The purpose of this paper is to address the problem of state estimation of a nonlinear flux-controlled
AMB system operated in the low- or zero-bias mode. A number of papers address the application of
nonlinear observers for AMB systems, but the majority of AMB flux estimation methods are developed
for the bias control and are based on the rotor position or measurements of the output current [2,9]. The
high-gain observer is suggested in [5] for the voltage-controlled 3-pole AMB system. This observer is
incorporated in the AMB system in the current-controlled mode to use the information of input voltages
and output coil currents for the estimation of the rotor position. The authors have additionally assumed
the magnetic field to be linear in the sense that the magnetic flux density is proportional to the magnetic
field intensity. However, the saturation problems, which always exist in a current/voltage-controlled AMB
system, were not addressed. Note that, unlike [5], in this work we consider the zero-bias flux-controlled
AMB system, which contains the class of nonlinearity (dead zone near the origin) and control input voltage
limit inappropriate for the application of the high-gain observer. The disturbance observer-based control of
AMB was addressed in [18].
∗ Corresponding author, vkaparin@cc.ioc.ee
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The zero- or low-bias control has many advantages in comparison with the bias control [22,23],
including the reduction of power losses, low bearing stiffness, and low noise in the position measurements.
In [20] the controller for AMB in the low-bias control mode is presented, combined with the nonlinear circle-
criterion observer, developed in [1], which makes use of the bounds on the slope of system nonlinearities.
The circle criterion states that the feedback interconnection of such sector nonlinearity with a strictly positive
real linear block is asymptotically stable. However, the nonlinearity of the controllers used in this paper
makes this method inappropriate for the solution of the stated problem. In [19] the sliding-mode observers
were incorporated in the zero-bias flux feedback, the model of which differs from the one considered in this
paper. Although the sliding-mode observers are, in principle, appropriate for the model considered in this
paper, their application is beyond the topic of this research.

The Newton observer [14] is known to be structurally robust and has been reported to yield good results,
see for example [3,6,13]. It yields an asymptotic observer (i.e. an observer whose error converges to
zero as time tends to infinity) for a large class of discrete-time nonlinear systems. The observer relies on
an analytical expression for the exact discrete-time model of the continuous-time system. Although this
assumption may in general be a shortcoming, it does not limit the applicability in our case when the rather
simple exact discrete-time model exists for the AMB. Moreover, the Newton observer does not require any
restrictive assumptions to be satisfied by the system equations, and its construction does not involve any
state transformations (into a special canonical form), implying less need in computational capacity.

The basic idea of the Newton observer is to view the state estimation problem as one of solving a
sequence of nonlinear inversion problems, each described by a set of nonlinear equations. The intention
then is to iterate each subproblem long enough so that the state transition map applied to the solution of the
kth problem is a good initial guess for the (k+1)st problem. The Newton observer may be understood as a
quasilocal exponential observer, whose iterations converge to the solution of the set of nonlinear equations
only if the initial guess is close enough to the solution. To relax this restriction, one may enlarge the
convergence region by changing the step size at each iteration as suggested, for example, in [4]. In particular,
global convergence is guaranteed when one utilizes, for instance, a line-search scheme to find the suitable
step size. Note, however, that here we do not need to relax this restriction because the physical structure of
the AMB system does not allow choosing the initial guess too far from the solution.

The paper is organized as follows. Section 2 describes the AMB system and develops its exact discrete-
time model. The detailed construction of the Newton observer for the exact discrete-time model as well
as the algorithm of the observer implementation are given in Section 3. Section 4 presents the simulation
results, verifying the effectiveness of the Newton observer in the feedback control of the AMB system.
Section 5 presents the concluding remarks.

2. CONTROL SYSTEM AND ITS EXACT DISCRETE-TIME MODEL

Consider a continuous-time nonlinear plant, described by the differential equations

ẋ = f (x)+g(x)u, y = h(x), (1)

where the state x ∈ Rn, the control input u ∈ R, the output y ∈ R, and f ,g,h are smooth functions.
The exact step-invariant discrete-time model of the continuous-time system (1) is defined as the one

whose response to a step input (i.e. the type of input usually available under digital control) u(kT + t) =
u(kT ), 0≤ t < T , is identical to that of the continuous-time system at discrete instants of time. The derivation
of a discrete-time model is based on the representation of the solution of Eq. (1) in terms of the formal Lie
exponential series at sampling instant kT +T (see [8,12])

x(kT +T ) = ∑
r≥0

T r

r!
Lr

f+gu(kT )x
∣∣∣
x(kT )

=: F(x(kT ),u(kT )), y(kT ) = h(x(kT )), (2)

where Lr
f+gu(kT ) denotes the rth Lie derivative along f +gu(kT ).
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Fig. 1. Scheme of a 1-DOF AMB.

In this paper we consider a simplified one-degree-of-freedom (1-DOF) AMB model that consists of
two opposite and presumably identical electromagnetic actuators (electromagnets) with resistances R1, R2
and currents i1, i2, respectively (see Fig. 1). These electromagnets generate fluxes ϕ1, ϕ2 and further the
attractive forces F1, F2, acting on the rotor. In order to control the position q of the rotor mass m to the
stable point q = 0, the voltage inputs of the electromagnets V1 and V2 are used. The 1-DOF AMB system
is limited to a rigid rotor mass. In order to make the system simpler, the observer-based flux control is
considered only in one control axis. Thus, in our case, the rotor dynamics are not addressed.

The dynamics of the simplified 1-DOF AMB model may be described in terms of normalized state and
control variables by the following nonlinear state equations:

ẋ1 = x2, ẋ2 = εx3 + x3 |x3| , ẋ3 = u, (3)

where x1, x2, and x3 indirectly relate to the position [m] of the rotor mass, velocity [m/s] and electromagnetic
flux [Wb], respectively (see [21] for details). Moreover, ε = 2Φ0/Φsat ≥ 0, where Φ0 and Φsat stand for the
bias and saturation fluxes, respectively. For the Newton observer design we assume that the output y = x1.
In (3), f =

[
x2 εx3 + x3 |x3| 0

]T, being smooth under the assumption x3 ̸= 0, and g =
[
0 0 1

]T. Based
on (2), one obtains the sampled-data model of system (3) as

x[1]1 = x1 +T x2 +
T 2

2
(εx3 + x3 |x3|)+

T 3

6
u(ε +2sgn(x3)x3)+

T 4

12
u2sgn(x3),

x[1]2 = x2 +T (εx3 + x3 |x3|)+
T 2

2
u(ε +2sgn(x3)x3)+

T 3

3
u2sgn(x3),

x[1]3 = x3 +uT,
T 2

2

(4a)

y = x1, (4b)

where we use the abridged notation, i.e. x[1]i := xi(kT + T ), xi := xi(kT ), for i = 1,2,3, and u := u(kT ),
y := y(kT ). Note that (4) is the exact sampled-data model, since all terms of the sum in (2) for r ≥ 5 are
equal to zero. Note also that in the development of (4) we assumed that d

dx3
|x3|= sgn(x3) and d

dx3
sgn(x3)= 0,

which is not valid at the point x3 = 0.
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3. NEWTON OBSERVER

Hereinafter ξ [ j] denotes ξ (kT + jT ) for j ∈ Z. Moreover, we denote x :=
[
x1 x2 x3

]T and x[ j] :=[
x[ j]1 x[ j]2 x[ j]3

]T
. Here we adopt the Newton observer [14] for system (4). We introduce the following

notations: Y[k−2,k] :=
[
y[−2] y[−1] y

]T
, U[k−2,k−1] :=

[
u[−2] u[−1]

]T
, where Y[k−2,k] is a vector (buffer)

of the successive system measured outputs starting with the output at the time instant kT −2T , and U[k−2,k−1]
is a vector of the successive system measured inputs starting with the input at the time instant kT − 2T .
Moreover, we denote H

(
x[−2],U[k−2,k−1]

)
:=

[
h1 h2 h3

]T
, where

h1 :=h
(

x[−2]
)
= x[−2]

1 ,

h2 :=h
(

F
(

x[−2],u[−2]
))

= x[−2]
1 +T x[−2]

2 +
T 2

2

(
εx[−2]

3 + x[−2]
3

∣∣∣x[−2]
3

∣∣∣)
+

T 3

6
u[−2]

(
ε +2sgn(x[−2]

3 )x[−2]
3

)
+

T 4

12

(
u[−2]

)2
sgn(x[−2]

3 ),

h3 :=h
(

F
(

F
(

x[−2],u[−2]
)
,u[−1]

))
=

1
12

(
5T 4sgn

(
x[−2]

3

)(
u[−2]

)2
+T 4sgn

(
Tu[−2]+ x[−2]

3

)(
u[−1]

)2

+2T 3u[−2]
(

7ε +3
∣∣∣Tu[−2]+ x[−2]

3

∣∣∣+2T sgn
(

Tu[−2]+ x[−2]
3

)
u[−1]+8sgn

(
x[−2]

3

)
x[−2]

3

)
+2T 3u[−1]

(
ε +2sgn

(
Tu[−2]+ x[−2]

3

)
x[−2]

3

)
+6

(
2x[−2]

1 +T
(

4x[−2]
2 +T

(
4ε +3

∣∣∣x[−2]
3

∣∣∣+ ∣∣∣Tu[−2]+ x[−2]
3

∣∣∣)x[−2]
3

)))
.

The vector H displays the same outputs as those given in Y[k−2,k] but generated from the retarded state
x[−2] := x(kT −2T ) using multiple compositions of the system forward dynamics (4a) and the system output
map (4b).

The construction of the Newton observer is based on the solution of the set of nonlinear equations

Y[k−2,k]−H
(

x[−2],U[k−2,k−1]

)
= 0 (5)

with respect to x[−2]. The approach requires the iterative solution of (5) for each time interval. The Newton
observer applies Newton’s method to find the solution. Equations (5) are defined by an observability
mapping (one set of equations for each sampling period). Observe that for simplicity (to avoid application
of pseudo-inverse) we assumed that in (5) the set of equations to be solved is square. That is, since the
number of states to be estimated is three we have taken three equations∗.

Once the solution of (5) is found, i.e. the retarded state x[−2] is reconstructed, the current value of the
state x can be recovered by forwarding x[−2] twice using multiple composition of (4a). In particular,

x = F
(

F
(

x[−2],u[−2]
)
,u[−1]

)
.

To resume, the Newton observer is composed of an iterative solution of Eq. (5) and shift-forwarding
(extrapolating) the retarded state estimate to the current state estimate.

Below a detailed algorithm is given to find the state estimates for this specific case – three states to be
estimated, one control variable, three equations (with buffer two). Note that the Jacobian[

∂H/∂w[k]
i

(
w[k]

i ,U[k−2,k−1]

)]−1

can be computed symbolically.

∗ In the case when the number of equations exceeds the number of states, the inverse in (6) should be replaced by a pseudoinverse.
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Algorithm

Input: d, kmax. Output: state estimates = { }.

Step 1. Set w[0]
0 .

Step 2. Set k = 0.

Step 3. Set i = 0.

Step 4. Compute
w[k]

i+1 = w[k]
i +ϒ[k]

i , (6)

where ϒ[k]
i :=

[
∂H

∂w[k]
i

(
w[k]

i ,U[k−2,k−1]

)]−1(
Y[k−2,k]−H

(
w[k]

i ,U[k−2,k−1]

))
.

Step 5. Set i := i+1.

Step 6. If i ≤ d −1 (where d is a design parameter) then go to Step 4.

Step 7. Set w[k+1]
0 = F

(
w[k]

d ,u[k−2]
)

.

Step 8. The estimate is x̂[k] = F
(

w[k+1]
0 ,u[k−1]

)
. Add x̂[k] into the ordered set of estimates.

Step 9. Set k := k+1.

Step 10. If k ≤ kmax then go to Step 3.

Step 11. Return the state estimates.

Remarks

1. The design parameter kmax defines the number of time instances for which we want to estimate the
state variables. Since the Newton observer is an asymptotic observer, small values of kmax can lead to
insufficiently accurate estimates.

The design parameter d defines the number of iterations in Newton’s method. It is demonstrated
in [7] that increasing the number of iterations until it is big enough has a small effect upon observer
performance. Moreover, in case of measurement noise, increasing d may even have an undesirable effect. In
our simulations we took d = 10. This value was obtained as a result of the trial and error process performed
during simulations.
2. In case of measurement noise, it is desirable, as demonstrated in [7], to introduce the third design
parameter α , i.e. to replace Eq. (6) by w[k]

i+1 = w[k]
i +αϒ[k]

i , 0 < α < 1. By setting α = 1, the fastest observer
but the one with poor measurement noise rejection properties is achieved. Decreasing α will improve the
noise rejection ability of the observer.
3. Note that in the implementation we compute the expression ϒ[k]

i in (6) symbolically.
4. The sampling rate in (4) cannot be taken too small; for fast sampling rates the observability map (5) (to
be inverted) may become ill-conditioned. This may also happen when the system is weakly observable.
5. The vector w[0]

0 contains initial estimates of the states at the time instant kT − 2T . For the Newton
observer to converge, w[0]

0 has to be close enough to the actual state x[−2] (for the detailed discussion on the
convergence of the Newton observer we refer the reader to [14]). If the discrete Newton’s method does not
converge, one may use a quasi-Newton observer with a varying step size w[k]

i+1 = w[k]
i +λi,kϒ[k]

i or one may
apply a computationally more expensive continuous method [4]. The latter method is not described here
since we did not face any convergence problems.
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3.1. Reduced-order Newton observer

Note that the variable x1 is available from measurements and x2 = ẋ1 can be estimated using a low-pass
filter. Therefore, the reduced-order Newton observer can be applied to estimate the variable x3 only.

As a low-pass filter for x2 one may use (dTs/dt)x2 + x2 = (d/dt)x1, where Ts is a time constant of the
filter and the derivatives are approximated by the backward difference (x(kT )− x((k−1)T ))/T .

Next, in the construction of the reduced-order Newton observer we use the notations

Ȳ[k,k] := y,

H̄
(

x[−1]
3 , x̂[−1]

1 , x̂[−1]
2 ,u[−1]

)
:= h

(
F
(

x[−1]
3 , x̂[−1]

1 , x̂[−1]
2 ,u[−1]

))
= x̂[−1]

1 +T x̂[−1]
2

+
T 2

2

(
εx[−1]

3 + x[−1]
3

∣∣∣x[−1]
3

∣∣∣)+ T 3

6
u[−1]

(
ε +2sgn(x[−1]

3 )x[−1]
3

)
+

T 4

12

(
u[−1]

)2
sgn(x[−1]

3 ),

where x̂[−1]
1 stands for the measurement of x[−1]

1 and x̂[−1]
2 is the estimate of x[−1]

2 .
The construction of the reduced-order Newton observer is based on the solution of the nonlinear equation

Ȳ[k,k]− H̄
(

x[−1]
3 , x̂[−1]

1 , x̂[−1]
2 ,u[−1]

)
= 0 (7)

for x[−1]
3 . Once the solution of (7) is found, i.e. the retarded state x[−1]

3 is reconstructed, the current estimate
of the state x3 can be recovered by forwarding x[−1]

3 once using the composition of (4a).
In the Algorithm only Steps 4, 7, and 8 require slight notational modifications. At Step 4

ϒ[k]
i :=

[
∂ H̄

∂w[k]
i

(
w[k]

i , x̂[k−1]
1 , x̂[k−1]

2 ,u[k−1]
)]−1(

Y[k,k]− H̄
(

w[k]
i , x̂[k−1]

1 , x̂[k−1]
2 ,u[k−1]

))
.

Moreover, Steps 7 and 8 merge into one step, where

x̂[k]3 = F
(

w[k]
d , x̂[k−1]

1 , x̂[k−1]
2 ,u[k−1]

)
.

4. SIMULATION RESULTS

The AMB nonlinear 1-DOF system is described by state equations (3). The problem is to stabilize the rotor
mass at x =

[
0 0 1e−9

]T using the measurements of the rotor position x1, while the magnetic flux x3
and the rotor velocity x2 are not measurable and therefore not directly available for feedback.

For the AMB model, the discrete form of the control law with the estimates of the rotor velocity x̂2 and
flux x̂3 is given by u(k) = α (x1(k), x̂2(k), x̂3(k)).

The results are presented for three controllers, developed in [16] to stabilize the rotor mass,

u1 =−3x2
1x̂3 −2x̂2|x̂3|−3x1x̂2x̂3 − x̂3 +u0, (8a)

u2 =
1
2
(
3x2

1 +2x̂2x̂3|x̂3|+3x1x̂2 − x̂3
)
+u0, (8b)

u3 =−x̂2|x̂3|− x̂3 − x1x̂2x̂3 +u0, (8c)

where u0 = −k1x1 − k2x2 with the gains k1 = 0.92 and k2 = 9.94, optimized and evaluated in the previous
work [17]. These gains are kept constant for all simulations.
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Table 1. Parameters of the simulation and AMB system

Parameter Symbol Unit Value
Sampling time T s 0.001
Maximum number of samples kmax 1000
Design parameter d 100
Options of initial value for x1(0) m {0,0.001,0.01}

rotor position
Initial value for rotor velocity x2(0) m/s 0
Initial value for magnetic flux x3(0) Wb 1e−9
Options of initial value for u(0) V {−50,−100,−150}

controller output
Simulation time tmax s 10
Saturation of controller output usat V ±150

This section verifies via numerical simulations whether the Newton observer, adapted to system (3)
as described in Section 3, can be efficiently combined with the controllers (8) for the solution of the
aforementioned stability problem. All simulations are performed for the AMB control system with control
voltage saturation. The parameters of the simulation and AMB system are collected in Table 1. The
dynamics of the AMB system together with its exact discrete-time model (4) and the Newton observer
algorithm are implemented and simulated by using the Matlab software with fixed sampling time T .
Convergence of the proposed observer is evaluated by comparing its outputs, the state estimates, with the
known actual states of the closed-loop AMB system under three controllers described by (8). First, we
compare the outputs of the Newton observer with the known states of the flux-controlled AMB system. Note
that the Newton observer (6) is incorporated into the implementation of the controllers (8). Then, estimation
quality of the Newton observer-based state feedback and stability of the observer-based closed-loop system
are evaluated.

Figures 2 and 3 demonstrate the convergence of the full-order Newton observer for the estimation
of the state vector x = [x1 x2 x3]

T with controller (8a). One may observe that the error between the
estimate and the actual value converges to zero in time, not exceeding 0.05 s for all three states. The
first step of the Newton observer algorithm needs to provide an initial guess for the vector w0(kT ) =
[x1(kT −2T ) x2(kT −2T ) x3(kT −2T )]T. The proper choice of the initial values for this vector components
is essential. In our simulation the initial value of the rotor position x1(0) has three options {0,0.001,0.01}
while the initial rotor speed x2(0) = 0 and the magnetic flux x3(0) = 1e−9.

Remark 6. Note that the choice of small initial values for the observer is conditioned by the structural
limitations of the physical AMB system, where the rotor displacement is very small due to the quite small
air gap, which ensures high displacement stiffness.

One can observe from Figs 2 and 3 that the employed observer-based controller is robust to different
initial values of the rotor position x1(0). Figure 3 presents comparison of the true states and their estimate for
the initial condition x1(k−2) = 0.01, when the convergence error is the greatest. In all cases the convergence
of the observer is lost only for the first steps of the simulation. This situation is also shown in Fig. 2c, where
the estimation errors are given for the first 0.5 s of the simulation time.

Figure 4 presents the responses of the observer-based closed-loop system to different initial values of
the controller output u(0), i.e. {−50, −100, −150}. These responses are compared with the state feedback
trajectories without the observer. The Newton observer converges in all three cases. However, the stability
of the observer-based feedback-controlled system strongly depends on the chosen initial values, i.e. (due to
the natural behaviour of the flux-controlled AMB system operating in zero-bias mode) a larger initial value
of u gives a more stable closed-loop system. Note, however, that the initial value of u should not exceed the
value of saturation usat.
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Fig. 2. Observer-based feedback responses to changes of the initial values of the rotor position with the control law (8a).
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Fig. 3. Comparison of the true states and state estimates for the initial condition x1(k−2) = 0.01 with the control law (8a).
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Fig. 4. Responses of the observer-based closed-loop system (3) and (8a) for different initial values of the controller output.

Figure 5 presents the Newton observer-based feedback responses to different controllers (8a), (8b),
and (8c). The system trajectories and their estimates are compared for each controller. Also in this time,
the estimate of the state vector x = [x1 x2 x3]

T, in particular the magnetic flux, demonstrates satisfactory
performance. Notice that the closed-loop system stability and performance depend on the controller
structure (see [16] for details). The estimation errors ei = (x̂i −xi) for i = 1,2,3 in the simulations converge
to zero in time.

For the simulation results from Figs 2–5, we assumed ε = 0, i.e. the AMB system was reduced to
the zero-bias case. Next simulations in Fig. 6 present the nonzero-bias flux AMB system responses with
fixed ε = 2Φ0/Φsat, where the influence of the bias flux Φ0 on the AMB system responses is evaluated,
whereas Φsat = 0.0022 Wb. Comparison of the low-bias (0 < ε ≪ 1) and zero-bias (ε = 0) AMB observer-
based feedback responses to the initial conditions is presented in Fig. 6. The obtained results for the flux
estimation are similar, which confirms the robustness of the Newton observer.

The simulation results demonstrate that the performance of the Newton observer and observer-based
closed-loop system under the three control laws (8) is good in spite of the control voltage saturation and
the AMB nonlinearities. Both the observer-based feedback-controlled trajectories and the state feedback-
controlled trajectories without observer as well as control signals meet the desired performance. The settling
time is below 10 s for all simulations while the absolute value of the control voltage does not exceed 150 V.
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Fig. 5. Observer-based feedback responses to the different control laws (8a), (8b), and (8c).
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Fig. 6. Observer-based feedback responses to the initial conditions with the zero-bias flux Φ0 = 0 and the low-bias flux
Φ0 = 100,1000 µWb and with the control law (8a).
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5. CONCLUSIONS

The Newton observer was adapted for magnetic flux estimation in a flux-controlled nonlinear AMB system
(with singularity of the flux function), based on its exact discrete-time model. The effectiveness of the
observer was verified via the simulations when it was combined with the nonlinear controllers for rotor mass
stabilization, suggested in [17]. The simulations showed global asymptotic stability and good performance
(convergence) of the Newton observer-based closed-loop system. One of the topics for future research
is extension of the results of this paper for physical 5-DOF AMB system from [15], combined with the
Lyapunov Control Function based controllers.
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The work of Ü. Kotta and V. Kaparin is supported by the Estonian Research Council, personal research
funding grant PUT481. The publication costs of this article were covered by the Estonian Academy of
Sciences.

REFERENCES
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Newtoni olekutaastaja mittelineaarse aktiivse magnetlaagri jaoks

Arkadiusz Mystkowski, Ülle Kotta ja Vadim Kaparin

On kirjeldatud Newtoni olekutaastaja kohandamist magnetvoo hindamiseks mittelineaarse aktiivse
magnetlaagersüsteemi tagasisidega juhtimisel. Newtoni olekutaastaja konstrueeriti magnetlaagersüsteemi
täpse diskreetaja mudeli jaoks. Tulemus esitati detailse ja lihtsa rakendusalgoritmina. Newtoni oleku-
taastajat kombineeriti kolme kontrolleriga, mille efektiivsust verifitseeriti Matlabi tarkvara abil tehtud
simulatsioonide põhjal.


