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Abstract. The paper proves a theorem on the differentiation of a composite function with a generalized vector argument. The theorem
is formulated in terms of the delta derivative, which in the case of homogeneous time scales incorporates both the ordinary derivative
and the difference operator. The term “generalized vector argument” implies that a composite function is allowed to depend not only on
some variables but also on their delta derivatives. A formula in the theorem shows how the higher-order delta and partial derivatives of
a composite function commute. Moreover, it enables reducing the order of the delta derivative, making computations simpler and more
efficient. The computational efficiency of the formula was analysed on the basis of experiments in the symbolic computation software
Mathematica.
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1. INTRODUCTION

Various areas of mathematics, physics, control theory, etc. require the differentiation of a composite function
with a vector argument, whose components are functions of a common variable (for instance, time variable t). In
order to solve some theoretical problems, it is useful to have a rule for the commutation of the higher-order total
and partial derivatives of a function. The theorem proved in this paper offers such a rule (see Section 3). In order
to make the theorem applicable to homogeneous time scales, we formulated it in terms of the delta derivative,
merging both the ordinary derivative (in the case of a continuous time scale) and the difference operator (in the
case of a uniformly sampled discrete time scale). The special case of this theorem, when a composite function
depends only on some variables but not on their derivatives, was proved in [7] for the ordinary derivative, and
then applied in [6] and [8] to prove the main results. Afterwards, the extension of the theorem to the case of
homogeneous time scales was presented in [4] as a supplementary result. Unlike [7] and [4], in this paper we
address a more general case when a vector argument contains besides some variables also their derivatives of
different order. The main motivation to derive the theorem for such a case was the necessity to prove the main
result of [5]. A secondary benefit of the theorem can be found in its computational efficiency. In other words, the
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formula from the theorem allows one to reduce the time required for the computation of certain combinations of
derivatives (see Sections 4 and 5).

Note that though the theorem is stated in a single language of time scale formalism, the proof is given
separately for the continuous- and discrete-time cases, since, to the best of our knowledge, a single explicit
formula for the higher-order delta derivative of a composite function is absent. To prove the continuous-time
part, we used Mishkov’s formula [10], which explicitly expresses the higher-order total derivative of a composite
function with a vector argument. In the discrete-time case basic tools from the time scale calculus [3] were
employed.

2. PRELIMINARIES

In order to represent the main result of this paper for both the ordinary derivative and the difference operator
simultaneously, we employ the time scale formalism, which is briefly recalled in this section. A more thorough
introduction to the time scale calculus can be found in [3].

A time scale T is an arbitrary nonempty (topologically) closed subset of the real numbers R. Though the
variety of time scales is wide (see, for example, [1,3]), this paper is focused on only two of them, i.e., the
continuous time scale, T=R, and the discrete time scale, T= τZ := {τk : k ∈ Z} for τ > 0. The most important
notions of the time scale calculus are the forward jump operator σ , the delta derivative ∆, and the graininess
function µ . Applications of σ and ∆ to the function ξ : T→ R as well as the values of the graininess function µ
are presented in Table 1 for two cases T = R and T = τZ. A time scale T is called homogeneous if µ ≡ const
and, as can be seen from Table 1, both time scales T = R and T = τZ possess this property. Note that for the
simplicity of exposition we omit the variable t, i.e., use instead of ξ (t) the shorter notation ξ . Moreover, we
denote by ξ ⟨n⟩ the delta derivative of an arbitrary order n, whereas ξ σn

stands for the n-fold application of the

forward jump operator, so ξ ⟨n⟩ :=
(
ξ ⟨n−1⟩)∆

and ξ σn
:=
(

ξ σn−1
)σ

.

Proposition 2.1. For F,G :T→R the delta derivative and forward jump operator satisfy the following properties:
(i) Fσ = F +µF∆,
(ii) (αF +βG)∆ = αF∆ +βG∆, for α,β ∈ R,
(iii) (FG)∆ = Fσ G∆ +F∆G,
(iv) on a homogeneous time scale operators ∆ and σ commute, i.e.,

(Fσ )∆ =
(
F∆)σ

.

Observe that the generalization of item (i) above yields

F⟨n⟩ =
1

µn

n

∑
k=0

(−1)kCk
nFσn−k

(1)

for µ ̸= 0 and

Fσn
=

n

∑
i=0

Ci
nµ iF⟨i⟩, (2)

where Ck
n and Ci

n are the binomial coefficients.

Table 1. Basic types of operators/functions
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3. MAIN RESULT

The main result of this paper is the theorem below, which shows how the partial derivative of the higher-order
delta derivative of a composite function can be expressed through the higher-order delta derivatives of the partial
derivatives of this function. A composite function with a vector argument, consisting of an arbitrary but finite
number of variables and their delta derivatives, is considered.

Theorem 3.1. Let Φ : Rς1+···+ςr+r → R be a composite function of a vector argument Ξ :=[
ξ ⟨0⟩

1 , . . . ,ξ ⟨ς1⟩
1 , . . . ,ξ ⟨0⟩

r , . . . ,ξ ⟨ςr⟩
r

]
with ξ ⟨s j⟩

j : T → R for all j = 1, . . . ,r and s j = 0, . . . ,ς j, such that delta
derivatives of Φ(Ξ) are defined up to and including an order b; then

∂ (Φ(Ξ))⟨b⟩

∂ξ ⟨a⟩
l

=
min(ςl ,a)

∑
γ=max(0,a−b)

Cb−a+γ
b

(∂Φ(Ξ)

∂ξ ⟨γ⟩
l

)⟨b−a+γ⟩
σa−γ

, (3)

where l ∈ {1, . . . ,r} ; Cb−a+γ
b denotes the binomial coefficient, and a, b are non-negative integers, such that

b+ ςl ≥ a.

Proof. Since there is no single explicit formula for the higher-order delta derivative of a composite function on
time scales, two cases T= R and T= τZ will be considered separately.

Case 1 (T = R). Note that throughout this part of the proof the symbol ⟨n⟩ stands for the nth-order ordinary
derivative with respect to t. According to Mishkov’s formula [10], the bth derivative of the composite function
Φ(Ξ) can be computed by the formula (Φ(Ξ))⟨b⟩ = ∑b AbB

Φ
b Cb, where

Ab :=
b!

b

∏
i=1

(i!)ki
r

∏
j=1

b

∏
i=1

ς j

∏
s=0

qi, j,s!

,

BΦ
b :=

∂ kΦ(Ξ)

∂ξ ⟨0⟩
1

p1,0 · · ·∂ξ ⟨ς1⟩
1

p1,ς1 · · ·∂ξ ⟨0⟩
r

pr,0 · · ·∂ξ ⟨ςr⟩
r

pr,ςr
,

Cb :=
r

∏
j=1

b

∏
i=1

ς j

∏
s=0

(
ξ ⟨i+s⟩

j

)qi, j,s
,

(4)

and the sum ∑b is taken over all non-negative integer solutions of the Diophantine equations
b

∑
i=1

iki = b,

r

∑
j=1

ς j

∑
s=0

qi, j,s = ki, i = 1, . . . ,b.
(5)

Moreover, integers p j,s and k in BΦ
b stand for the order of the partial derivative with respect to ξ ⟨s⟩

j and the order
of the mixed partial derivative of Φ(Ξ), respectively, and satisfy the relations

p j,s =
b

∑
i=1

qi, j,s, j = 1, . . . ,r; s = 0, . . . ,ς j,

k =
r

∑
j=1

ς j

∑
s=0

p j,s =
b

∑
i=1

ki.

(6)
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Using the product rule for differentiation, one obtains

∂ (Φ(Ξ))⟨b⟩

∂ξ ⟨a⟩
l

= M+N, (7)

where

M := ∑
b

AbB
Φ
b

∂Cb

∂ξ ⟨a⟩
l

, N := ∑
b

Ab
∂BΦ

b

∂ξ ⟨a⟩
l

Cb.

In order to express explicitly ∂Cb/∂ξ ⟨a⟩
l in M, let us change in Cb the multiplication index i into ι = i+ s. It

is easy to observe that ι varies from 1 to b+ ς j. In this case s = ι − i, whose minimal and maximal values are
ι −b and ι −1, respectively. On the other hand, s changes form 0 to ς j. Therefore, we define the range of s from
max(0, ι −b) to min(ς j, ι −1). As a result, one may use the following identity:

b

∏
i=1

ς j

∏
s=0

αi+s,i,s =
b+ς j

∏
ι=1

min(ς j,ι−1)

∏
s=max(0,ι−b)

αι ,ι−s,s,

which leads to

Cb =
r

∏
j=1

b+ς j

∏
ι=1

min(ς j,ι−1)

∏
s=max(0,ι−b)

(
ξ ⟨ι⟩

j

)qι−s, j,s
.

Next, separating the multiplier with j = l and ι = a, one may rewrite the product above as

Cb =
min(ςl ,a−1)

∏
γ=max(0,a−b)

(
ξ ⟨a⟩

l

)qa−γ ,l,γ
Cb
j=l
ι ̸=a

Cb
j ̸=l

,

where, in order to avoid confusion, γ replaces the index s, independent from j and ι . Using the product of powers
property, we obtain

Cb =
(

ξ ⟨a⟩
l

)Λ
Cb
j=l
ι ̸=a

Cb
j ̸=l

,

where Λ := ∑min(ςl ,a−1)
γ=max(0,a−b) qa−γ,l,γ . Thus, the partial derivative of Cb with respect to ξ ⟨a⟩

l reads

∂Cb

∂ξ ⟨a⟩
l

=
Λ

ξ ⟨a⟩
l

(
ξ ⟨a⟩

l

)Λ
Cb
j=l
ι ̸=a

Cb
j ̸=l

=
Λ

ξ ⟨a⟩
l

Cb,

allowing one to rewrite M as

M =
min(ςl ,a−1)

∑
γ=max(0,a−b)

∑
b

qa−γ ,l,γ

ξ ⟨a⟩
l

AbB
Φ
b Cb. (8)

Now it is easy to observe that in M only addends of the sum ∑b with qa−γ ,l,γ ̸= 0 will matter. Note that, according
to (5), qa−γ ,l,γ ̸= 0 implies ka−γ ̸= 0. Taking into account that in this case ka−γ −1 and qa−γ ,l,γ −1 are non-negative,
it is eligible to introduce the following notations:

k̄i :=

{
ki −1 if i = a− γ,
ki otherwise,

q̄i, j,s :=

{
qi, j,s −1 if i = a− γ; j = l; s = γ,
qi, j,s otherwise,

(9)



V. Kaparin and Ü. Kotta: Differentiation of a function with a generalized vector argument 313

for i = 1, . . . ,b; j = 1, . . . ,r; s = 0, . . . ,ς j and rewrite (5) as
b

∑
i=1

ik̄i = b−a+ γ,

r

∑
j=1

ς j

∑
s=0

q̄i, j,s = k̄i, i = 1, . . . ,b.
(10)

Note that (10) is satisfied only under the following conditions:

k̄i = 0, b−a+ γ < i ≤ b,
q̄i, j,s = 0, b−a+ γ < i ≤ b; j = 1, . . . ,r; s = 0, . . . ,ς j.

(11)

As a consequence, (10) yields the following Diophantine equations:
b−a+γ

∑
i=1

ik̄i = b−a+ γ,

r

∑
j=1

ς j

∑
s=0

q̄i, j,s = k̄i, i = 1, . . . ,b−a+ γ,
(12)

leading to the conclusion

∑
b

qa−γ,l,γ ̸=0

α = ∑
b−a+γ

α, (13)

where the sum ∑b−a+γ is taken over all non-negative integer solutions of (12).
Next, for j = 1, . . . ,r and s = 0, . . . ,ς j we denote

p̄ j,s :=

{
p j,s −1 if j = l; s = γ,
p j,s otherwise,

k̄ := k−1,

(14)

which together with (9) and (11) allows one to rewrite (6) as

p̄ j,s =
b−a+γ

∑
i=1

q̄i, j,s, j = 1, . . . ,r; s = 0, . . . ,ς j,

k̄ =
r

∑
j=1

ς j

∑
s=0

p̄ j,s =
b−a+γ

∑
i=1

k̄i.

(15)

Furthermore, applying (9), (11), and (14) to (4) and taking into account that by direct computations b!/(a−γ)! =
Cb−a+γ

b (b−a+ γ)!, we obtain

Ab
qa−γ,l,γ ̸=0

=
Cb−a+γ

b
(q̄a−γ,l,γ +1)

Ab−a+γ ,

BΦ
b

qa−γ,l,γ ̸=0
= BΦ̄

b−a+γ ,

Cb
qa−γ,l,γ ̸=0

= ξ ⟨a⟩
l Cb−a+γ ,

(16)
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where

Ab−a+γ :=
(b−a+ γ)!

b−a+γ

∏
i=1

(i!)k̄i
r

∏
j=1

b−a+γ

∏
i=1

ς j

∏
s=0

q̄i, j,s!

,

BΦ̄
b−a+γ :=

∂ k̄Φ̄(Ξ)

∂ξ ⟨0⟩
1

p̄1,0 · · ·∂ξ ⟨ς1⟩
1

p̄1,ς1 · · ·∂ξ ⟨0⟩
r

p̄r,0 · · ·∂ξ ⟨ςr⟩
r

p̄r,ςr
,

Cb−a+γ :=
r

∏
j=1

b−a+γ

∏
i=1

ς j

∏
s=0

(
ξ ⟨i+s⟩

j

)q̄i, j,s
,

(17)

and

Φ̄(Ξ) :=
∂Φ(Ξ)

∂ξ ⟨γ⟩
l

. (18)

As a result, recalling that qa−γ ,l,γ = q̄a−γ ,l,γ +1 and using (13), (16), we express (8) as

M =
min(ςl ,a−1)

∑
γ=max(0,a−b)

Cb−a+γ
b ∑

b−a+γ
Ab−a+γB

Φ̄
b−a+γCb−a+γ .

Now, taking into account (12), (15), (17), and (18), one may again apply Mishkov’s formula to obtain

M =
min(ςl ,a−1)

∑
γ=max(0,a−b)

Cb−a+γ
b

(
∂Φ(Ξ)

∂ξ ⟨γ⟩
l

)⟨b−a+γ⟩

.

Next, the application of Mishkov’s formula to N yields

N =

(
∂Φ(Ξ)

∂ξ ⟨a⟩
l

)⟨b⟩

=Cb−a+γ
b

(
∂Φ(Ξ)

∂ξ ⟨γ⟩
l

)⟨b−a+γ⟩

for γ = a. Thus, observing that N is different from zero only for ςl ≥ a, we may rewrite (7) as

∂ (Φ(Ξ))⟨b⟩

∂ξ ⟨a⟩
l

=
min(ςl ,a)

∑
γ=max(0,a−b)

Cb−a+γ
b

(
∂Φ(Ξ)

∂ξ ⟨γ⟩
l

)⟨b−a+γ⟩

,

confirming (3) for T= R (σ a−γ = id).
Case 2 (T= τZ). Note that in this case the symbol ⟨n⟩ means the n-fold application of the difference operator.

Using (1) for n = b, the definition of the operator σ , and the chain rule for the partial derivative with respect to
ξ ⟨a⟩

l , one obtains

∂ (Φ(Ξ))⟨b⟩

∂ξ ⟨a⟩
l

=
1

µb

b

∑
k=0

(−1)kCk
b

ςl

∑
γ=0

∂ (Φ(Ξ))σb−k

∂
(

ξ ⟨γ⟩
l

)σb−k ·
∂
(

ξ ⟨γ⟩
l

)σb−k

∂ξ ⟨a⟩
l

,

which, according to (2) for n = b− k, yields

∂ (Φ(Ξ))⟨b⟩

∂ξ ⟨a⟩
l

=
1

µb

b

∑
k=0

(−1)kCk
b

ςl

∑
γ=0

∂ (Φ(Ξ))σb−k

∂
(

ξ ⟨γ⟩
l

)σb−k

b−k

∑
i=0

Ci
b−kµ i ∂ξ ⟨γ+i⟩

l

∂ξ ⟨a⟩
l

.
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In order to find ∂ξ ⟨γ+i⟩
l /∂ξ ⟨a⟩

l , it is necessary to express the sum γ + i in terms of a single index. For that purpose
we, first, use the identity

b

∑
k=0

b−k

∑
i=0

αk,i =
b

∑
i=0

b−i

∑
k=0

αk,i,

leading to
∂ (Φ(Ξ))⟨b⟩

∂ξ ⟨a⟩
l

=
1

µb

b

∑
i=0

b−i

∑
k=0

(−1)kCk
b

ςl

∑
γ=0

∂ (Φ(Ξ))σb−k

∂
(

ξ ⟨γ⟩
l

)σb−k Ci
b−kµ i ∂ξ ⟨γ+i⟩

l

∂ξ ⟨a⟩
l

,

and then we change the summation index i into ι = γ + i. It is easy to observe that ι varies from 0 to b+ ςl . In
this case γ = ι − i, whose minimal and maximal values are ι −b and ι , respectively. On the other hand, γ changes
form 0 to ςl . Therefore, we define the range of γ from max(0, ι − b) to min(ςl, ι). As a result, one may use the
identity

b

∑
i=0

ςl

∑
γ=0

αγ+i,i,γ =
b+ςl

∑
ι=0

min(ςl ,ι)

∑
γ=max(0,ι−b)

αι ,ι−γ ,γ

to obtain
∂ (Φ(Ξ))⟨b⟩

∂ξ ⟨a⟩
l

=
1

µb

b+ςl

∑
ι=0

min(ςl ,ι)

∑
γ=max(0,ι−b)

b−ι+γ

∑
k=0

(−1)kCk
b

∂ (Φ(Ξ))σb−k

∂
(

ξ ⟨γ⟩
l

)σb−k Cι−γ
b−kµ ι−γ ∂ξ ⟨ι⟩

l

∂ξ ⟨a⟩
l

.

Taking into account that ∂ξ ⟨ι⟩
l /∂ξ ⟨a⟩

l equals 0 for every ι , except for ι = a when it equals 1, and using the relation
µa−γ/µb = 1/µb−a+γ , one may rewrite the equality above as

∂ (Φ(Ξ))⟨b⟩

∂ξ ⟨a⟩
l

=
min(ςl ,a)

∑
γ=max(0,a−b)

1
µb−a+γ

b−a+γ

∑
k=0

(−1)kCk
bCa−γ

b−k
∂ (Φ(Ξ))σb−k

∂
(

ξ ⟨γ⟩
l

)σb−k .

Finally, applying the identity Ck
bCa−γ

b−k =Cb−a+γ
b Ck

b−a+γ and the properties

∂ (F(ξ ))σ i

∂ξ σ i =

(
∂F(ξ )

∂ξ

)σ i

, Fσ i+ j
=
(

Fσ i
)σ j

,

we obtain

∂ (Φ(Ξ))⟨b⟩

∂ξ ⟨a⟩
l

=
min(ςl ,a)

∑
γ=max(0,a−b)

Cb−a+γ
b

 1
µb−a+γ

b−a+γ

∑
k=0

(−1)kCk
b−a+γ

(
∂Φ(Ξ)

∂ξ ⟨γ⟩
l

)σb−a+γ−kσa−γ

,

which, according to (1) for n = b−a+ γ , confirms (3). This completes the proof.

The following corollary provides, in a sense, an inverse relation to that presented in Theorem 3.1, i.e., it
shows how the delta derivative of the partial derivative of a composite function can be expressed through the
partial derivatives of the delta derivatives of this function.

Corollary 3.2. Under the assumption of Theorem 3.1 for all b ≤ w the following holds:(
∂Φ(Ξ)

∂ξ ⟨v⟩
l

)⟨w⟩

=
min(v,w)

∑
ζ=0

(−1)ζ Cζ
w

(
∂Φ(Ξ)⟨w−ζ ⟩

∂ξ ⟨v−ζ ⟩
l

)σζ

, (19)

where w is a non-negative integer and v = 0, . . . ,ςl .
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Proof. Taking into account that w−ζ and v−ζ are always non-negative and w+ ςl ≥ v, one may apply formula
(3) to a = v−ζ and b = w−ζ to rewrite (19) as

(
∂Φ(Ξ)

∂ξ ⟨v⟩
l

)⟨w⟩

=
min(v,w)

∑
ζ=0

(−1)ζ Cζ
w

v−ζ

∑
γ=max(0,v−w)

Cw−v+γ
w−ζ

(∂Φ(Ξ)

∂ξ ⟨γ⟩
l

)⟨w−v+γ⟩
σ v−γ

.

Using the relation Cζ
wCw−v+γ

w−ζ =Cζ
v−γC

v+γ
w and changing the summation order according to the identity

min(v,w)

∑
ζ=0

v−ζ

∑
γ=max(0,v−w)

αζ ,γ =
v

∑
γ=max(0,v−w)

v−γ

∑
ζ=0

αζ ,γ ,

we obtain (
∂Φ(Ξ)

∂ξ ⟨v⟩
l

)⟨w⟩

=
v

∑
γ=max(0,v−w)

Cv+γ
w

(∂Φ(Ξ)

∂ξ ⟨γ⟩
l

)⟨w−v+γ⟩
σ v−γ

v−γ

∑
ζ=0

(−1)ζ Cζ
v−γ .

Separation of the last addend of the sum ∑v
γ=max(0,v−w) yields

(
∂Φ(Ξ)

∂ξ ⟨v⟩
l

)⟨w⟩

=

(
∂Φ(Ξ)

∂ξ ⟨v⟩
l

)⟨w⟩

+Ov, (20)

where

Ov :=


0 if v = 0,

v−1

∑
γ=max(0,v−w)

Cv+γ
w

(∂Φ(Ξ)

∂ξ ⟨γ⟩
l

)⟨w−v+γ⟩
σ v−γ

v−γ

∑
ζ=0

(−1)ζ Cζ
v−γ if v > 0.

Using the binomial theorem (α +β )v−γ = ∑v−γ
ζ=0Cζ

v−γαζ β v−γ−ζ for α =−1, β = 1, and v− γ > 0, we get

v−γ

∑
ζ=0

(−1)ζ Cζ
v−γ = 0,

implying Ov = 0. Thus, the identity (20) confirms (19).

4. EXAMPLES

The examples in this section illustrate the application of formula (3).

Example 4.1. Consider the composite function Φ1
(
u,y,y⟨1⟩,y⟨2⟩

)
= uy⟨1⟩+ yy⟨2⟩ defined on the continuous time

scale T = R (the symbol ⟨i⟩ stands for the ith-order ordinary derivative with respect to t and σ i = id). Assume
that we need to compute the partial derivative with respect to y⟨3⟩ of the 5th-order total derivative of the function
Φ1(·). For this purpose the ordinary steps are the computation of the total derivative

(Φ1(·))⟨5⟩ = 10u⟨3⟩y⟨3⟩+5y⟨2⟩u⟨4⟩+10u⟨2⟩y⟨4⟩+15y⟨3⟩y⟨4⟩

+ y⟨1⟩u⟨5⟩+5u⟨1⟩y⟨5⟩+11y⟨2⟩y⟨5⟩+uy⟨6⟩+5y⟨1⟩y⟨6⟩+ yy⟨7⟩
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and then differentiation with respect to y⟨3⟩, yielding

∂ (Φ1(·))⟨5⟩

∂y⟨3⟩
= 10u⟨3⟩+15y⟨4⟩.

On the other hand, one may use formula (3) as follows:

∂ (Φ1(·))⟨5⟩

∂y⟨3⟩
=C2

5

(
∂Φ1(·)

∂y

)⟨2⟩
+C3

5

(
∂Φ1(·)
∂y⟨1⟩

)⟨3⟩
+C4

5

(
∂Φ1(·)
∂y⟨2⟩

)⟨4⟩

= 10y⟨4⟩+10u⟨3⟩+5y⟨4⟩ = 10u⟨3⟩+15y⟨4⟩.

Observe that formula (3) does not require the computation of (Φ1(·))⟨5⟩. Moreover, it allows one to compute
partial derivatives before total derivatives and reduces the maximal order of the total derivative. As a result, the
computations become simpler and more efficient.

Example 4.2. Consider the composite function Φ2
(
u,y,y⟨1⟩,y⟨2⟩

)
= uy⟨1⟩+yy⟨2⟩ defined on a homogeneous time

scale1 T. Assume that we need to compute the partial derivative with respect to y⟨4⟩ of the 2nd-order total delta
derivative of the function Φ2(·). Usually, one needs to compute first the total delta derivative

(Φ2(·))⟨2⟩ = y⟨1⟩u⟨2⟩+2u⟨1⟩y⟨2⟩+2µu⟨2⟩y⟨2⟩+
(

y⟨2⟩
)2

+uy⟨3⟩+2µu⟨1⟩y⟨3⟩

+2y⟨1⟩y⟨3⟩+µ2u⟨2⟩y⟨3⟩+2µy⟨2⟩y⟨3⟩+ yy⟨4⟩+2µy⟨1⟩y⟨4⟩+µ2y⟨2⟩y⟨4⟩

and then the partial derivative with respect to y⟨4⟩, which yields

∂ (Φ2(·))⟨2⟩

∂y⟨4⟩
= y+2µy⟨1⟩+µ2y⟨2⟩.

Alternatively, formula (3) leads to

∂ (Φ2(·))⟨2⟩

∂y⟨4⟩
=C0

2

(
∂Φ2(·)
∂y⟨2⟩

)σ2

= yσ2
= y+2µy⟨1⟩+µ2y⟨2⟩.

Like in the case of Example 4.1, one may observe that the application of formula (3) significantly simplifies the
computations.

5. COMPUTATIONAL EFFICIENCY

In this section the computational efficiency of formula (3) is examined on the basis of experiments performed
via the symbolic computation program Mathematica. The objective of the experiments is the comparison of the
computation times for both sides of formula (3) with different variations in parameters. For that purpose we
employed the Mathematica function Timing, which returns the time (in seconds) used by CPU for the evaluation
of an expression. Furthermore, in order to avoid the influence of previous computations, internal system caches of
stored results were cleared between the experiments by means of the command ClearSystemCache. The technical

1 Note that due to the computational complexity of the single formula for the delta derivative of a composite function on time scales [3]
it is easier to perform computations separately for continuous and discrete time scales. However, in this example the function Φ2(·)
contains only products of variables. Therefore, the rules from Proposition 2.1 are enough to perform computations in a unified man-
ner.
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Table 2. Average computation times [s] of the left-hand side (L) and the right-hand side (R) of formula (3) for T= R, ς1 = · · ·= ςr = 2
and various values of a, b, r

b a r = 2 r = 3 r = 4
L R L R L R

0
0 0.000053 0.000076 0.000061 0.000082 0.000070 0.000095
1 0.000066 0.000087 0.000070 0.000088 0.000076 0.000095
2 0.000074 0.000099 0.000087 0.000102 0.000095 0.000131

1

0 0.000342 0.000203 0.000520 0.000284 0.000763 0.000404
1 0.000325 0.000226 0.000528 0.000326 0.000773 0.000428
2 0.000332 0.000237 0.000543 0.000322 0.000735 0.000376
3 0.000222 0.000105 0.000309 0.000127 0.000427 0.000130

2

0 0.002030 0.000894 0.004706 0.001841 0.008979 0.003272
1 0.002102 0.000978 0.004808 0.002004 0.009048 0.003462
2 0.002108 0.001070 0.005141 0.002111 0.009324 0.003439
3 0.001292 0.000253 0.002658 0.000339 0.005239 0.000388
4 0.001038 0.000102 0.002402 0.000117 0.004755 0.000120

3

0 0.013657 0.005440 0.040496 0.016051 0.100210 0.040032
1 0.013987 0.006068 0.041588 0.017764 0.103942 0.042604
2 0.014221 0.006497 0.041898 0.017717 0.107050 0.042283
3 0.009361 0.000875 0.027026 0.001984 0.063336 0.003640
4 0.008009 0.000244 0.023754 0.000300 0.054955 0.000415
5 0.006769 0.000094 0.021688 0.000105 0.050361 0.000101

specifications of the computer, used in the experiments, are the following: processor Intel Core i7-3740QM, 2.7
GHz, 4 cores, 256 KB L2 cache (per core), 6 MB L3 cache; 16 GB of 1600 MHz DDR3 Random-access memory;
operating system OS X 10.11.3; computation software Mathematica 9.0.1.

The experiments were performed separately for a continuous time scale (T= R) and its discrete counterpart
(T = τZ) due to the computational complexity of the single formula for the delta derivative of a composite
function on time scales [3]. In the case T = R we used the built-in Mathematica function D to compute
derivatives, whereas in the case T= τZ the functions DeltaD and ForwardShift from the package NLControl (see
[2]) were employed as the difference and forward jump operators, respectively. The results of the experiments
are presented in Tables 2–5. Note that for the sake of reliability, each experiment was repeated ten times and the
average value of the obtained results was entered into the table.

Tables 2 and 3 consist of the results for T= R, whereas the results for T= τZ are displayed in Tables 4 and
5. Both in Tables 2 and 4 the number of variables r in a vector argument Ξ varies, while the maximal orders of
their derivatives ς1, . . . ,ςr are fixed. In contrast, Tables 3 and 5 contain the results for vector arguments with a
fixed number of variables r = 1 and various maximal orders of derivatives ς1. For ease of comparison, cells with
worse results have grey background. Moreover, light grey means that a result is less than two times worse, grey
denotes the results that are twice or more but less than ten times worse, and dark grey indicates that a result is ten
or more times worse.

Both Tables 2 and 3 show that for T = R the right-hand side of formula (3) is more efficient than its left-
hand counterpart in almost all cases, except for the trivial one, when b = 0. Nevertheless, even in this case
the differences between results are not very significant. Next, one can observe that the bigger the values of
the parameters b,r,ς1, . . . ,ςr, the more efficient is the right-hand side of (3). Moreover, its efficiency extremely
increases for a > ςl, l ∈ {1, . . . ,r}. Finally, note that in the worst of the presented cases (Table 3: b = 0, a = 0,
ς1 = 2) the right-hand side of (3) is 1.56 times slower than its traditional analogue, while in the best case (Table 2:
b = 3, a = 5, r = 4) it is almost 500 times faster than the rival.
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Table 3. Average computation times [s] of the left-hand side (L) and the right-hand side (R) of formula (3) for T= R, r = 1 and various
values of a, b, ς1

b a ς1 = 2 ς1 = 3 ς1 = 4
L R L R L R

0

0 0.000044 0.000069 0.000045 0.000065 0.000048 0.000066
1 0.000052 0.000071 0.000056 0.000074 0.000059 0.000085
2 0.000065 0.000088 0.000073 0.000083 0.000073 0.000094
3 0.000082 0.000097 0.000083 0.000096
4 0.000087 0.000103

1

0 0.000160 0.000128 0.000206 0.000156 0.000257 0.000163
1 0.000179 0.000161 0.000218 0.000178 0.000260 0.000195
2 0.000188 0.000185 0.000242 0.000196 0.000285 0.000212
3 0.000131 0.000084 0.000233 0.000204 0.000301 0.000225
4 0.000158 0.000094 0.000306 0.000253
5 0.000185 0.000098

2

0 0.000518 0.000285 0.000907 0.000437 0.001242 0.000566
1 0.000550 0.000355 0.000962 0.000518 0.001344 0.000692
2 0.000628 0.000395 0.001006 0.000528 0.001412 0.000747
3 0.000435 0.000159 0.001036 0.000630 0.001414 0.000784
4 0.000336 0.000084 0.000643 0.000185 0.001442 0.000853
5 0.000516 0.000086 0.000906 0.000214
6 0.000785 0.000108

3

0 0.001968 0.001025 0.003959 0.001924 0.007193 0.003336
1 0.002155 0.001201 0.004668 0.002420 0.007605 0.003901
2 0.002181 0.001369 0.004676 0.002430 0.007883 0.003971
3 0.001420 0.000355 0.004639 0.002347 0.008109 0.003982
4 0.001287 0.000152 0.003140 0.000566 0.007729 0.002973
5 0.001184 0.000081 0.002521 0.000191 0.005106 0.000732
6 0.002361 0.000091 0.004585 0.000231
7 0.004090 0.000109

Analysis of Tables 4 and 5 reveals that, like in the case T=R, in the discrete-time case T= τZ the right-hand
side of formula (3) is not efficient for b = 0 and is extremely efficient for a > ςl, l ∈ {1, . . . ,r}. However, the
situation is different for a ≤ ςl, l ∈ {1, . . . ,r}, when the right-hand side of (3) yields almost the same but (in most
cases) slightly worse results than its left-hand counterpart. The reason for such discrepancy between the cases
T= R and T= τZ is the forward jump operator σa−γ , which requires additional computational time for T= τZ
and vanishes for T= R as σ = id in this case. For this reason the right-hand side of (3) is frequently faster than
the left-hand one for a = 0, when σ a−γ = id. Finally, one may observe that in the worst of the presented cases
(Table 5: b = 0, a = 0, ς1 = 2) the right-hand side of (3) is 1.69 times slower than its traditional analogue, while
in the best case (Table 4: b = 3, a = 5, r = 4) it is 140 times faster than the rival.

6. CONCLUSIONS

The theorem in the paper provides the commutation rule for the higher-order delta and partial derivatives of a
composite function with a generalized vector argument. The applicability of the theorem to theoretical research
in the field of nonlinear control systems has already been confirmed in [4–6,8], whose proofs of the main results
rely on the suggested commutation rule. Due to the unified formulation of the theorem on homogeneous time
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Table 4. Average computation times [s] of the left-hand side (L) and the right-hand side (R) of formula (3) for T= τZ, ς1 = · · ·= ςr = 2
and various values of a, b, r

b a r = 2 r = 3 r = 4
L R L R L R

0
0 0.000080 0.000134 0.000090 0.000147 0.000095 0.000152
1 0.000079 0.000133 0.000095 0.000140 0.000103 0.000158
2 0.000082 0.000131 0.000092 0.000148 0.000102 0.000162

1

0 0.007141 0.007390 0.010098 0.009886 0.013027 0.012799
1 0.007421 0.007648 0.010079 0.010208 0.012972 0.012917
2 0.007305 0.007330 0.009827 0.009943 0.012853 0.012522
3 0.007121 0.000201 0.009314 0.000262 0.013014 0.000297

2

0 0.036564 0.035992 0.051326 0.049728 0.065659 0.064578
1 0.035993 0.037032 0.050713 0.052529 0.065522 0.067529
2 0.035646 0.036563 0.050799 0.052248 0.065570 0.067461
3 0.035917 0.007455 0.050597 0.010483 0.065084 0.013046
4 0.035634 0.000350 0.050537 0.000430 0.065531 0.000542

3

0 0.081602 0.080837 0.118095 0.117639 0.153833 0.153824
1 0.081111 0.086094 0.117980 0.125055 0.152707 0.160879
2 0.082174 0.089330 0.117103 0.126280 0.152490 0.163512
3 0.083010 0.038566 0.117600 0.053632 0.152013 0.069758
4 0.081971 0.008012 0.117231 0.011007 0.152981 0.014747
5 0.081106 0.000620 0.116588 0.000828 0.153230 0.001088

scales, it can be used for both continuous-time control systems and delta-domain models, introduced in [9] as the
sampled-data models of continuous-time systems, expressed in terms of the difference (delta) operator (i.e., delta
derivative in the time scale formalism). Moreover, we tend to believe that the presented theorem has potential
benefit for various areas of physics and mathematical analysis, where the differentiation of a composite function is
employed. As a supplementary advantage, the formula in the theorem provides a more efficient way of computing
certain combinations of the higher-order delta and partial derivatives than the straightforward one.

The presented result is limited only to the case of homogeneous time scales and its formulation and proof
for an arbitrary time scale remain a topic for future research. Note, however, that such kind of generalization
is not an easy task due to the absence of necessary mathematical tools, unified for all time scales. Therefore,
one of the approaches in this situation is gradual extension of results. For example, one of the possible future
steps in this direction can be the study of the problem on a larger class of regular time scales, which comprises
non-homogeneous time scales with certain properties [1].
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Table 5. Average computation times [s] of the left-hand side (L) and the right-hand side (R) of formula (3) for T= τZ, r = 1 and various
values of a, b, ς1

b a ς1 = 2 ς1 = 3 ς1 = 4
L R L R L R

0

0 0.000069 0.000117 0.000071 0.000120 0.000075 0.000123
1 0.000070 0.000118 0.000074 0.000124 0.000076 0.000128
2 0.000075 0.000119 0.000074 0.000124 0.000079 0.000132
3 0.000077 0.000124 0.000080 0.000130
4 0.000080 0.000130

1

0 0.004483 0.004533 0.005043 0.005207 0.006452 0.006407
1 0.004545 0.004549 0.004983 0.005308 0.006072 0.006458
2 0.004521 0.004575 0.004923 0.005139 0.006502 0.006954
3 0.004505 0.000170 0.005521 0.005863 0.006238 0.006472
4 0.005499 0.000183 0.006391 0.006722
5 0.006447 0.000207

2

0 0.021232 0.020691 0.026917 0.026434 0.031223 0.030869
1 0.021868 0.022223 0.026369 0.027353 0.031741 0.033307
2 0.021638 0.022654 0.026853 0.027787 0.030976 0.033024
3 0.021208 0.004848 0.027023 0.027985 0.031722 0.032879
4 0.020886 0.000239 0.025254 0.005919 0.031201 0.033274
5 0.026037 0.000276 0.030747 0.006490
6 0.031818 0.000323

3

0 0.046192 0.046174 0.059380 0.058439 0.069883 0.069811
1 0.046156 0.050937 0.058061 0.063677 0.071080 0.075143
2 0.046334 0.052445 0.059123 0.065035 0.070029 0.078227
3 0.046622 0.022958 0.058873 0.064086 0.070392 0.078743
4 0.046141 0.005024 0.058500 0.028165 0.070003 0.077608
5 0.046084 0.000359 0.058415 0.006560 0.070802 0.033692
6 0.058311 0.000478 0.070428 0.007383
7 0.070839 0.000582
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7. Kaparin, V. and Kotta, Ü. Theorem on the differentiation of a composite function with a vector argument. Proc. Estonian Acad. Sci.,
2010, 59, 195–200.
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Üldistatud vektorargumendiga liitfunktsiooni diferentseerimisest
homogeensetel ajaskaaladel

Vadim Kaparin ja Ülle Kotta

On tõestatud teoreem üldistatud vektorargumendiga liitfunktsiooni diferentseerimise kohta. Teoreem
on formuleeritud deltatuletise kaudu, mis homogeensetel ajaskaaladel ühildab tavalise ajalise tuletise ja
diferentsoperaatori. Termini “üldistatud vektorargument” all mõistetakse liitfunksiooni, mis sõltub mitte
ainult muutujatest, vaid ka nende deltatuletistest. Teoreemis esitatud valem näitab, kuidas kommuteeruvad
liitfunktsiooni kõrgemat järku delta- ja osatuletised. Peale selle võimaldab valem alandada deltatuletise järku,
mis lihtsustab arvutusi. Valemi arvutusliku efektiivsuse analüüs on esitatud Mathematica tarkvaras tehtud katsete
alusel.


