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Abstract. In this paper we introduce the Blackman- and Rogosinski-type approximation processes in an abstract Banach space setting.
The historical roots of these processes go back to W. W. Rogosinski in 1926. The given new definitions use a cosine operator functions
concept. We prove that in the presented setting the Blackman- and Rogosinski-type operators possess the order of approximation that
coincides with results known in trigonometric approximation. Also applications for different types of approximations are given. An
application for the Fourier series of symmetric functions with respect to π is emphasized.
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1. INTRODUCTION

The aim of this paper is to introduce an abstract framework of certain approximation processes using a cosine
operator functions concept. Historical roots of these processes go back to Rogosinski [13], who proved that the
arithmetical mean of shifted Fourier partial sums converges uniformly to a given 2π-periodic continuous function
f ∈C2π . In notations: for f ∈C2π the Fourier partial sums

Sn( f ,x) =
a0

2
+

n

∑
k=1

ak coskx+bk sinkx

define the Rogosinski means by

Rn( f ,x) :=
1
2

(
Sn

(
f ,x+

π
2(n+1)

)
+Sn

(
f ,x− π

2(n+1)

))
. (1.1)

Let X be an arbitrary (real or complex) Banach space and [X ] the Banach algebra of all bounded linear operators
U of X into itself.

Let {Pk}∞
k=0 ⊂ [X ] be a given sequence of mutually orthogonal projections, i.e. PjPk = δ jkPk, (δ jk being

the Kronecker symbol). Moreover, let us assume that the sequence of projections is total, i.e. Pk f = 0 for all
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k = 0,1,2, ... implies f = 0, and fundamental, i.e. the linear span of
∞∪

k=0
Pk(X) is dense in X . Then with each

f ∈ X one may associate its unique Fourier series expansion

f ∼
∞

∑
k=0

Pk f

with the Fourier partial sums operator or Fourier projection operator

Sn f =
n

∑
k=0

Pk f .

As we know from the trigonometric Fourier approximation, the strong convergence of the Fourier partial sums
is not guaranteed for all f ∈ X . The improvement of that situation will be given by some matrix transformation
like

Un f =
n

∑
k=0

Θk(n)Pk f .

The first matrix transformation with Θk(n) = 1− k
n+1 for the trigonometric Fourier series was introduced by

L. Fejér in 1904 ([5], cited in [3]). Later Rogosinski [13] introduced the arithmetical mean of shifted Fourier
partial sums (1.1), which appeared to be the matrix transformation with Θk(n) = cos kπ

2(n+1) .

In this paper we introduce in an abstract setting the Rogosinski- and Blackman-type operators and find
the order of approximation via a modulus of continuity (smoothness), which is defined by a general cosine
operator functions. We used a little less abstract setting in [8]. The Rogosinski- and Blackman-type operators are
interesting because they are applicable in approximation by Fourier expansions of different orthogonal systems, in
summation of Fourier transforms, and in approximation by generalized Shannon sampling operators. Moreover,
in some particular cases, we are able to calculate precise values of their operator norms.

Definition 1. A cosine operator function Th ∈ [X ] (h ≥ 0) is defined by the properties
(i) T0 = I (identity operator),

(ii) Th1 ·Th2 =
1
2(Th1+h2 +T|h1−h2|),

(iii) ∥Th f∥ ≤ T∥ f∥, the constant T > 0 does not depend on h > 0.

Remark 1. Let τh ∈ [X ], h ∈ R, be a translation operator, defined by the properties
(i) τ0 = I,

(ii) τh1 · τh2 = τh1+h2 ,
(iii) ∥τh f∥ ≤ T∥ f∥,0 < T− not depending on h ∈ R.

Then Th := 1
2(τh + τ−h), h ≥ 0, is a cosine operator function.

The following example demonstrates why sometimes we should use the cosine operator function.
System of symmetric trigonometric functions with respect to π . Let X = C−

2π denote the space of
symmetric functions with respect to π (shortly π-symmetric) and in addition 4π-periodic, i.e. we suppose that
f (π − x) = f (π + x) (or equivalently, f (2π − x) = f (x)) and f (4π + x) = f (x) for all x ∈ R. For example, for
k = 0,1,2, ... the functions y = coskx, y = sin(k+ 1

2)x are in space C−
2π , but y = sin((k+1/2)x) are not in C2π . An

interesting phenomenon of π-symmetry is that for any continuous function f on [−π,π] its π-symmetric and 4π-
periodic extension are always continuous on R. This is not the case of 2π-periodic extension of any continuous
function f on [−π,π]; to be continuous in addition the equality f (−π) = f (π) should be valid. Since the system
{coskx, sin((k+1/2)x)}∞

k=0 is orthogonal on [−π,π] under usual scalar product, we may consider the Fourier
partial sums operator

S−n ( f ,x) =
n

∑
k=0

′ (ak coskx+dk sin((k+1/2)x)) , (1.2)
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where ∑ ′ here and in the following means that the coefficient a0 is halved and

ak =
1
π

π∫
−π

f (t)cosktdt, dk =
1
π

π∫
−π

f (t)sin((k+1/2)t)dt.

If a function f ∈C2π , it is obvious that for the ordinary translation operator τh( f ,x) = f (x+h), h ∈ R, we have
τh f ∈ C2π as well. But here we may note that the ordinary translation operator τh( f ,x) = f (x + h), h ∈ R,
is not good for the π-symmetric functions, since, for example, τh

(
sin
( 1

2◦
)
,x
)
= sin 1

2(x+ h) /∈ C−
2π for every

h ̸= 2kπ,k ∈ Z. For the cosine operator function

Th( f ,x) =
1
2
( f (x+h)+ f (x−h)) , h ≥ 0

we state the following, quite obvious,

Lemma 1. Let f ∈C−
2π . Then for every h ≥ 0 the cosine operator function yields Th f ∈C−

2π .

Fourier-Chebyshev series. For f ∈C[−1,1] let us consider the Fourier–Chebyshev partial sums operator

SC
n ( f ,x) = f̂C(0)+2

n

∑
k=1

f̂C(k)Tk(x),

where

f̂C(k) :=
1
π

1∫
−1

f (u)Tk(u)
du√

1−u2

is the kth Fourier–Chebyshev coefficient, and Tk(u) = cos(k arccosu) is the kth Chebyshev polynomial of the first
kind. For this case a suitable cosine operator function (see [2,4]) is

TC
h ( f ,x) :=

1
2

{
f (xcosh+

√
1− x2 sinh)+ f (xcosh−

√
1− x2 sinh)

}
, 0 ≤ h ≤ π.

Section 2 deals with preliminary notions such as the modulus of continuity and the best approximation, but in
that use an abstract setting the cosine operator function. The main definitions of the Rogosinski- and Blackman-
type approximation operators are introduced. Section 3 treats the order of approximation by the Rogosinski-
and Blackman-type approximation operators. Section 4 is concerned with applications to the π-symmetric
trigonometric approximation operators. In Section 5 we consider a quite specific problem, namely it appears
that the exact values of the operator norms of the Rogosinski- and Blackman-type π-symmetric trigonometric
approximation operators can be calculated.

2. MODULUS OF CONTINUITY, BEST APPROXIMATIONS, ROGOSINSKI- AND BLACKMAN-
TYPE OPERATORS

In this section we will define the Rogosinski- and Blackman-type approximation operators and the apparatus that
is needed for estimating the order of approximation. The leading idea for definitions below appeared from the
trigonometric approximation, see [3,12–14] and references therein.

An abstract modulus of continuity, defined by the cosine operator function, will play an important role in our
paper.
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Definition 2. The modulus of continuity of order k ∈ N is defined for δ ≥ 0 via the cosine operator function by

ωk( f ,δ ) := sup
0≤h≤δ

∥(Th − I)k f∥. (2.1)

The next properties are adaptions of the well-known properties of the ordinary modulus of continuity (see,
e.g. [3,10,14]).

Proposition 1. The modulus of continuity ωk( f ,δ ) (ω( f ,δ ) := ω1( f ,δ )) in Definition 2 has the following
properties:

(i) ω( f ,mδ )≤ m(1+(m−1)T )ω( f ,δ ), m ∈ N;
(ii) ω( f ,λδ )≤ ([λ ]+1)(1+[λ ]T )ω( f ,δ ), λ > 0, ([λ ]≤ λ is the entire part of λ ∈ R);

(iii) ωk( f ,δ )≤ (1+T )k−lωl( f ,δ ), k ≥ l and k, l ∈ N.

Remark 2. Let τh : X → X , h ∈ R, be a translation operator and let us define another modulus of continuity of
order k ∈ N by

ω̃k( f ,δ ) := sup
0≤h≤δ

∥∥∥(τh/2 − τ−h/2
)k f
∥∥∥ .

Then by Remark 1 Th := 1
2 (τh + τ−h) , h ≥ 0, defines the modulus of continuity ωk by (2.1). Since

Th − I = 1
2

(
τh/2 − τ−h/2

)2
, we have

ωk( f ,δ ) =
1
2k ω̃2k( f ,δ ). (2.2)

Another quantity we need is the best approximation. Let Aσ ⊂ X be a dense family of linear subspaces
with Aσ1 ⊂ Aσ2 ,0 < σ1 < σ2, meaning that for every f ∈ X there exists a family {gσ}σ>0 ⊂

∪
σ>0

Aσ such that

limσ→∞ ∥ f −gσ∥= 0. Let Aσ ⊂ X consist of fixed points of a linear operator Sσ : Aσ → Aσ , i.e. for any g ∈ Aσ
we have Sσ g = g.

Definition 3. The best approximation of f ∈ X by elements of Aσ is defined by

Eσ ( f ) := inf
g∈Aσ

∥ f −g∥.

Remark 3. We may often suppose that there exists an element g∗ ∈ Aσ of best approximation, i.e. Eσ ( f ) =
∥ f −g∗∥.

First, let us define the Rogosinski- and Blackman-type operators only on the subspace Aσ . In the following
definitions instead Sσ g,(g ∈ Aσ ), we could write just g, because by our assumption Sσ g = g. However, we prefer
the given definitions, since in some cases we are able to define the operators Sσ on the whole space X , still with a
set of fixed points Aσ , and in this case also the Rogosinski- and Blackman-type operators will be defined on the
whole space X . To clarify the situation let us give two characteristic examples.
(1) Fourier projections are defined on the whole space X having the fixed point set as corresponding generalized

polynomials.
(2) Let X = C(R) be the space of uniformly continuous and bounded functions on R (for what follows, see,

e.g. [6]) with a family of dense subsets B∞
σ ⊂ C(R) consisting of bounded functions on R, which are entire

functions f (z) (z ∈C) of exponential type σ , i.e. | f (z)| ≤ eσ |y|∥ f∥C (z = x+ iy ∈C). In this case the linear
operator Sσ : B∞

σ → B∞
σ is the classical Whittaker–Kotel

′
nikov–Shannon operator, for g ∈ B∞

σ ,σ < πw, defined
by

(Ssinc
w g)(t) :=

∞

∑
k=−∞

g
(

k
w

)
sinc(wt − k),

where the kernel function sinc(t) := sinπt
πt . The fact that for Ssinc

w : B∞
σ → B∞

σ the set of fixed points is B∞
σ ,σ < πw,

is a statement of the famous Whittaker–Kotel
′
nikov–Shannon theorem: if g ∈ B∞

σ ,σ < πw, then

(Ssinc
w g)(t) = g(t).
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Definition 4. The Rogosinski-type operators R̃σ ,h,a : Aσ → X are defined by

R̃σ ,h,ag := aTh(Sσ g)+(1−a)T3h(Sσ g) (σ > 0,h ≥ 0,a ∈ R).

Remark 4. The case a = 1 leads to the original Rogosinski operator Rn,h : C2π → C2π , which in trigonometric
approximation was introduced by Rogosinski [13] and afterwards elaborated by Stechkin in [15], see also
[3,14,16].

Definition 5. The Blackman-type operators B̃σ ,h,a : Aσ → X are defined by

B̃σ ,h,ag := aSσ g+
1
2

Th(Sσ g)+
(

1
2
−a
)

T2h(Sσ g) (σ > 0,h ≥ 0,a ∈ R).

Remark 5. In Definition 5 the Blackman operator in case a = 1/2 is called the Hann operator, denoted here
by H̃σ ,h, and in Communications Engineering it is the original Hann operator [1]. If the projector operator
Sσ : Aσ → Aσ is translation invariant, i.e. ThSσ = Sσ Th, then it is easy to prove that R̃2

σ ,h = H̃σ ,2h and
B̃σ ,h,3/8 = H̃2

σ ,h.

The following Bounded Linear Transformation Theorem allows us to define our Rogosinski- and Blackman-
type operators on the whole space X .

Theorem 1 ([7]) Sect. 8.2, 8.3). Let A ⊂ X be a dense subset of a Banach space X and B̃ : A → X is a bounded
linear operator with the operator norm ∥B̃∥. Then B̃ has the unique bounded linear extension B : X → X with
∥B∥= ∥B̃∥. For f ∈ X the operator B ∈ [X ] is defined by B f = limσ→∞ B̃gσ , where {gσ}σ>0 ⊂ A is an arbitrary
family with f = limσ→∞ gσ .

In the following we define the Rogosinski- and Blackman-type operators on the whole X as extensions of
operators given by Definitions 4 and 5, respectively, and denote them by Rσ ,h,a : X → X or Bσ ,h,a : X → X ,
respectively.

3. ORDER OF APPROXIMATION BY ROGOSINSKI- AND BLACKMAN-TYPE OPERATORS

In this section we discuss the order of approximation of the Rogosinski- and Blackman-type operators by the
modulus of continuity.

Theorem 2. For every f ∈ X, a ∈ R for the Rogosinski-type operator Rσ ,h,a : X → X it holds that

∥Rσ ,h,a f − f∥ ≤
(
∥Rσ ,h,a∥[X ]+ |a|T + |1−a|T

)
Eσ ( f )+ |a|ω( f ,h)+ |1−a|ω( f ,3h), (3.1)

where the constant T > 0 is determined by Definition 1, (iii).

Proof. Let g∗ ∈ Aσ be an element of the best approximation of f ∈ X and let us denote

Θh,a f := aTh f +(1−a)T3h f . (3.2)

Since Sσ g∗ = g∗, by Definition 4 Θh,ag∗ = R̃σ ,h,ag∗ and we get

∥R̃σ ,h,ag∗− f∥ ≤ ∥Θh,ag∗−Θh,a f∥+∥Θh,a f − f∥. (3.3)
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For the first term in the right-hand side of (3.3) by (3.2) we obtain

∥Θh,ag∗−Θh,a f∥ ≤ ∥Θh,a∥[X ]∥g∗− f∥ ≤ (|a|+ |1−a|)T Eσ ( f ). (3.4)

For the second term in the right-hand side of (3.3) by (3.2) we write

Θh,a f − f = a(Th − I) f +(1−a)(T3h − I) f ,

thus, by Definition 2,
∥Θh,a f − f∥ ≤ |a|ω( f ,h)+ |1−a|ω( f ,3h).

The operator R̃σ ,h,a : Aσ → X and its extension Rσ ,h,a : X → X coincide on the subspace Aσ ; therefore

∥Rσ ,h,a f − f∥ ≤ ∥Rσ ,h,a f − R̃σ ,h,ag∗∥+∥R̃σ ,h,ag∗− f∥ ≤ ∥Rσ ,h,a∥[X ]Eσ ( f )+∥R̃σ ,h,ag∗− f∥.

Collecting all inequalities together we obtain the assertion. �
By property (i) of the modulus of continuity the quantities ω( f ,h) and ω( f ,3h) in Theorem 2 have the same

order, in particular, ω( f ,h)≤ ω( f ,3h)≤ (3+6T )ω( f ,h). Since g(a) := |a|+ |1−a| (a ∈ R) has its minimum
value on [0,1], we specify the following

Corollary 1. 1. For 0 ≤ a < 1 there holds

∥Rσ ,h,a f − f∥ ≤
(
∥Rσ ,h,a∥[X ]+T

)
Eσ ( f )+ω( f ,3h).

2. Let us denote Rσ ,h := Rσ ,h,1. Then there holds

∥Rσ ,h f − f∥ ≤
(
∥Rσ ,h∥[X ]+T

)
Eσ ( f )+ω( f ,h).

The importance of the parameter a ∈ R consists in the statement that because for a = 9/8 we get a much better
order of approximation.

Theorem 3. For Rσ ,h,9/8 : X → X we have

∥Rσ ,h,9/8 f − f∥ ≤
(
∥Rσ ,h,9/8∥[X ]+

5
4

T
)

Eσ ( f )+
(

1+
T
2

)
ω2( f ,h).

Proof. Similarly to the proof of Theorem 1 we proceed

∥R̃σ ,h,9/8g∗− f∥ ≤ ∥Θhg∗−Θh f∥+∥Θh f − f∥, (3.5)

where this time
Θh f :=

9
8

Th f − 1
8

T3h f . (3.6)

Since by properties of the cosine operator function (Definition 1)

f −Θh f =
(

I +
1
2

Th

)
(Th − I)2 f ,

by Definition 2 we get

∥ f −Θh f∥ ≤
(

1+
T
2

)
ω2( f ,h),

which together with (3.4) and (3.5) gives the assertion. �
Analogous results are valid for the Blackman-type operators. We announce these theorems without proof,

since in a less abstract form they are given in [8].
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Theorem 4. For every f ∈ X and all a ∈ R for the Blackman-type operators Bσ ,h,a : X → X there holds

∥Bσ ,h,a f − f∥ ≤
(
∥Bσ ,h,a∥[X ]+ |a|+ T

2
+

∣∣∣∣12 −a
∣∣∣∣T)Eσ ( f )+

1
4

ω( f ,h)+
|1−2a|

4
ω( f ,2h), (3.7)

where the constant T > 0 is determined by Definition 1 (assumption (iii)).

Corollary 2. Let the Hann operator H̃σ ,h : Aσ → X be defined by the equation

H̃σ ,h f :=
1
2
(Sσ f +Th(Sσ f )).

Then for its extension Hσ ,h : X → X for every f ∈ X there holds

∥Hσ ,h f − f∥ ≤
(

1+T
2

+∥Hσ ,h∥[X ]

)
Eσ ( f )+

1
4

ω( f ,h).

Theorem 5. For every f ∈ X there holds

∥Bσ ,h,5/8 f − f∥ ≤
(

5
8
(1+T )+∥Bσ ,h,5/8∥[X ]

)
Eσ ( f )+

1
4

ω2( f ,h). (3.8)

As we may see by Theorems 2–5 and their corollaries, Definitions 3 and 4 deduce approximation processes,
when the right-hand sides of given estimates tend to zero as σ → ∞ and h → 0+ . This statement requires, among
others, that the families of operator norms ∥Bσ ,h,a∥[X ], ∥Rσ ,h,a∥[X ] should be uniformly bounded on σ and h.
From this argument follows that σ > 0 and h ≥ 0 should be related somehow. We will consider this problem in
a concrete situation, like in approximation by π-symmetric trigonometric polynomials. In our previous papers
(see, e.g. [9]) we used the given framework for approximation by generalized Shannon sampling operators.

4. APPROXIMATION BY π-SYMMETRIC TRIGONOMETRIC ROGOSINSKI-TYPE OPERATORS

Let X = C−
2π be the space of π-symmetric and 4π-periodic continuous functions on R, i.e. we suppose that

f (2π−x) = f (x) and f (4π+x) = f (x) for all x∈R. As it was mentioned above the π-symmetric and 4π-periodic
extension of any continuous function f on [−π,π] has the remarkable property that it is always continuous on R.
Under the norm ∥ f∥C := max{| f (x)| : −π ≤ x ≤ π} the space C−

2π is a Banach space with a sequence of dense
subspaces {An},n = 0,1,2, ..., consisting of (semi-integer) trigonometric polynomials of the form

tn(x) =
n

∑
k=0

(Ck coskx+Dk sin((k+1/2)x)) , Ck,Dk ∈ R.

As in the classical case, the density of {An},n = 0,1,2, ..., in C−
2π can be proved using the Fejér means [11]

σn( f ,x) =
n

∑
k=0

′
((

1− k
n+1

)
ak coskx+

(
1− k+1/2

n+1

)
dk sin((k+1/2)x)

)
.

By orthogonality it is also clear that An is a set of fixed points of the Fourier partial sums operator S−n : C−
2π → An.

Concerning the cosine operator function Th : C−
2π →C−

2π ,

Th( f ,x) =
1
2
( f (x+h)+ f (x−h)) , h ≥ 0,

we have ∥Th f∥C ≤ ∥ f∥C; therefore in Definition 1 T = 1. Moreover,

Th
(
S−n f ,x

)
=

n

∑
k=0

′ (ak coskhcoskx+dk cos((k+1/2)h)sin((k+1/2)x)) . (4.1)

Since all assumptions of our abstract framework have been discussed, we may, using Definition 4 and
Eq. (4.1), state for the Rogosinski-type operators the following.
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Proposition 2. Let f ∈C−
2π , then

Rn,h,a( f ,x) =
n

∑
k=0

′
(

ψa

(
2
π

kh
)

ak coskx+ψa

(
2
π
(k+1/2)h

)
dk sin((k+1/2)x)

)
,

where
ψa(t) := acos

πt
2
+(1−a)cos

3πt
2

.

Theorem 2 yields the following statement.

Theorem 6. For every f ∈C−
2π , a ∈ R, for the Rogosinski-type operators Rn,h,a : C−

2π →C−
2π there holds

∥Rn,h,a f − f∥C ≤
(
∥Rn,h,a∥[C−

2π ]
+ |a|+ |1−a|

)
En( f )+ |a|ω ( f ,h)+ |1−a|ω ( f ,3h) . (4.2)

In an analogous way many other theorems from the abstract setting can be reformulated for the π-symmetric
approximation.

Now we are going to the crucial problem how we should relate the parameters n ∈ N and h > 0 to guarantee
that the right-hand side of (4.2) will tend to zero and at the same time the operator norms ∥Rn,h,a∥[C−

2π ]
will be

uniformly bounded. The classical trigonometric approximation suggests h = O(1/n), but of course for nice
results there is too much freedom here. We will discuss this problem in the next section.

5. EXACT VALUES OF NORMS OF π-SYMMETRIC ROGOSINSKI-TYPE OPERATORS

Let us consider the 2π-periodic trigonometric polynomial operator (or summability operator)

Un( f ,x) =
a0

2
+

n

∑
k=1

φ
(

k
n+1

)
(ak coskx+bk sinkx),

where φ ∈ C[0,1],φ(0) = 1,φ(1) = 0. It is known [16] that Un transforms the space C2π into C2π , and the norm
∥Un∥[C2π ] which satisfies

sup
n
∥Un∥[C2π ] =

∫ ∞

−∞
|s(u)|du, (5.1)

where the kernel function s ∈ L1(R) is given by

s(u) =
∫ 1

0
φ(t)cos(πtu)dt. (5.2)

Moreover, it is also known (see, e.g. [10]) that in some cases, and especially for Rogosinski- and Blackman-
type operators, the polynomial operator Un : C2π → C2π can be rewritten as the singular integral operator of the
form

Un( f ,x) =
∫ ∞

−∞
s(u) f

(
x− πu

2(n+1)

)
du. (5.3)

We shall use similar ideas for the π-symmetric approximation. We begin with a lemma, with is quite obvious
from the geometrical point of view.

Lemma 2. If f is π-symmetric and integrable on [−π,π] , then∫ π

−π
f (t)dt =

1
2

∫ 2π

−2π
f (t)dt.
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For f ∈C−
2π a suitable approximation operator Un ∈ [C−

2π ] will be defined by

Un( f ,x) =
n

∑
k=0

′ (λk(n)ak coskx+µk(n)dk sin((k+1/2)x)) , (5.4)

which, using Lemma 2 and substituting the Fourier coefficients ak,dk, can be rewritten as follows.

Proposition 3. For f ∈C−
2π we have

Un( f ,x) =
1

2π

∫ 2π

−2π
f (x− t)Pn(t)dt,

where

Pn(t) :=
n

∑
k=0

′ (λk(n)coskt +µk(n)cos((k+1/2)t)) .

In particular, for the Fourier partial sums operator we have

S−n ( f ,x) =
1

2π

∫ 2π

−2π
f (x− t)PS

n (t)dt,

where

PS
n (t) :=

n

∑
k=0

′ (coskt + cos((k+1/2)t)) =
sin
(
n+ 3

4

)
t

2sin
( t

4

) .

Now we represent S−n f in the integral form over R (cf., e.g. [10]). It will be achieved by using the representation
(see, e.g. [17])

1
sinz

=
1
z
+2z

∞

∑
k=1

(−1)k

z2 −π2k2 ,
z
π

/∈ Z.

After some calculations, using the given representation for 1
sin(t/4) , we may formulate

Proposition 4. If f ∈ L1(R), then

Sn( f ,x) =
1
π

∫ ∞

−∞

sin
((

n+ 3
4

)
t
)

t
f (x− t)dt. (5.5)

Define Rn,h f := Th(Sn f ), then by Definition 4 of the Rogosinski-type operators we have

Rn,h,a f = aRn,h f +(1−a)Rn,3h f . (5.6)

By the definition of cosine operator function Th and (5.5) we get

Rn,h( f ,x) = Th (Sn f ,x) =
1

2π

∫ ∞

−∞

sin
((

n+ 3
4

)
t
)

t
( f (x+h− t)+ f (x−h− t))dt.

After changing the variable of integration

Rn,h( f ,x) =
1

2π

∫ ∞

−∞

(
sin
((

n+ 3
4

)
(t +h)

)
t +h

+
sin
((

n+ 3
4

)
(t −h)

)
t −h

)
f (x− t)dt. (5.7)

To proceed further we need to specify the parameter h > 0, and a natural choice could be

h =
π

2(n+3/4)
,
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because then

sin
(
(n+3/4)

(
t ± π

2(n+3/4)

))
=∓sin

(
(n+3/4)

(
t ± 3π

2(n+3/4)

))
=±cos((n+3/4)t) ,

and for this specific value h = π
2(n+3/4) by (5.7) we obtain

Rn,h( f ,x) =
h
π

∫ ∞

−∞

cos((h+3/4)t)
h2 − t2 f (x− t)dt,

Rn,3h( f ,x) =
3h
π

∫ ∞

−∞

cos((h+3/4)t)
t2 −9h2 f (x− t)dt.

It is important that both integrals do exist for any bounded function f on R. Therefore, for (5.6) we obtain

Rn,h,a( f ,x) =
h
π

∫ ∞

−∞

(12a−3)h2 +(3−4a)t2

(h2 − t2)(9h2 − t2)
cos((n+3/4)t) f (x− t)dt. (5.8)

Changing the variable of integration by t = hs and putting h = π
2(n+3/4) we get

Rn,a( f ,x) =
1
π

∫ ∞

−∞

(12a−3)+(3−4a)s2

(1− s2)(9− s2)
cos

πs
2

f
(

x− πs
2(n+3/4)

)
ds. (5.9)

As in 2π-periodic case, it can be proved that the Rogosinski-type operator above Rn,a ∈ [C−
2π ] has the operator

norm
sup

n
∥Rn,a∥[C−

2π ]
=
∫ ∞

−∞
|sa(u)|du, (5.10)

where the kernel function sa ∈ L1(R) is given by

sa(t) =
(12a−3)+(3−4a)t2

π(1− t2)(9− t2)
cos

πt
2
. (5.11)

Coincidentally, the kernel function (5.11) is exactly the same as for 2π-periodic Rogosinski-type operators, which
we considered in our previous paper [8]. Therefore, we may reformulate some theorems of the 2π-periodic
Rogosinski-type operators for the π-symmetric case. Before going into details we have to introduce the modified
integral sine as

Sci(x) :=
∫ x

0
sinc(t)dt. (5.12)

A selection of results follows (cf. [8]).

Theorem 7. The Rogosinski-type operators Rn,a ∈ [C−
2π ] defined by the kernel function (5.11) have the following

operator norms:
1. If 0 ≤ a ≤ 1

4 , then the polynomial p(t) = 12a−3+(12−16a)t2 has a positive zero ta and

sup
n
∥Rn,a∥[C−

2π ]
=−2

ta∫
0

sa(t)dt +2

1/2∫
ta

sa(t)dt +(3−2a)Sci(1)+(5a−3)Sci(2)+(a−1)(Sci(4)−3Sci(3)).

2. If 1
4 ≤ a ≤ 3

4 , then (p(t)≥ 0) and

sup
n
∥Rn,a∥[C−

2π ]
= 2

1/2∫
0

sa(t)dt +(1−2a)Sci(1)+(5a−3)Sci(2)+(2a−2)Sci(3).

Corollary 3. The operator norms of the Rogosinski-type operators have numerical values:
1. If a = 3

4 , then sup
n
∥Rn, 3

4
∥[C−

2π ]
= 1.88903...

2. If a = 1
2 , then sup

n
∥Rn, 1

2
∥[C−

2π ]
= 1.39741...
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6. CONCLUSION

We introduced the Blackman- and Rogosinski-type approximation operators using the cosine operator function.
This abstract setting is useful because now we were able to consider different approximation problems from a
unique point of view. Another feature of this paper was that in π-symmetric trigonometric case we computed
exact values of some operator norms of the defined Rogosinski-type approximation operators.
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Koosinusoperaatori fuktsioonidega defineeritud lähendusmeetoditest

Andi Kivinukk, Anna Saksa ja Maria Zeltser

On defineeritud abstraktses Banachi ruumis Blackmani ja Rogosinski tüüpi operaatorid, kasutades koosinus-
operaatori mõistet. Uus lähenemisviis võimaldab ühtsest seisukohast tõestada lähenduskiiruste hinnanguid
ja rakendada saadud tulemusi Shannoni valimoperaatoritele, trigonomeetrilistele Fourier’ ridadele või ka
Fourier’-Tšebõšovi ridadele. Trigonomeetrilisel π-sümmeetrilisel juhul defineeritud Rogosinski tüüpi mõnede
lähendusoperaatorite jaoks on leitud täpsed normi väärtused.


