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Abstract. Let V ,W∞, and W be the operator ideals of completely continuous, weakly ∞-compact, and weakly compact operators,
respectively. In a recent paper, William B. Johnson, Eve Oja, and the author proved that V = W∞ ◦W −1 (Johnson, W. B., Lillemets, R.,
and Oja, E. Representing completely continuous operators through weakly ∞-compact operators. Bull. London Math. Soc., 2016, 48,
452–456). We show that this equality also holds in the context of Banach operator ideals.
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1. INTRODUCTION

Let L ,K ,W , and V denote the operator ideals of bounded linear, compact, weakly compact, and completely
continuous operators. Let X and Y be Banach spaces. Recall that a linear map T : X →Y is completely continuous,
i.e. T ∈ V (X ,Y ), if T takes weakly null sequences in X to null sequences in Y . It is well known that operator
ideals K , V , and W are Banach operator ideals with the usual operator norm.

Let (xn) ⊂ X be a bounded sequence. It is well known and easy to see that (xn) defines an operator
Φ(xn) ∈ L (ℓ1,X) through the equality

Φ(xn)(ak) =
∞

∑
k=1

akxk, (ak) ∈ ℓ1.

Denote the classes of all null sequences and weakly null sequences in X by c0(X) and cw
0 (X), respectively.

Both of them are Banach spaces with the supremum norm. According to the Grothendieck compactness principle
(see [3] or, e.g. [4, Proposition 1.e.2]), a subset K ⊂ X is relatively compact if and only if for every ε > 0 there
exists (xn) ∈ c0(X), with supn∈N ∥xn∥ ≤ supx∈K ∥x∥+ ε , such that K ∈ Φ(xn)(Bℓ1).

A subset K of X is relatively weakly ∞-compact if K ⊂ Φ(xn)(Bℓ1) for some sequence (xn) ∈ cw
0 (X). An

operator T ∈ L (X ,Y ) is weakly ∞-compact if T (BX) is a relatively weakly ∞-compact subset of Y . Weakly
∞-compact (more generally, weakly p-compact) operators were considered by Sinha and Karn [7] in 2002 (for
an even more general version of weakly (p,r)-compact operators, see [2]). Denote by W∞ the class of all weakly
∞-compact operators acting between arbitrary Banach spaces. An easy straightforward verification (as in [1,
Proposition 2.1]) shows that W∞ is an operator ideal.
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Recall that the right-hand quotient A ◦B−1 of two operator ideals A and B is the operator ideal that consists
of all operators T ∈ L (X ,Y ) such that T S ∈ A (X0,Y ) whenever S ∈ B(X0,X) for some Banach space X0 (see
[6, 3.1.1]).

Let (A ,∥·∥A ) and (B,∥·∥B) be quasi-Banach operator ideals. The quotient A ◦B−1 becomes a quasi-
Banach operator ideal if for every operator T ∈ A ◦B−1(X ,Y ) one puts

∥T∥A ◦B−1 = sup{∥T S∥A | S ∈ B(X0,X),∥S∥B ≤ 1},

where the supremum is taken over all Banach spaces X0 (see [6, 7.2.1]).
In [5] Johnson, Oja, and the author proved that V = W∞ ◦W −1 as operator ideals. Now, we will show that

this equality holds in the context of Banach operator ideals. For this, we introduce a norm on the operator ideal
W∞. Let T ∈ W∞(X ,Y ) and put

∥T∥W∞
= inf{∥(xn)∥cw

0 (X) | (xn) ∈ cw
0 (Y ),T (BX)⊂ Φ(xn)(Bℓ1)}.

As Proposition 1 below shows, W∞ is a Banach operator ideal with this norm. The main result of this paper
(Theorem 3) is that the equality V = W∞ ◦W −1 indeed holds in the context of Banach operator ideals.

Throughout this paper, let K denote the scalar field R or C.

2. BANACH OPERATOR IDEAL W∞

In this section we verify that W∞ is indeed a Banach operator ideal endowed with the norm ∥·∥W∞
.

Proposition 1. W∞ is a Banach operator ideal with the norm ∥·∥W∞
.

Proof. It is easy to see that ∥IK∥W∞
= 1. Indeed, put (βn)= (1,0,0, . . .)∈ cw

0 (K) and observe that BK⊂Φ(βn)(Bℓ1).
Therefore ∥IK∥W∞

≤ 1. On the other hand, let BK ⊂ Φ(βn)(Bℓ1) for some (βn) ∈ cw
0 (K). Then there exists a

sequence (αn) ∈ Bℓ1 so that 1 = ∑∞
n=1 αnβn. Therefore

1 ≤

∣∣∣∣∣ ∞

∑
n=1

αnβn

∣∣∣∣∣≤ ∞

∑
n=1

|αnβn| ≤ sup
n∈N

|βn|
∞

∑
n=1

|αn| ≤ sup
n∈N

|βn|,

and we have shown that ∥IK∥W∞
≥ 1.

Let S,T ∈ W∞(X ,Y ). We need to prove that ∥S+T∥W∞
≤ ∥S∥W∞

+ ∥T∥W∞
. For this, take ε > 0 and

sequences (xn),(yn) ∈ cw
0 (Y ) such that S(BX)⊂ Φ(xn)(Bℓ1) and T (BX)⊂ Φ(yn)(Bℓ1) with ∥(xn)∥ ≤ (1+ ε)∥S∥W∞

and ∥(yn)∥ ≤ (1+ ε)∥T∥W∞
.

Assume that supn∈N ∥xn∥ ̸= 0 and that supn∈N ∥yn∥ ̸= 0 (otherwise, either S = 0 or T = 0, and the proof is
trivial). Put

q :=
supn∈N ∥yn∥
supn∈N ∥xn∥

.

Define (zn) ∈ cw
0 (Y ) by

zn =

{
(q+1)xk if n = 2k−1,
q+1

q yk if n = 2k.

We check that
sup
n∈N

∥zn∥ ≤ sup
n∈N

∥xn∥+ sup
n∈N

∥yn∥.

For this purpose, we use the fact that

(q+1)sup
n∈N

∥xn∥=
q+1

q
sup
n∈N

∥yn∥.
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We have that

sup
n∈N

∥zn∥= max
{
(q+1)sup

n∈N
∥xn∥,

q+1
q

sup
n∈N

∥yn∥
}

= (q+1)sup
n∈N

∥xn∥= sup
n∈N

∥xn∥+qsup
n∈N

∥xn∥= sup
n∈N

∥xn∥+ sup
n∈N

∥yn∥.

It remains to show that (S+T )(BX)⊂ Φ(zn)(Bℓ1). Let z ∈ BX , let Sz = ∑∞
n=1 αnxn, and let T z = ∑∞

n=1 βnyn. Define
(γn) ∈ Bℓ1 by

γn =

{
1

q+1 αk if n = 2k−1,
q

q+1 βk if n = 2k.

Then

(S+T )(x) =
∞

∑
n=1

αnxn +
∞

∑
n=1

βnyn = ∑
n=2k−1,

k∈N

γnzn + ∑
n=2k,
k∈N

γnzn =
∞

∑
n=1

γnzn.

Let T ∈ L (X0,X), S ∈ W∞(X ,Y ), and R ∈ L (Y,Y0) be given. We prove that ∥RST∥W∞
≤ ∥R∥∥S∥W∞

∥T∥.
Let ε > 0 and let (yn) ∈ cw

0 (Y ) be given such that supn∈N ∥yn∥ ≤ ∥S∥W∞
+ ε and S(BX) ⊂ Φ(yn)(Bℓ1). Put

(zn) := (∥T∥Ryn). Then (zn) ∈ cw
0 (Y0) because the operator R (as every bounded linear operator) is weakly-

weakly continuous. Therefore

RST (BX0)⊂ ∥T∥RS(BX)⊂ ∥T∥R(Φ(yn)(Bℓ1)) = ∥T∥Φ(Ryn)(Bℓ1) = Φ(zn)(Bℓ1).

Since RST (BX0)⊂ Φ(zn)(Bℓ1), we have ∥RST∥W∞
≤ ∥(zn)∥cw

0 (Y0)
. This gives us that

∥(zn)∥cw
0 (Y0)

= sup
n∈N

∥zn∥ ≤ ∥T∥∥R∥sup
n∈N

∥yn∥ ≤ ∥R∥(∥S∥W∞
+ ε)∥T∥

and therefore ∥RST∥W∞
≤ ∥R∥∥S∥W∞

∥T∥.
We have shown that (W∞,∥·∥W∞

) is a normed operator ideal. To prove that it is a Banach operator ideal, we
need to verify that ∑∞

k=1 Rk ∈ W∞(X ,Y ) whenever ∑∞
k=1 ∥Rk∥W∞

< ∞. Clearly,

∞

∑
k=1

∥Rk∥ ≤
∞

∑
k=1

∥Rk∥W∞
< ∞.

Therefore we may define R = ∑∞
k=1 Rk ∈ L (X ,Y ). It remains to show that R ∈ W∞(X ,Y ). Put S1 := ∑m1

k=1 Rk,
S2 := ∑m2

k=m1+1 Rk, etc., so that ∥Sm∥W∞
< 1

4m for every m ≥ 2. Notice that

R =
∞

∑
k=1

Rk =
∞

∑
k=1

Sk.

Since S1 ∈W∞(X ,Y ), there exists a sequence (y1
k) ∈ cw

0 (Y ) such that S1(BX)⊂ Φ(y1
k)
(Bℓ1). Furthermore, for every

m ≥ 2 there exists a sequence (ym
k )k∈N ∈ cw

0 (Y ) so that supk∈N
∥∥ym

k

∥∥≤ 1
4m and Sm(BX)⊂ Φ(ym

k )
(Bℓ1).

We define the sequence (zn) as any permutation of the following elements:

2y1
1,2y1

2, . . . ,2y1
n, . . . ,

4y2
1,4y2

2, . . . ,4y2
n, . . . ,

. . . ,

2mym
1 ,2

mym
2 , . . . ,2

mym
n , . . . ,

. . . ,
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where zn = 2 jny jn
in . To prove that (zn) ∈ cw

0 (Y ), we take any f ∈ Y ∗, let ε > 0, and show that the set
{n ∈ N | | f (zn)| > ε} is finite. It is so because 2m supk∈N

∥∥ym
k

∥∥ −−−→
m→∞

0 and each of the sequences (ym
k )k∈N

contains only a finite number of elements such that
∣∣2m f (ym

k )
∣∣> ε .

We claim that R(BX) ⊂ Φ(zn)(Bℓ1). Let x ∈ BX . For every m ∈ N we have that Smx = ∑k∈N αm
k ym

k for some
sequence (αm

k )k∈N ∈ Bℓ1 . Put

βn :=
1

2 jn
α jn

in .

Notice that (βn) ∈ Bℓ1 , because
∞

∑
n=1

|βn|=
∞

∑
m=1

∞

∑
k=1

1
2m |αm

k | ≤ 1.

We complete the proof by observing that

Rx =
∞

∑
m=1

Smx =
∞

∑
m=1

∞

∑
k=1

αm
k ym

k =
∞

∑
n=1

α jn
in

2 jn

(
2 jny jn

in

)
=

∞

∑
n=1

βnzn.

3. THE MAIN RESULT

Proposition 2. Let T ∈ K (X ,Y ). Then T ∈ W∞(X ,Y ) and ∥T∥W∞
= ∥T∥.

Proof. Clearly, T ∈ W∞(X ,Y ). The Grothendieck compactness principle allows us to write

∥T∥= inf{supn∈N ∥xn∥ | (xn) ∈ c0(Y ),T (BX)⊂ Φ(xn)(Bℓ1)}.

Therefore ∥T∥W∞
≤ ∥T∥, since infimum in the definition of ∥T∥W∞

is taken over a larger set than in the previous
formula. On the other hand, ∥T∥ ≤ ∥T∥W∞

because W∞ is a Banach operator ideal.

For the proof of the next theorem, recall that K = V ◦W and V = K ◦W −1 as Banach operator ideals (see
[6, 3.1.3] and [6. 3.2.3], respectively).

Theorem 3. The equality V = W∞ ◦W −1 holds in the context of Banach operator ideals.

Proof. Fix an operator T ∈ V (X ,Y ) = W∞ ◦W −1(X ,Y ). By definition,

∥T∥W∞◦W −1 = sup{∥TW∥W∞
|W ∈ W (X0,X),∥W∥W ≤ 1},

where the supremum is taken over all Banach spaces X0.
Therefore TW ∈ V ◦W (X0,Y ) = K (X0,Y ) for any W ∈ W (X0,X). According to Proposition 2,

∥TW∥W∞
= ∥TW∥= ∥TW∥K .

Therefore

∥T∥W∞◦W −1 =sup{∥TW∥W∞
|W ∈ W (X0,X),∥W∥W ≤ 1}

=sup{∥TW∥K |W ∈ W (X0,X),∥W∥W ≤ 1}= ∥T∥K ◦W −1 = ∥T∥V .
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Täielikult pidevate operaatorite Banachi operaatorideaali kirjeldus

Rauni Lillemets

Olgu V ,W∞ ja W operaatorideaalid, mis koosnevad vastavalt täielikult pidevatest, nõrgalt ∞-kompaktsetest ning
nõrgalt kompaktsetest operaatoritest. Hiljutises artiklis [5], mille autoriteks on William B. Johnson, Eve Oja ja
käesoleva artikli autor, tõestasime, et kehtib võrdus V = W∞ ◦W −1. On teada, et V ja W on Banachi operaator-
ideaalid tavalise operaatornormi suhtes. Antud artiklis varustame ka operaatorideaali W∞ normiga ja veendume,
et see on selle normi suhtes Banachi operaatorideaal. Seejärel näitame, et võrdus V = W∞ ◦W −1 kehtib ka
Banachi operaatorideaalide kontekstis.


