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Abstract. It is proved that the finite groups of orders 37–47 are determined by their endomorphism monoids in the class of all
groups.
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1. INTRODUCTION

Let G be a group. If for each group H such that the monoids End(G) and End(H) are isomorphic implies
an isomorphism between G and H, we say that the group G is determined by its endomorphism monoid in
the class of all groups. Examples of such groups are: finite Abelian groups ([12], Theorem 4.2), generalized
quaternion groups ([13], Corollary 1), torsion-free divisible Abelian groups ([16], Theorem 1), etc.

The endomorphisms of groups have gained much attention in the past few years due to their applications
in generalized linear finite dynamical systems (in this case, the finite vector space and a polynomial map f
are replaced with a group and its endomorphism, respectively) [3]. Also, Grigorchuk and Mamaghani [7]
used iterations of an endomorphism of a group for constructing the groups with prescribed properties such
as to have intermediate growth or to be amenable. Different authors have studied so-called E-groups (recall
that a group G is called an E-group if its each element commutes with all of images under endomorphisms
of G).

The question of which groups are determined by their endomorphism monoids in the class of all groups,
and how to find all non-isomorphic groups with isomorphic endomorphism monoids, is one of the main
questions in the group theory. For example, in 2014 the following question was asked in the internet forum
math.stackexchange: “Can finite non-isomorphic groups of the same order have isomorphic endomorphism
monoids?” [4].

In a number of our papers we have made efforts to describe some classes of finite groups which are
determined by their endomorphism monoids in the class of all groups.
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Computer algebra software GAP [24] provides access to small groups1 such as the presentation of a
group and structure description of a group. The software GAP is becoming a useful tool for mathematicians
working in the group theory. For example, Chu et al. [6] used the GAP for solving Noether’s problem
for groups of order 243. Combining the software GAP with the results obtained in [12–14,18,19] it is
possible to obtain the list of groups of given order n that are determined by their endomorphism monoids.
However, the groups of order n not listed there have to be studied using techniques different from the ones
used in [12–14,18,19] or ad-hoc techniques. Recall that the finite direct product of groups is determined
by its endomorphism monoid if all these direct factors are determined by their endomorphism monoids
[12, Theorem 1.13]. Therefore, if a group G is the direct product of groups G1, . . . , Gn, and each of
them are determined by their endomorphism monoids, then so is G. But if a direct factor, say Gi, is not
determined by its endomorphism monoid, i.e. End(Gi) ∼= End(H) for some group H ̸∼= Gi, then the direct
products G1 × ·· · × Gn and G1 × ·· · × Gi−1 × H × Gi+1 × ·· · × Gn can have isomorphic endomorphism
monoids. For example, it was shown in [20] that the alternating group A4 and the binary tetrahedral group
B ∼= SL2(GF(3)) have isomorphic endomorphism monoids. Studying the determinability of groups of order
36, we proved that the direct products C3 ×A4 and C3 ×B have isomorphic endomorphism monoids too
[9, Theorem 6.1]. On the other hand, if a finite group G is a direct product of all pairwise non-isomorphic
groups with isomorphic endomorphism monoids, then the group G is determined by End(G) [15]. Therefore,
the direct product A4 ×B is determined by its endomorphism monoid, but both direct factors are not.
In what follows we discuss a simple2 (and naive) method for testing whether a given direct product of
finite groups is determined by its endomorphism monoid or not: either all direct factors are determined by
their endomorphism monoids, respectively, or the set of direct factors includes a complete set of pairwise
non-isomorphic groups with isomorphic endomorphism monoids. This motivates us to study which small
groups are determined by their endomorphism monoids. Furthermore, since a similar technique can be
applied to several groups of different order, we are also motivated to use a computer3 and development of
necessary algorithms. The results of this paper can be used in computer programs about finite groups and
their applications.

We know a complete answer to this problem for finite groups of order less than 37. Among the groups
of order less than 37 there are only five groups that are not determined by their endomorphism monoids in
the class of all groups:
• the alternating group A4 (also called the tetrahedral group);
• the binary tetrahedral group B = ⟨a, b | b3 = 1, aba = bab⟩ (|B|= 24);
• the direct product C3 ×A4 of the cyclic group of order 3 and the alternating group A4;
• C1 = ⟨a, b, c | c9 = b2 = a2 = 1, ab = ba, c−1ac = b, c−1bc = ab⟩= (⟨a⟩×⟨b⟩)h ⟨c⟩ ∼= (C2×C2)hC9;
• C2 = ⟨a, b, c | c4 = a3 = b3 = 1, ab= ba, c−1ac= b, c−1bc= a−1⟩= (⟨a⟩×⟨b⟩)h⟨c⟩ ∼= (C3×C3)hC4.

The alternating group A4 (also called the tetrahedral group) and the binary tetrahedral group B =
⟨a, b | b3 = 1, aba = bab⟩ are the only groups of order less than 36 that are not determined by their
endomorphism monoids in the class of all groups [9,20–23] (for some groups of order 32 the proofs are
under publishing). In [9], it is proved that among groups of order 36 only the groups C3 ×A4, C1, and C2
are not determined by their endomorphism monoids in the class of all groups. Namely, the following results
were proved in [9]:
• The endomorphism monoid of a group G is isomorphic to the endomorphism monoid of C3 ×A4 if and

only if G =C3 ×A4 or G =C3 ×B, where B is the binary tetrahedral group.
• The endomorphism monoid of a group G is isomorphic to the endomorphism monoid of C1 if and only

if G = C1 or G is isomorphic to the following group of order 72:

⟨a, b, c | c9 = a4 = 1, a2 = b2, b−1ab = a−1, c−1bc = a, c−1ac = ab⟩

1 Access is provided by the Small Groups Library http://www.icm.tu-bs.de/ag algebra/software/small/small.html.
2 The method explained here can be easily programmed and is based on the so-called table lookup.
3 The most famous problem in group theory the solving of which involves the use of computers is “the general problem for finite

groups” initiated by A. Cayley [5] in 1878 ([2,8,10,11]).
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(this group is isomorphic to a semidirect product QhC9 of the quaternion group Q and the cyclic group
C9 of order 9).

• The endomorphism monoid of a group G is isomorphic to the endomorphism monoid of C2 if and only
if G = C2 or G is isomorphic to the following group of order 108:

G = ⟨a, b, c, d | c4 = a3 = b3 = d3 = 1, ab = bad, c−1ac = b,

c−1bc = a−1, cd = dc, ad = da, bd = db⟩.

In this paper, we give the solution to the problem for the groups of orders 37–47. We prove the following
theorem:

Theorem 1.1 (Main theorem). The finite groups of orders 37–47 are determined by their endomorphism
monoids in the class of all groups.

The proof of the theorem follows from Theorems 3.1, 4.1, 5.2, and 6.2.
We shall use the following notations:

G – a group;
Z(G) – the centre of a group G;
NM(g) – the normalizer of g in M (M ⊂ G);
End(G) – the endomorphism monoid of G;
Ck – the cyclic group of order k;
A4 – the alternating group of order 12 (the tetrahedral group);
Dn = ⟨a, b | b2 = ak = 1, b−1ab = a−1⟩ – the dihedral group of order n = 2k;
Zk – the residue class ring Z/kZ;
⟨K, . . . , g, . . .⟩ – the subgroup generated by subsets K, . . . and elements g, . . .;
ĝ – the inner automorphism of G, generated by an element g ∈ G;
I(G) – the set of all idempotents of End(G);
K(x) = {z ∈ End(G) | zx = xz = z};
J(x) = {z ∈ End(G) | zx = xz = 0};
V (x) = {z ∈ Aut(G) | zx = x};
H(x) = {z ∈ End(G) | xz = z, zx = 0};
P(x) = {z ∈ End(G) | xz = zx = x};
[x] = {z ∈ I(G) | xz = z, zx = x}, x ∈ I(G);
K0(x) – the set of all nilpotent elements of K(x);
G = AhB – G is a semidirect product of an invariant subgroup A and a subgroup B.

The sets K(x),V (x), H(x), P(x), and J(x) are submonoids of End(G), furthermore, V (x) is a subgroup
of Aut(G). We shall write the mapping right from the element on which it acts.

2. PRELIMINARIES

For the convenience of the reader, let us recall some known facts that will be used in the proofs of our main
results.

Lemma 2.1. If x ∈ I(G), then G = Ker x h Im x and Im x = {g ∈ G | gx = g}.

Lemma 2.2. If x ∈ I(G), then [x] = {y ∈ I(G) | Ker x = Ker y}.
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Lemma 2.3. If x ∈ I(G), then

K(x) = {y ∈ End(G) | (Im x)y ⊂ Im x, (Ker x)y = ⟨1⟩}

and K(x) is a submonoid with the identity element x of End(G) which is canonically isomorphic to
End(Im x). Under this isomorphism element y of K(x) corresponds to its restriction onto the subgroup
Im x of G.

Lemma 2.4. If x ∈ I(G), then

H(x) = {y ∈ End(G) | (Im x)y ⊂ Ker x, (Ker x)y = ⟨1⟩}.

Lemma 2.5. If x ∈ I(G), then

J(x) = {z ∈ End(G) | (Im x)z = ⟨1⟩, (Ker x)z ⊂ Ker x}.

Lemma 2.6. If z ∈ End(G) and Im z is Abelian, then ĝ ∈V (z) for each g ∈ G.

Lemma 2.7. If x ∈ I(G), then

P(x) = {y ∈ End(G) | y| Im x = 1Im x, (Ker x)y ⊂ Ker x}.

Lemma 2.8. If y ∈ End(G) and g ∈ Ker y, then ĝ ∈V (y).

We omit the proofs of these lemmas, because these are straightforward corollaries from the definitions.

Lemma 2.9 ([12], Theorem 1.13). If G and H are groups such that their endomorphism monoids are
isomorphic and G splits into a direct product G = G1 × G2 of its subgroups G1 and G2, then H splits
into a direct product H = H1 × H2 of its subgroups H1 and H2 such that End(G1) ∼= End(H1) and
End(G2)∼= End(H2).

From here follows Lemma 2.10.

Lemma 2.10. If groups G1 and G2 are determined by their endomorphism monoids in the class of all groups,
then so is their direct product G1 ×G2.

Lemma 2.11 ([12], Theorem 4.2). Every finite Abelian group is determined by its endomorphism monoid
in the class of all groups.

Lemma 2.12 ([14], Theorem). Each finite symmetric group is determined by its endomorphism monoid in
the class of all groups.

Lemma 2.13 ([19], Section 5). The dihedral group Dn is determined by its endomorphism monoid in the
class of all groups.
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Lemma 2.14 ([13], Corollary 1). The quaternion group Q is determined by its endomorphism monoid in
the class of all groups.

Lemma 2.15 ([18], Theorem). A semidirect product G = Cpn hCm, where p is a prime, and n and m are
some positive integers, is determined by its endomorphism monoid in the class of all groups.

Lemma 2.16. If
D8 = ⟨a, b, c | a2 = b2 = c2 = 1, ab = ba, c−1ac = b⟩ (2.1)

and x ∈ I(D8) such that Im x = ⟨c⟩, Ker x = ⟨a⟩×⟨b⟩, then 10 K(x)∼= End(C2) and 20 |{u ∈ End(D4) | xu =
u, ux = 0}|= 4. Conversely, if x ∈ I(D8) satisfies 10 and 20, then there exist a, b, c ∈ D8 such that

D8 = Ker xh Im x, Im x = ⟨c⟩ ∼=C2, Ker x = ⟨a⟩×⟨b⟩ ∼=C2 ×C2

and (2.1) holds.

Lemma 2.16 is obtained by easy calculations in the group D8.

Lemma 2.17 ([17], Theorems 2.1 and 3.1). Assume that a group G decomposes into a semidirect product

G = H h ((G1 × . . .×Gn) h K), n ≥ 2, (2.2)

where
⟨Gi, K⟩= Gi h K (i = 1, 2, . . . , n). (2.3)

Denote by x and xi the projections of G onto K and Gi hK (i = 1, 2, . . . , n), i.e.,

Im xi = Gi h K, Ker xi = H h
n

∏
j=1, j ̸=i

G j, (2.4)

Im x = K, Ker x = H h (G1 × . . .×Gn), (2.5)

Gi = Ker x∩ Im xi, H = ∩n
j=1 Ker x j. (2.6)

Then
xix j = x jxi = x; i, j = 0, 1, . . . , n, i ̸= j, (2.7)

and for each i, j ∈ {1, 2, . . . , n}, i ̸= j, there exists zi j = z ji ∈ I(G) which satisfies the following properties:
10 xi, x j ∈ K(zi j),
20 there exists a unique pair Vi,Vj of subgroups of K(zi j)

∗ with properties
(i) Vi ⊂C(xi), Vj ⊂C(x j),
(ii) Vixi =VK(xi)∗(x), Vjx j =VK(x j)∗(x),
(iii) xivxi = xi for each v ∈Vj,
(iv) x jux j = x j for each u ∈Vi.

Conversely, suppose that there exist idempotents x, x1, . . . , xn of End(G) such that (2.7) holds and
for each i, j ∈ {1, 2, . . . , n}, i ̸= j, there exists zi j = z ji ∈ I(G) which satisfies properties 10 and 20.
Then the group G decomposes into the semidirect product (2.2), where equalities (2.3)–(2.6) are true.
Moreover, the set B = {y ∈ I(G) | x1, . . . , xn ∈ K(y)} is non-empty and there exists a unique z ∈ B such that
zy= yz= z for each y∈B. The endomorphism z is the projection of G onto its subgroup (G1× . . .×Gn)hK
and Ker z = H.

Denote by C (x; x1, . . . , xn) the set of the conditions for x; x1, . . . , xn given in the second part of Lemma
2.17 (i.e., equalities (2.7) and 10, 20). Suppose that the condition C (x; x1, . . . , xn) is satisfied and denote by
πC the projection of G onto its subgroup (G1 × . . .×Gn)hK. The endomorphism πC is a unique z ∈ B such
that zy = yz = z for each y ∈ B. Denote by C0(x; x1, . . . , xn) the condition C (x; x1, . . . , xn) with πC = 1G
(i.e., H = ⟨1⟩).
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3. GROUPS OF ORDERS 37–39 AND 41–47

The group theoretical computer algebra system GAP provides access to descriptions of small order groups
[12]. Following [12], the groups of orders 37–39 and 41–47 are:
G1 ∼=C37, |G1|= 37;
G2 ∼=C38, G3 ∼= D38, |G2|= |G3|= 38;
G4 ∼=C39, |G4|= 39;
G5 = ⟨a, b | a3 = b13 = 1, a−1ba = b3⟩ ∼=C13 hC3, |G5|= 39;
G6 ∼=C41, |G6|= 41;
G7 ∼=C42, |G7|= 42;
G8 = ⟨a, b, c | a2 = b3 = c7 = (ac)2 = b−1aba = c−1b−1cbc−1 = 1⟩, |G8|= 42;
G9 = ⟨a, b, c | a2 = b3 = c7 = 1, ab = ba, ac = ca, b−1cb = c2⟩

= ⟨a⟩× (⟨c⟩h ⟨b⟩)∼=C2 × (C7 hC3), |G9|= 42;
G10 =C7 ×S3, G11 =C3 ×D14, G12 = D42, |G10|= |G11|= |G12|= 42;
G13 ∼=C43, |G13|= 43;
G14 ∼=C44, G15 ∼=C2 ×C22, |G14|= |G15|= 44;
G16 = ⟨a, b | a4 = b11 = 1, a−1ba = b−1⟩= ⟨b⟩h ⟨a⟩ ∼=C11 hC4, |G16|= 44;
G17 ∼= D44, |G17|= 44;
G18 ∼=C45, G19 ∼=C15 ×C3, |G18|= |G19|= 45;
G20 ∼=C46, G21 ∼= D46, |G20|= |G21|= 46;
G22 ∼=C47, |G22|= 47.

In view of Lemmas 2.11, 2.12, 2.13, 2.10, and 2.15, the groups G1–G7 and G9–G22 are determined by
their endomorphism monoids in the class of all groups.

Let us consider the group

G8 = ⟨a, b, c | a2 = b3 = c7 = (ac)2 = b−1aba = c−1b−1cbc−1 = 1⟩.

The group G8 can be presented as follows:

G8 = ⟨a, b, c | a2 = b3 = c7 = 1, ab = ba, a−1ca = c−1, b−1cb = c2⟩
= ⟨c⟩h (⟨a⟩×⟨b⟩)∼=C7 h (C2 ×C3)

or
G8 = ⟨d, c | d 6 = c7 = 1, d−1cd = c5⟩= ⟨c⟩h ⟨d⟩ ∼=C7 hC6.

By Lemma 2.15, the group G8 is determined by its endomorphism monoid in the class of all groups.
We have proved

Theorem 3.1. The finite groups of orders 37–39 and 41–47 are determined by their endomorphism monoids
in the class of all groups.

4. GROUPS OF ORDER 40

According to [24], there exist 14 pairwise non-isomorphic groups of order 40:
G1 =C40;
G2 =C20 ×C2;
G3 =C10 ×C2 ×C2;
G4 = ⟨a, b | a8 = b5 = 1, a−1ba = b−1⟩ ∼=C5 hC8;
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G5 = ⟨a, b | a8 = b5 = a−1b2ab = b−1a−1bab−1 = b−1a4ba4 = 1⟩
= ⟨a, b | a8 = b5 = 1, a−1ba = b2⟩ ∼=C5 hC8;

G6 = ⟨a, b, c | b2a2 = baba−1 = a4 = a−1cac = c−1b−1cb = c5

= (a−1c)2a−2 = 1⟩;
G7 =C4 ×D10;
G8 = D40;
G9 = ⟨a, b, c | a4 = b2 = c5 = 1, ab = ba, bc = cb, a−1ca = c−1⟩

= ⟨b⟩× (⟨c⟩h ⟨a⟩)∼=C2 × (C5 hC4);
G10 = ⟨a, b, c | a2 = b2 = c5 = (ac)2 = c−1bcb = (ba)4 = 1⟩;
G11 =C5 ×D8;
G12 =C5 ×Q;
G13 = ⟨a, b, c | a4 = b2 = c5 = 1, ab = ba, bc = cb, a−1ca = c2⟩ ∼=C2 × (C5 hC4);
G14 =C2 ×C2 ×D10.

Lemmas 2.11, 2.13, 2.10, 2.15, and 2.14 imply the following theorem

Theorem 4.1. The groups G1–G5, G7–G9, and G11–G14 are determined by their endomorphism monoids in
the class of all groups.

We consider the groups G6 and G10 in the next two sections.

5. GROUP G6

Let us consider the group

G6 = ⟨a, b, c | b2a2 = baba−1 = a4 = a−1cac = c−1b−1cb = c5 = (a−1c)2a−2 = 1⟩.

The group G6 can be presented as follows:

G6 = ⟨a, b, c | a4 = c5 = 1, a2 = b2, a−1ca = c−1, bc = cb, b−1ab = a−1⟩
= ⟨a, b, c | a4 = c5 = 1, a2 = b2, c−1ac = ac2, bc = cb, b−1ab = a−1⟩
= ⟨c⟩h ⟨a, b⟩=C5 hQ,

C5 = ⟨c⟩, Q = ⟨a, b⟩= ⟨a, b | a4 = 1, a2 = b2, b−1ab = a−1⟩.

In this section, we shall prove the following theorem.

Theorem 5.1. A finite group G is isomorphic to G6 if and only if there exists x ∈ I(G) such that the following
properties hold:
10 K(x)∼= End(Q);
20 H(x) = {0};
30 | [x]|= 5;
40 J(x) = {0};
50 |V (x)|= 4 ·5;
60 P(x)∼= End(C5);
70 K0(y) = K0(x) for each y ∈ [x].

Proof. Necessity. Let G = G6 and G be given by the generating relations as presented above. Denote by x
the projection of G onto its subgroup Q = ⟨a, b⟩. Then Im x = ⟨a, b⟩ and Ker x = ⟨c⟩. We have to prove that
x satisfies properties 10–70.
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Property 10 follows from Lemma 2.3. Since |Q| and |⟨c⟩| are coprime, Lemma 2.4 implies property 20.
The set [x] consists of the idempotents of End(G) such that yx = x and xy = y. Hence a−1 ·ay, b−1 ·by ∈

Ker x, cy = 1, and
ay = aci, by = bc j, cy = 1 (5.1)

for some i, j ∈ Z5. The map y given by (5.1) preserves the generating relations of G and can be extended
to an endomorphism of G if and only if i ∈ Z5 and j = 0. Each such endomorphism is an idempotent.
Therefore, | [x]|= 5 and property 30 holds.

By Lemma 2.5, J(x) consists of the endomorphisms y of G, where

ay = by = 1, cy = ci, i ∈ Z5. (5.2)

The map y given by (5.2) preserves the generating relations of G and can be extended to an endomorphism
of G if and only if i = 0, i.e., y = 0. Hence property 40 is true.

The set V (x) consists of the automorphisms y of G such that yx = x, i.e., g−1 ·gx ∈ Ker x = ⟨c⟩ for each
g ∈ G and

ay = aci, by = bc j, cy = ck (5.3)

for some i, j, k ∈ Z5. The map y given by (5.3) preserves the generating relations of G and can be extended
to an endomorphism of G if and only if j = 0. This endomorphism is an automorphism if and only if k and
5 are coprime. Hence |V (x)|= 4 ·5 and property 50 holds.

By Lemma 2.7, P(x) consists of the endomorphisms y of G such that

ay = a, by = b, cy = ci, i ∈ Z5. (5.4)

The map y given by (5.4) preserves the generating relations of G and can be extended to an endomorphism
of G for each i ∈ Z5. It follows from here that the submonoid P(x) of End(G) is isomorphic to End(C5),
i. e., x satisfies property 60.

It was proved that [x] consists of maps yi, i ∈ Z5, where

ayi = aci, by = b, cy = 1.

By Lemmas 2.2 and 2.3,
Im yi = ⟨aci, b⟩ ∼= Im x = Q, K(yi)∼= End(Q).

In view of [13], Lemma 1 and Theorem 14, the nilpotent elements of K(yi) consist of maps z jk ( j, k ∈ Z2),
where

(aci)z jk = (aci)2 j = a2 j, bz jk = (aci)2k = a2, cz jk = 1,

i.e.,
az jk = (aci)2 j = a2 j, bz jk = (aci)2k = a2, cz jk = 1.

It follows that K0(y) = K0(x) for each y ∈ [x] and property 70 is true. The necessity is proved.

Sufficiency. Let G be a finite group such that there exists x ∈ I(G) which satisfies properties 10–70 of the
theorem. By property 30, x is non-trivial (x ̸∈ {0, 1}).

By Lemma 2.1,
G = Ker xh Im x. (5.5)

Denote M = Ker x. The semidirect product (5.5) is not a direct product, because otherwise the projection of
G onto its subgroup Ker x is a non-trivial element in J(x) which contradicts property 40.

Lemma 2.3 and property 10 imply

End(Im x)∼= End(Q).
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Since the quaternion group is determined by its endomorphism monoid in the class of all groups (Lemma
2.14), we have Im x ∼= Q and

Im x = Q = ⟨a, b | a4 = 1, a2 = b2, b−1ab = a−1⟩

(we identified Im x and Q).
Lemma 2.4 and property 20 imply that Ker x is a 2

′
-group, i.e., Im x is a Sylow 2-subgroup of G. Since

the Sylow 2-subgroups of G are conjugate, Lemma 2.1 and property 30 imply that there exist 5 Sylow
2-subgroups of G and

[M : NM(Im x)] = 5. (5.6)

In view of (5.6) and property 50, we have

|M̂|= 5, M/(M∩Z(G))∼=C5. (5.7)

It follows that all 5
′
-elements of M belong into the centre of G and

M = M5 ×M5 ′ , M5 ′ ⊂ Z(G),

where M5 and M5 ′ are a Sylow 5-subgroup and a Hall 5
′
-subgroup of G, respectively. Hence

G = M5 ′ × (M5 h Im x).

Denote by π the projection of G onto its subgroup M5 ′ . Then π ∈ J(x) and, by property 40, π = 0. Therefore,
M5 ′ = ⟨1⟩, M = M5, and M = Ker x is a 5-group. By (5.7), M is an Abelian 5-group.

Let us consider the map

yi :


a 7−→ a,
b 7−→ b,
h 7−→ hi, h ∈ M = Ker x,

where i is an integer. Since M is Abelian, it is easy to check that yi can be uniquely extended to an
endomorphism of G and yi ∈ P(x). Clearly, yiy j = yi· j for each integer i and j. Therefore, property 60

implies that
h5 = 1 for each h ∈ M

and M is an elementary Abelian 5-group. In view of (5.7), there exist c ∈ M such that

M = Ker x = (M∩Z(G))×⟨c⟩, ⟨c⟩ ∼=C5, c ̸∈ M∩Z(G).

Hence
G = ((M∩Z(G))×⟨c⟩)hQ = ((M∩Z(G))×⟨c⟩)h ⟨a, b⟩. (5.8)

We can assume that ac ̸= ca, because the case bc ̸= cb can be considered similarly. Therefore, by (5.8),
there exist i ∈ Z5, i ̸= 0, and c0 ∈ M∩Z(G) such that

c−1ac = acic0.

If c0 ̸= 1, there exists c1 ∈ M∩Z(G) such that c0 = ci
1 and we have

cic0 = cici
1 = (cc1)

i,

(cc1)
−1a(cc1) = c−1

1 · c−1ac · c1 = c−1ac = acic0 = acici
1 = a(cc1)

i,

i.e., we can replace the element c by the element cc1. It follows that we can assume that

c−1ac = aci, i ̸= 0. (5.9)
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In view of (5.7) and property 30,
[x] = {xĉ j | j ∈ Z5}.

Choose j ∈ Z5 and denote y = xĉ j. The nilpotent endomorphisms of Q = ⟨a, b⟩ are the maps

a 7−→ a2k, b 7−→ a2l; k, l ∈ Z2

by Lemma 1 and Theorem 14 in [12]. Therefore, the nilpotent endomorphisms of K(y) consist of maps zkl ,
where

(c− jac j)zkl = c− ja2kc j, (c− jbc j)zkl = c− ja2lc j, hzkl = 1, h ∈ M.

Since c ∈ M, we have
azkl = c− ja2kc j, bzkl = c− ja2lc j. (5.10)

By property 70, zkl is a nilpotent element of K(x). Therefore,

azkl = a2k, bzkl = a2l. (5.11)

It follows from (5.10) and (5.11) that c− ja2c j = a2 for each j ∈ Z5, i.e.,

c−1a2c = a2. (5.12)

In view of (5.9) and (5.12), we have

a−1c−1a = ci−1, a−1ca = c1−i,

a2 = c−1a2c = (aci)2 = a2 ·a−1cia · ci = a2ci(1−i) · ci = a2c2i−i2 ,

and 2i− i2 ≡ 0(mod5). Since i ̸= 0, we have i = 2 and

c−1ac = ac2.

Let us now consider properties of b. By (5.8), there exist s ∈ Z5 and c2 ∈ M∩Z(G) such that

c−1bc = bcsc2, b−1c−1b = cs−1c2, b−1cb = c1−sc−1
2 ,

c−1b2c = bcs ·bcs · c2
2 = b2 ·b−1csb · csc2

2

= b2 · cs(1−s)c−s
2 · csc2

2 = b2 · c2s−s2
c2−s

2 . (5.13)

In view of a2 = b2, (5.12), and (5.13), we have

2s− s2 ≡ 0(mod5), c2−s
2 = 1,

i.e., s = 0, c2 = 1 or s = 2. If s = 0, c2 = 1, then bc = cb and

G = ⟨a, b, c | a4 = c5 = 1, a2 = b2, c−1ac = ac2, bc = cb, b−1ab = a−1⟩ ∼= G6.

Assume that s = 2. Then

c−1bc = bc2c2, b−1cb = c−1c−1
2 ,

c−1abc = c−1ac · c−1bc = ac2 ·bc2c2 = ab ·b−1c2b · c2c2

= ab · c−2c−2
2 · c2c2 = ab · c−1

2 .

Since (ab)4 = 1, we have c−4
2 = 1, c2 = 1, and

c ·ab = ab · c.

Denote b0 = ab. It is easy to check that b2
0 = a2, b−1

0 ab0 = a−1, and

G = ⟨a, b0, c | a4 = c5 = 1, a2 = b2
0, c−1ac = ac2, b0c = cb0, b−1

0 ab0 = a−1⟩ ∼= G6.

We have proved that in all possible cases G ∼= G6. The sufficiency is proved. The theorem is proved.
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Theorem 5.2. The group G6 is determined by its endomorphism monoid in the class of all groups.

Proof. Let G∗ be a group such that the endomorphism monoids of G∗ and G6 are isomorphic:

End(G∗)∼= End(G6). (5.14)

Denote by z∗ the image of z ∈ End(G6) in isomorphism (5.14). Since End(G∗) is finite, so is G∗ ([1],
Theorem 2). By Theorem 5.1, there exists x ∈ I(G6) which satisfy properties 10−70 of the theorem. In view
of isomorphism (5.14), the endomorphism x∗ satisfies properties 10 −70, where always x and y are replaced
by x∗ and y∗, respectively. Using now Theorem 5.1 for G∗, it follows that G∗ and G6 are isomorphic. The
theorem is proved.

6. ON ENDOMORPHISMS OF G10

Let us consider the group

G10 = ⟨a, b, d | a2 = b2 = d5 = (ad)2 = d−1bdb = (ba)4 = 1⟩.

It follows from defining relations of G10 that

a−1da = d−1, bd = db.

Denote c = aba. Then

c2 = abaaba = 1, 1 = (ba)4 = babababa = bcbc, bc = cb,
dc = daba = a ·a−1da ·ba = ad−1ba = abd−1a = aba ·a−1d−1a = cd.

Therefore,

G10 = ⟨a, b, c, d | a2 = b2 = c2 = d5 = 1, bc = cb, bd = db, dc = cd,
a−1da = d−1, a−1ba = c, a−1ca = b⟩

and

G10 = ⟨b, c, d⟩h ⟨a⟩= (⟨b⟩×⟨c⟩×⟨d⟩)h ⟨a⟩
= (⟨b⟩×⟨c⟩)h (⟨d⟩h ⟨a⟩) = ⟨d⟩h ((⟨b⟩×⟨c⟩)h ⟨a⟩).

Our aim is to prove the following theorem.

Theorem 6.1. A finite group G is isomorphic to G10 if and only if there exist x, y, z ∈ I(G) which satisfy
condition C0(x; y, z) and the following properties:
10 K(x)∼= End(C2);
20 K(y)∼= End(D10);
30 K(z)∼= End(D8);
40 |{u ∈ K(z) | xu = u, ux = 0}|= 4.

Proof. Necessity. Let G = G10. We have to prove that there exist x, y, z ∈ I(G) which satisfy condition
C0(x; y, z) and properties 10 −40 of the theorem.

Denote
K = ⟨a⟩, G1 = ⟨d⟩, G2 = ⟨b⟩×⟨c⟩, H = ⟨1⟩.
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Then

G = H h ((G1 ×G2) h K),

⟨G1, K⟩ = G1 h K ∼= D10, ⟨G2, K⟩= G2 h K ∼= D8.

We can now use Lemma 2.17 for the case n = 2. By Lemma 2.17, there exist x, y, z ∈ I(G) (x1 = y, x2 = z)
which satisfy condition C0(x; y, z):

Im x = K ∼=C2, Im y = G1 hK ∼= D10, Im z = G2 hK ∼= D8.

Lemma 2.3 implies that

K(x)∼= End(C2), K(y)∼= End(D10), K(z)∼= End(D8).

Hence properties 10, 20, and 30 of the theorem hold. In view of Lemma 2.16 (use it for the groups Im y and
Im z), property 40 is also true. The necessity is proved.

Sufficiency. Let G be a finite group and there exist x, y, z ∈ I(G) which satisfy property C0(x; y, z) and
properties 10 −40 of the theorem. Our aim is to prove that G ∼= G10.

By Lemma 2.17, G decomposes into the semidirect product

G = (G1 ×G2)hK,

where

Im x = K, Im y = G1 hK, Im z = G2 hK,

Ker x = (G1 ×G2), Ker y = G2, Ker z = G1.

In view of Lemma 2.3 and properties 10, 20, and 30,

End(K) = End(Im x)∼= End(C2),

End(G1 hK) = End(Im y)∼= End(D10),

End(G2 hK) = End(Im z)∼= End(D8).

Since each finite Abelian group and dihedral groups are determined by their endomorphism monoids in the
class of all groups (Lemmas 2.11 and 2.13), we have

K = ⟨a⟩ ∼=C2, G1 hK ∼= D10, G2 hK ∼= D8

for some a ∈ G. The isomorphism G1 hK ∼= D10 implies that there exists d ∈ G1 such that

a−1da = d−1.

Let us use Lemma 2.16 for the group Im z ∼= D8. By 40, x satisfies conditions 10 and 20 of the lemma.
Therefore, there exist b, c ∈ Im z∩Ker x such that

Im z = (⟨b⟩×⟨c⟩)h ⟨a⟩= ⟨a, b, c | a2 = b2 = c2 = 1, bc = cb, a−1ba = c⟩.

We have proved that

G = ⟨a, b, c, d | a2 = b2 = c2 = d5 = 1, bc = cb, bd = db,
dc = cd, a−1da = d−1, a−1ba = c, a−1ca = b⟩,

i. e., G ∼= G10. The sufficiency is proved.
The theorem is proved.

Theorem 6.2. The group G10 is determined by its endomorphism monoid in the class of all groups.

The proof of Theorem 6.2 is similar to that of Theorem 5.2.



A. Leibak and P. Puusemp: On endomorphisms of groups of orders 37–47 149

7. CONCLUSIONS

We studied the determinability of groups of orders 37–47 by their endomorphism monoids. We proved that
all these groups are determined by their endomorphism monoids in the class of all groups. The technique
developed in this paper can be applied to other small groups and it can be implemented in the software GAP.
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Järkudega 37–47 rühmade endomorfismidest

Alar Leibak ja Peeter Puusemp

Autorite varasemates töödes on kirjeldatud kõik rühmad, mille endomorfismimonoidid on isomorfsed mingi
väiksemat kui 37. järku rühma endomorfismimonoididega. Käesolevas artiklis on tõestatud, et lõplikud
rühmad järkudega 37–47 on määratud oma endomorfismimonoididega kõigi rühmade klassis. Selleks on
mainitud rühmade kirjeldused antud nende endomorfismimonoidide kaudu.


