
Proceedings of the Estonian Academy of Sciences,
2017, 66, 1, 89–107

https://doi.org/10.3176/proc.2017.1.06
Available online at www.eap.ee/proceedings

Functions’ algebra in nonlinear control:
computational aspects and software

Juri Belikova, Arvo Kaldmäeb, Vadim Kaparinb, Ülle Kottab, Alexey Ye. Shumskyc,
Maris Tõnsob∗, and Alexey Zhirabokc

a Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa 3200003, Israel; juri.belikov@ttu.ee
b Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia; vkaparin, arvo,

kotta}@cc.ioc.ee
c Far Eastern Federal University, Sukhanov Street 8, 690990 Vladivostok, Russia; shumsky@mail.primorye.ru,

zhirabok@mail.ru

Received 29 June 2016, revised 10 November 2016, accepted 11 November 2016, available online 2 March 2017

c⃝ 2017 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).

Abstract. The paper describes the Mathematica-based software for studying nonlinear control systems. The software relies on an
algebraic method, called functions’ algebra. The advantage of this approach, over well-known linear algebraic and differential
geometric methods is that it is applicable to certain non-smooth systems. The drawback is that the computations are more
complicated since the approach manipulates directly with the functions related to the system equations and not with the differential
one-forms/vector fields that simplify (linearize) the computations. We have implemented the basic operations of functions’ algebra,
i.e., partial order, equivalence, summation, and multiplication, but also finding the simplest representative of an equivalence class.
The next group of functions is related to the control system and involves binary relation, operators m, M, and computation of
certain sequences of invariant vector functions on the basis of system equations. Finally, we have developed Mathematica functions,
allowing us to solve the following control problems in case of discrete-time systems: checking accessibility, static state feedback
linearization, and disturbance decoupling.

Key words: nonlinear control systems, discrete-time systems, functions’ algebra, symbolic computation.

1. INTRODUCTION

The algebraic approach, called historically functions’ algebra [13] and based actually on algebraic lattice
structure, is developed by analogy with the algebra of partitions [4]. The advantage of this method over
difference/linear algebraic and differential geometric methods in nonlinear control is that it allows, in
theory, handling also certain types of non-smooth functions. We have specified the class of piecewise
smooth functions, which includes, for instance, saturation, friction, and dead zone but not hysteresis and
backlash. Although the methodology can, in principle, handle more general functions, computations for
such cases become even more complicated without much practical value, since in most ‘real-life’ examples
the functions are piecewise smooth. In particular, the absolute value and signum functions are the most
typical non-smooth functions encountered in system descriptions.

∗ Corresponding author, maris@cc.ioc.ee

90 Proceedings of the Estonian Academy of Sciences, 2017, 66, 1, 89–107

However, the possibility of handling non-smooth functions is difficult to realize, since the constructions
of the theory are complicated and mainly unknown to control community. Therefore, to support further
research within the new framework and explore/evaluate its advantages/disadvantages, the respective
symbolic software would be of great help. This paper describes such software, developed within the
Mathematica environment and incorporated into the package NLControl, which has been developed in the
Institute of Cybernetics at Tallinn University of Technology. In certain steps the new Mathematica functions
that handle computations related to functions’ algebra, use the existing functions in NLControl. The first
steps towards developing such software were reported in [8] and [10]. Compared to these conference papers,
here numerous new algorithms are presented, including (1) computation of the summation operation ⊕,
(2) computation of the operator M in the general case, and (3) finding the simplest representative of the
equivalence class. Moreover, the solution of the disturbance decoupling problem was not discussed in
the conference papers. Note that in this paper we focus on the discrete-time case, though the analogous
constructions with some modifications exist for continuous-time systems, too. We comment on the
continuous-time case only briefly at the end of the paper.

Unlike the differential geometric [5,12] and difference/linear algebraic methods [1,3], this approach is
not based on the globally linearized system description (i.e., on differential one-forms), or on vector fields,
defined in the tangent space of directional derivatives, but manipulates directly with the functions, including
the state transition map. Therefore, in finding the solutions of different modelling, analysis, and synthesis
problems, there is no need to solve specific partial differential equations (PDEs) or integrate one-forms, in
principle, though in case of smooth or analytic functions the computations may be handled with the help of
distributions and vector spaces over the field of meromorphic functions (codistributions), respectively. On
the other hand, since computations are not linearized by applying the differential operators, they are much
more complicated. One may hardly expect to find the solutions manually, except for very simple cases.
Therefore, for the algebra of functions to be truly applicable, one has to formalize the computations with the
key elements of this approach and implement the corresponding algorithms.

The paper is organized as follows. In Section 2 the basic notions of functions’ algebra are recalled,
as well as the solution of a few nonlinear control problems, based on functions’ algebra. In Section 3 the
main computation algorithms are given and the details of the Mathematica implementation are described.
Section 4 is devoted to finding the simplest representative of the equivalence class and in Section 5 the case
of non-smooth functions is discussed. In Section 6 two examples are given, demonstrating the application
of the developed software to nonlinear control problems. Finally, Section 7 enlightens the possible future
studies.

2. MATHEMATICAL SETTING

2.1. Control system and differential one-forms

Consider the discrete-time nonlinear systems, described by the state equations

x(t +1) = f (x(t),u(t)), (1)

where the state x(t) ∈ X ⊆ Rn and the control input u(t) ∈U ⊆ Rm.
Hereinafter we use for a variable ξ (t) the notation ξ ; the forward shift ξ (t + 1) is denoted by ξ+ and

the backward shift ξ (t −1) by ξ−.
For smooth functions the following approach of differential one-forms proves to be useful in several

cases. For smooth α = [α1, . . . ,αk]
T, β = [β1, . . . ,βℓ]

T, depending on variable x, one can define the
codistributions Ωα and Ωβ , respectively, as

Ωα := spK {dαi, i = 1, . . . ,k}, Ωβ := spK {dβι , ι = 1, . . . , ℓ}.

J. Belikov et al.: Software for functions’ algebra 91

The symbols αi, βι denote the components of α and β , respectively. The notation spK {dαi} means that
Ωα contains all linear combinations of one-forms dαi, computed over a certain field K , described below.
Hereinafter we sometimes omit the indices and write Ωα = spK {dα}, Ωβ = spK {dβ}. By introducing the
column vector dx := [dx1, . . . ,dxn]

T and the matrices

A := [αi j] :=

[
∂αi

∂x j

]
, B := [βι j] :=

[
∂βι

∂x j

]
, (2)

where i = 1, . . . ,k, j = 1, . . . ,n, ι = 1, . . . , ℓ, we write

dα = Adx, dβ = Bdx.

The field K is associated with the control system (1), its construction is borrowed from [1]. By
K we denote the field of meromorphic functions in a finite number of variables from the infinite set
{x, u j(t), z j(−ℓ), j = 1, . . . ,m, t > 0, ℓ > 0}. The variables z1, . . . ,zm are chosen from the set {x,u j}
such that one could locally express the variables x,u j in terms of x+ and z j from (1), i.e. to find a function
(x,u) = ψ(x+,z). This is possible under the assumption that rank(∂ f/∂ (x,u)) = n. The choice of z is
not unique, however, all choices lead to the equivalent field. The forward-shift operator σ : K → K is
defined by σφ(x,u) = φ(f (x,u),u+), where f is determined by system (1). The inverse operator of σ is
called backward shift and denoted as σ−1 : K → K . Sometimes the abridged notations φ+(·) = σφ(·)
and φ−(·) = σ−1φ(·) for φ ∈ K are used.

2.2. Basics of functions’ algebra

In functions’ algebra we work with the vectors (of any finite dimension), whose elements are functions
defined either on the domain X ×U or on X . Denote the corresponding sets of vectors by SX×U and SX ,
respectively. The elements of SX×U or SX are called vector functions.

Below we define two preorders 6 and 6s, where 6s is a special case1 of 6. Note that a preorder is a
binary relation that is reflexive and transitive. If, in addition, the relation is also antisymmetric, it is called
the relation of partial order. For simplicity, these preorders are defined on SX . For SX×U , they are defined in
a similar manner. Note that the phrase ‘for every x ∈ X’ throughout this paper should be understood as ‘for
every x ∈ X from the intersection of the domains of α and β ’.

Definition 1. Given α,β ∈ SX , one says that
(i) α 6 β , if for every x ∈ X there exists a function γ , such that β = γ(α);
(ii) if the function γ in (i) is defined uniquely for all x ∈ X, we say that α 6s β .

Example 1. This example illustrates the difference between preorders 6 and 6s. Let α = x and β = x2.
Then, since β = α2 for every x ∈ R, it is clear that α 6s β . But the opposite is not true, because there does
not exist a unique function γ such that α = γ(β) for all x ∈R. In fact, if x < 0, then α =−

√
β and if x > 0,

then α =
√

β . However, by definition, β 6 α , since for every x ∈ R one can find a function γ such that
α = γ(β).

Based on the preorders 6 and 6s, one can define the equivalence relations2 ∼= and ∼=s, respectively. In
the following we continue only with preorder 6, since we use mostly 6 when studying the systems of the
form (1). The case when 6s is considered is defined similarly.

1 Here s stands for ‘strong’.
2 An equivalence relation is a preorder which is also symmetric.

92 Proceedings of the Estonian Academy of Sciences, 2017, 66, 1, 89–107

Definition 2. Vector functions α,β ∈ SX satisfy the relation ∼=, if α 6 β and β 6 α .

The relation ∼= is obviously an equivalence relation.

Example 2. (i) x ∼= x2, x ̸∼=s x2; (ii) x ∼= |x|, x ̸∼=s |x|; (iii) |x| ∼= x2, |x| ∼=s x2; (iv) [x1,x2]
T ∼= [x1,

x1
x2
]T,

[x1,x2]
T ∼=s [x1,

x1
x2
]T.

If α ̸6 β and β ̸6 α , then α and β are said to be incomparable.

Example 3. Let α = [x1 + x2,x3]
T and β = [x2 + x3]. Clearly, α and β are incomparable.

The relation ∼= is an equivalence relation and thus divides the elements of SX into the equivalence classes.
Let SX\∼= be the set of the equivalence classes. The relation 6 was defined on the set SX , but can be viewed3

also as a relation on SX\ ∼=, where it becomes a partial order. Then the pair (SX\ ∼=,6) becomes a lattice,
since 0 := [x1, . . . ,xn]6 α 6 1 for all α ∈ SX\ ∼=, where 1 is the equivalence class containing constant vector
functions.

Remark 1. In control theory it is customary to operate with representatives of some equivalent objects. In
the rest of this paper, if not stated otherwise, the equivalence classes are defined by their representatives,
which are vector functions from SX or SX×U and thus, a vector function should always be understood as an
equivalence class. The operations ×, ⊕, m, M and the relation ∆ are defined on SX\ ∼=, although in terms
of the representatives of the equivalence classes. Also, since we work with equivalence classes, the sign ‘=’
should be understood as ‘∼=’.

As (SX\ ∼=,6) is a lattice, we can define the binary operations × and ⊕ as

α ×β = inf(α,β), α ⊕β = sup(α,β) (3)

for all α,β ∈ SX\ ∼=. The infimum and supremum in (3) are considered with respect to the partial order
relation 6. In the same way, the notion maximal/minimal vector function means maximality/minimality
with respect to 6.

Example 4. Consider the vector functions α = [x1 +x2,x3]
T, β = [x1x3,x2x3]

T and let n = 3. By definition,
α×β is the maximal vector function (containing the minimal number of functionally independent elements)
γ that satisfies γ 6 α and γ 6 β . This example contains only one vector function, γ = [x1,x2,x3]

T, which
satisfies γ 6 α and γ 6 β and thus, α ×β = [x1,x2,x3]

T.
The vector function α ⊕β is defined as the minimal vector function γ satisfying α 6 γ and β 6 γ . In

general, there are many vector functions satisfying α 6 γ and β 6 γ . In this example there are two such
functions: 1 and (x1 + x2)x3. Since (x1 + x2)x3 6 1, α ⊕β = (x1 + x2)x3.

The previously defined lattice will be connected to the system dynamics (1) through the binary relation
∆. Note that ∆ is defined only on SX\ ∼=.

Definition 3. Given α,β ∈ SX\ ∼=, one says that (α,β) satisfy binary relation ∆, denoted as α∆β , if for
all x ∈ X and u ∈U there exists a function f∗ such that

β (f (x,u)) = f∗(α(x),u). (4)

The binary relation ∆ is mostly used for the definition of the operators m and M.

3 When an equivalence class is represented by an element (a vector function) of this equivalence class.

J. Belikov et al.: Software for functions’ algebra 93

Definition 4. (i) m(α) is a minimal vector function β ∈ SX\ ∼= that satisfies α∆β ;
(ii) M(β) is a maximal vector function α ∈ SX\ ∼= that satisfies α∆β .

Example 5. Consider the system

x+1 = x2u1, x+2 = x1 + x3, x+3 = x3 +u2

and the vector function α = [x1,x2]
T. First, note that α∆x1, because x+1 can be written in terms of α and u:

x1(f (x,u)) = x+1 = α2u1. (5)

Also α∆[x1,x2 − x3]
T, because of (5) and (x2 − x3)

+ = α1 − u2. Note that [x1,x2 − x3]
T 6 x1; in fact

[x1,x2 − x3]
T is a minimal vector function β satisfying α∆β because there exist no other functions whose

forward shifts do not depend on x3, and thus

m(α) = [x1,x2 − x3]
T.

Next, observe that one can always write α(f (x,u)) in terms of x and u, which means by Definition 3 that
x∆α . Therefore, x 6 M(α) for every α . In this example, the vector function γ := [x2,x1 +x3]

T also satisfies
γ∆α because

α+
1 = γ1u1, α+

2 = γ2.

In fact, γ is a maximal vector function that satisfies γ∆α and thus, by Definition 4,

M(α) = γ = [x2,x1 + x3]
T.

2.3. Applications of functions’ algebra

In this section, the solutions of three nonlinear control problems (accessibility, static state feedback
linearization, and disturbance decoupling problem) are formulated in terms of functions’ algebra. For that
purpose, we first define the notion of f -invariant vector function.

Definition 5. The vector function δ is said to be invariant with respect to the system dynamics (1), or said
alternatively, f -invariant, if δ∆δ .

Next, one has to find a minimal (containing the maximal number of functionally independent
components) vector function δ 1(x) such that its forward shift δ 1(x+) = δ 1(f (x,u)) does not depend on
the control variable u. If f is smooth, δ 1(x) satisfies the condition ∂

∂u δ 1(f (x,u)) ≡ 0. The vector function
δ 1(x) initializes Algorithm 1 below. In general, the components of δ 1(x) are scalar functions with relative
degree two or more [5].

Algorithm 1 finds the minimal f -invariant vector function δ , satisfying the condition δ 1 6 δ .

Algorithm 1 ([11]). Given δ 1, compute recursively for i > 1, using the formula

δ i+1 = δ i ⊕m(δ i),

the sequence of non-decreasing vector functions δ 1 6 δ 2 6 · · ·6 δ i 6 · · · . Then there exists a finite j such
that δ j ̸∼= δ j−1 but δ j+l ∼= δ j, for all l > 1. Define δ := δ j.

A non-constant vector function α ∈ SX is said to be an autonomous variable of system (1) if there exist
a non-constant function F and an integer µ > 1 such that F(α,σ(α), . . . ,σ µ(α)) = 0. System (1) is said to
be accessible if it has no autonomous variable.

94 Proceedings of the Estonian Academy of Sciences, 2017, 66, 1, 89–107

Theorem 6 ([11]). System (1) is accessible iff for some k, δ k−1 ∼= δ k = 1, i.e., the minimal f -invariant
vector function, satisfying the condition δ 1 6 δ , is constant.

System (1) is said to be static state feedback linearizable if, generically, there exist (i) a state coordinate
transformation φ : X → X and (ii) a regular static state feedback of the form u = ϑ(x,v) such that, in the
new coordinates z = φ(x), the compensated system reads z+i = zi+1, for i = 1, . . . ,n−1 and z+n = v.

Theorem 7 ([11]). The single-input system (1) is static state feedback linearizable iff δ i ̸= 1, for i =
1, . . . ,n−1, but δ n = 1. The state transformation is given by z1 = δ n−1, zi+1 = Mi−1(δ n−1) for i = 2, . . . ,n.

The third problem under study is the disturbance decoupling problem under a dynamic measurement
feedback (DDDPM). Consider a discrete-time nonlinear control system

x(t +1) = f (x(t),u(t),w(t)), y(t) = h(x(t)), y∗(t) = h∗(x(t)), (6)

where x(t) ∈ X ⊆ Rn is the state, u(t) ∈ U ⊆ Rm is the control, w(t) ∈ W ⊆ Rp is the unmeasurable
disturbance, y(t) ∈ Y ⊆ Rl is the measured output, and y∗(t) ∈ Y∗ ⊆ RL is the output-to-be-controlled. The
DDDPM can be stated as follows: find a dynamic measurement feedback of the form

z(t +1) = F(z(t),y(t),v(t)), u(t) = G(z(t),y(t),v(t)), (7)

where v(t) ∈V ⊆ Rm and
rank[∂G/∂v] = m, (8)

such that the values of the outputs-to-be-controlled y∗(t), for t > 0, of the closed-loop system are
independent of the disturbances w. Note that we call the compensator, described by (7), regular if it
generically defines the (y,z)-dependent one-to-one correspondence between the variables v and u. One
says that the disturbance decoupling problem is solvable via static output feedback if u = G(y,v).

Find first a minimal vector function α0(x) such that its forward shift α0(f (x,u,w)) does not depend on
the unmeasurable disturbance w.

Definition 8. The vector function α is said to be(h, f)-invariant if (α ×h)∆α .

Definition 9. The vector function α is said to be a controlled invariant if there exists a regular static state
feedback u = G(x,v) such that the vector function α is f -invariant for the closed-loop system.

Theorem 10 ([6]). System (6) can be disturbance decoupled by feedback (7), where z = α(x) iff there exists
an (h, f)-invariant vector function ϕ and a controlled invariant vector function ξ such that α0 6 ϕ 6 ξ 6 h∗.

3. MATHEMATICA IMPLEMENTATION

The programs, described in this section, are implemented as a part of the Mathematica-based package
NLControl. By employing NLControl, various problems, related to analysis, synthesis, and modelling of
nonlinear control systems can be solved. The most important functions of the package are made available
on the package website [2] using webMathematica technology, so that anyone can use them via a internet
browser without installing special software.

Here the methods are described to compute the operations and operators, defined in the previous section.
To simplify the presentation, assume first that the vector functions α and β are smooth. The non-smooth
case is discussed later. This paper focuses only on the case of the partial order relation α 6 β .

For the strong relation α 6s β , in Definition 1 the existence of unique γ is required for all x ∈ X . As
demonstrated in Example 1, uniqueness essentially depends on the chosen region. Thus, the study of strong
relation basically requires determining whether a certain equation (or system of equations) has a unique
solution in a certain region. The other possible task is to determine a ‘good’ region where unique γ exists.

J. Belikov et al.: Software for functions’ algebra 95

3.1. Relation of partial order

A condition to check whether α 6 β is formulated as follows.

Proposition 11. For smooth vector functions α,β ∈ SX\ ∼=, α 6 β if and only if

rankK

[∂α
∂x

]
= rankK

[(∂α
∂x

)T
,
(∂β

∂x

)T
]T

(9)

for all x(t) ∈ X .

Proof.

β (x) = γ(α(x)) ⇔ ∂β
∂x

=
∂γ
∂α

∂α
∂x

⇔ (9).

�

Example 6. Consider the vector functions α = [x1x2,x3]
T and β = [x1 + x3,x2]

T from SX . The package can
be loaded by the command4

In[1]:= <<NLControl̀ Master`

In this implementation the column vectors α and β are represented in the single pair of brackets5 for the
sake of simplicity:
In[2]:= α = {x1 x2, x3}; β = {x1+x3, x2}; xi = {x1, x2, x3};

It is also necessary to specify the list of the variables xi, denoted by xi. The preorder of α and β can now be
checked by
In[3]:= PartialPreOrder [α, β , xi]

Out[3]= False

which means that α
 β . The function PartialPreOrder is based on the rank condition (9); Mathematica
function MatrixRank is used to compute the ranks. The function Incomparability checks if α and β are
incomparable:
In[4]:= Incomparability [α, β , xi]

Out[4]= True

If we look at the vector functions α and β as representatives of the equivalence classes, the same function
can be used to check whether they satisfy the partial order 6.

3.2. Equivalence

The equivalence of two vector functions α and β can be checked easily, by just examining whether α 6 β
and β 6 α . A function LatticeEquivalent [α , β , xi] allows one to check if α and β belong to the same
equivalence class.

4 For the sake of compactness, the Mathematica lines are printed in roman font rather than in typewriter font, appearing in the
original Mathematica notebooks.

5 In Mathematica the single brackets typically indicate the row vector.

96 Proceedings of the Estonian Academy of Sciences, 2017, 66, 1, 89–107

3.3. Computation of α ×βα ×βα ×β

This operation can be computed by a simple formula

α ×β =

[
α
β

]
.

Note that typically a simpler representative of the equivalence class exists, since there may be dependent
elements in [αT,β T]T (see Section 4 for details):
In[5]:= α = {x1+x2, x3}; β = {x1 x3, x2 x3}; xi = {x1, x2, x3};

LatticeTimes [α, β , xi]

Out[5]= {x1, x2, x3}

3.4. Computation of α ⊕βα ⊕βα ⊕β

To find α ⊕β , the following algorithm can be used:

Algorithm 2.
1. Compute Ω = spK {dα}∩ spK {dβ}.
2. Find the largest integrable subspace Ω̂ of Ω.
3. Integration of Ω̂ gives the components of the vector function α ⊕β .

Intersection spK {dα}∩ spK {dβ} can be computed by the following straightforward algorithm:

Algorithm 3.
1. Compute

K := ker
[

A
B

]T

,

where matrices A and B are defined by (2) and ker denotes the null space of the matrix.
2. Take the first k columns of K and denote the obtained matrix by K̄.
3. Intersection sp{dα}∩ sp{dβ}= sp{K̄Adx}, where K̄A is the product of matrices.

The largest integrable subspace of Ω = spK {ω1, . . . ,ωk} can be computed as the limit of the following
sequence of subspaces, sometimes known as the derived flag of the Pfaffian system (see, for instance, [1]).

Algorithm 4.

I0 = spK {ω1, . . . ,ωk},
I j = spK {ω ∈ I j−1|dω = 0 mod I j−1}.

(10)

Note that dω = 0 mod spanK {ω1, . . . ,ωp} means dω ∧ω1 ∧·· ·∧ωp = 0.
The function LatticePlus [α , β , xi] finds α ⊕β , where xi is a list of variables.

3.5. Binary relation ∆

The equality (4) may be alternatively expressed as follows:

α(x)×u 6 β (f (x,u)). (11)

Indeed, by applying the definition of partial order to (11) and replacing γ by f∗ we get the equality (4).
The condition (11) is more suitable for computer implementation than (4) since it does not depend on the
unknown vector function f∗ and, moreover, it allows one to take advantage of the already existing function
PartialPreOrder. The Mathematica function allowing one to check whether α and β satisfy the binary relation
∆ is called BinaryRelation∆.

J. Belikov et al.: Software for functions’ algebra 97

Example 7. Consider the discrete-time system

x+1 = x2x3 + x1, x+2 = x3 +u2, x+3 = u2, x+4 = x3x4 + x1u1. (12)

The state equations may be entered in the form6:
In[6]:= f = {x2 x3+x1, x3+u2, u2, x3 x4+x1 u1};

Xt = {x1, x2, x3, x4}; Ut = {u1, u2};
steq = StateSpace [f,Xt,Ut, t, Shift];

Suppose that α = [x1,x2,x3]
T and β = [x1 + x2]:

In[7]:= α = {x1, x2, x3}; β = {x1+x2};

Clearly, β (f (x,u)) = [x+1 + x+2] = [x2x3 + x1 + x3 + u2] is computable from α = [α1,α2,α3]
T and u as

[α2α3 +α1 +α3 +u2]. Therefore, α∆β , i.e.,
In[8]:= BinaryRelation∆ [α, β]

Out[8]= True

Assume now that α̃ = [x2x3 + x1,x3]
T. Clearly, β (f (x,u)) = [x2x3 + x1 + x3 + u2] = [α̃1 + α̃2 + u2] is

computable from the knowledge of α̃ . Therefore,
In[9]:= α̃ = {x2 x3+x1, x3}; BinaryRelation∆ [α̃ , β]

Out[9]= True

Finally, if ᾱ = [x2x3 + x1 + x3], then β (f (x,u)) = [ᾱ1 +u2]. Therefore α2∆β :
In[10]:= ᾱ = {x2 x3+x1+x3}; BinaryRelation∆ [ᾱ, β]

Out[10]= True

3.6. Operator m

By Definition 3 and (11), the condition m(α)(f)> α ×u must be satisfied for vector function α . Moreover,
since [ζ (x)]+ = ζ (f) for any function ζ , obviously also m(α)(f) > f . From the above and the definition
of the operator ⊕,

m(α)(f) = (α ×u)⊕ f . (13)

Finally, observe that the left-hand side of (13) is the forward shift of m(α) and thus,

m(α) = [(α ×u)⊕ f]− . (14)

The program to compute the operator m is based on the formula (14).

Example 8. Consider again system (12). Let α(x) = [x1, (x2 + x4)x3]
T. To compute m(α), the vector

function (α ×u)⊕ f has to be found:
In[11]:= α ={x1, (x2+x4) x3}; vars = {x1, x2, x3, x4, u1, u2};

mαPlus = LatticePlus [LatticeTimes [α,Ut, vars], f, vars]

Out[11]= {u2, (1+u1) x1+x3 (x2+x4)}

To get m(α), we have to find the backward shift of the previous result. In general, backward shifts of the
variables x−i := xi(t −1), i = 1, . . . ,n and u−j := u j(t −1), j = 1, . . . ,m are defined by system equations (12)
and for α(x,u) ∈ SX the backward shift α(x,u)− := α(x−,u−). Note that not all variables x−i , i = 1, . . . ,n
and u−j , j = 1, . . . ,m are independent. Alternative choices are possible for selecting m independent variables.

6 For the sake of compactness we have omitted the obligatory argument t. In the original Mathematica files all variables
x1,x2, . . . , u1,u2, . . . , y1,y2, . . . , should be written as x1[t],x2[t], . . . ,u1[t],u2[t], . . . ,y1[t],y2[t], . . . , as long as they are related to
the state equations.

98 Proceedings of the Estonian Academy of Sciences, 2017, 66, 1, 89–107

Choose, for instance, x−1 and u−1 as independent variables7. Then the remaining variables may be obtained
by solving (12) for x2,x3,x4,u2 and applying to them the backward shift operator

x−2 =
x1 − x−1
x2 − x3

, x−3 = x2 − x3, x−4 =
x4 −u−1 x−1

x2 − x3
, u−2 = x3.

Then ((α × u) ⊕ f)− ∼= [u−2 ,(x
−
2 + x−4)x

−
3 + x−1 + x−1 u−1]

T = [x3,x1 + x4]
T. The NLControl function

BackwardShift has been developed earlier:
In[12]:= BackwardShift [mαPlus, steq]

Out[12]= {x3, x1+x4}

The function OperatorSmallM finds m(α) at once:
In[13]:= OperatorSmallM [α, steq]

Out[13]= {x3, x1+x4}

However, if α(x) = [x3], we get
In[14]:= OperatorSmallM [{x3}, steq]

Out[14]= {x2, x3}

3.7. Operator M

Unlike for m(α), there is no general formula to compute M(α) in terms of 6, ×, and ⊕. In some special
cases one can give a formula for M(α). For example, consider the case when the components α j(f (x,u)),
j = 1, . . . ,k, of α(f (x,u)) can be represented in the form

α j(f (x,u)) =
d j

∑
i=1

a ji(x)b ji(u), (15)

where a j1(x), . . . ,a jd j(x) are arbitrary functions and all the functions b j1(u), . . . ,b jd j(u) that are non-
constant are linearly independent. Then

M(α) :=
k

∏
j=1

a j1 ×·· ·×a jd j . (16)

Technically the most complicated step is the decomposition of the expression α j(f (x,u)) in (15) into the
sum of products a ji(x) and b ji(u). For that purpose the products and positive integer powers are expanded
out: for instance, (x+ u)2 is rewritten in the form x2 + 2xu+ u2. If α(f (x,u)) contains rational terms, the
denominators are factorized: for instance, 1

2+2u+x+ux is rewritten as 1
x+2 ·

1
u+1 . Complex roots are ignored.

Additionally, the functions with arguments involving the sum of x and u are written in the form of a product:
for instance, ex+u is replaced by ex · eu and sin(x+ u) by cosxsinu+ cosusinx. Finally, each summand of
α j(f (x,u)) is split into two parts: a ji(x) and b ji(u). However, there exist simple expressions, for instance,
1/(x+u), which cannot be decomposed. In such cases the following general algorithm has to be applied.

If (15) does not hold, one may use the general Algorithm 5 for computing M(α), expressed in terms of
one-forms.

Algorithm 5. Let α = [α1, . . . ,αk]
T.

1. Find the one-forms ωi, i = 1, . . . ,k, such that dαi(f) = ωi+ ω̄i, where ωi ∈ spK {dx} and ω̄i ∈ spK {du}.
2. Compute the minimal integrable subspace Ω that contains spK {ω1, . . . ,ωk}.
3. The integration of Ω gives the elements of vector M(α).

7 One can consult [1] for finding the alternative choices of independent variables.

J. Belikov et al.: Software for functions’ algebra 99

To justify Algorithm 5, note that by definition, M(α) is a maximal vector function ξ that satisfies

α(f) = f∗(ξ ,u) (17)

for some f∗, i.e., ξ ∆α . Algorithm 5 computes the integrable subspace Ω such that dα(f) ∈ Ω+ spK {du}8.
From above and Definition 3, integrating Ω yields vector function µ that satisfies µ∆α . To make µ maximal
(in the sense of 6), one has to integrate minimal Ω.

The following algorithm is used to compute the minimal integrable subspace that contains
spanK {ω1, . . . ,ωk}.

Algorithm 6. Given Ω = spK {ω1, . . . ,ωk}, proceed as follows:
1. Compute the dimension of the minimal integrable subspace that contains Ω. This is equal to minimal γ

such that
(dπ)γ ∧π = 0,

where π = ∑k
i=1 αiωi and αi ∈ K are viewed as new independent variables.

2. Define for i = 1, . . . ,γ − k the one-forms

ω̄i =
n

∑
j=1

ai jdx j,

where ai j ∈ K .
3. The one-forms ω̄i, i = 1, . . . ,γ − k have to satisfy the condition

dωl ∧ω1 ∧·· ·∧ωk ∧ ω̄1 ∧·· ·∧ ω̄γ−k = 0,

because the subspace spK {ω1, . . . ,ωk, ω̄1, . . . , ω̄γ−k} has to be integrable. This gives a system of
equations in ai j, which has to be solved.

4. It remains to guarantee that dω̄i = 0 for i = 1, . . . ,γ − k, i.e.,

n

∑
j=1

dai j ∧dx j = 0

for i = 1, . . . ,γ − k. This gives a system of differential equations, which has to be solved.

The function OperatorCapitalM [α , steq] finds M(α), if steq represents the sate equations, defined as
in [7].

4. THE SIMPLEST REPRESENTATIVE OF THE CLASS

In order to simplify the computations, one has to replace the components of vector functions by equivalent
but simpler functions. The task seems to be trivial at first glance, however, the formalization of it has turned
out to be one of the most complicated steps in the implementation. First, simplicity is something that cannot
be formally defined as ‘α is simpler than β if certain condition is satisfied’. Simplicity is tightly related to the
problem under study. In this section we speak about simplicity regarding its intuitive meaning; for instance,
we consider [x1] to be simpler than [x2

1] and [x1,x2]
T simpler than [x1 + x2,x1x2]

T. In practice the simplicity
of the expression is measured by the Mathematica function LeafCount. We developed two approaches for
simplification: the first is based on one-forms and the other on the simplification rules. Unfortunately, both
approaches have certain classes of functions that cannot be handled.

8 This is always possible since in the extreme case one may take Ω = spK {dx}.

100 Proceedings of the Estonian Academy of Sciences, 2017, 66, 1, 89–107

4.1. Approach of one-forms

Let α = [α1, . . . ,αk]
T and suppose A is defined by (2). Transform the matrix A into the row-reduced form Ā,

using linear transformations over K . This can be done by the Mathematica built-in function RowReduce.
If the fractions appear in the matrix Ā, the respective rows are multiplied by the least common multiple of
their denominators. This leads usually to simpler matrix entries. The zero rows are removed, so Ā is a k̄×n
matrix.

Integrate the one-forms ωi := ∑n
i=1 ᾱi jdx j, i = 1, . . . , k̄. This procedure requires solving the system of

PDEs, since Mathematica (version 10.4) has a limited ability to solve systems of PDEs; the task is reduced
to solving a sequence of single PDEs. This process has been implemented earlier in NLControl as a function
IntegrateOneForms, described in [9].

Example 9. Let α = [x1x2, x1 + x2, x2
1]

T. The one-forms dα = [x2dx1 + x1dx2, dx1 + dx2, 2x1dx1]
T.

Transforming the matrix [αi j] into the row-echelon form yields ω1 = dx1, ω2 = dx2, thus α ∼= [x1, x2]
T.

However, this approach is not problem-free. Integration often returns the result which is more complex
than the original vector.

Example 10. Let α = [1
x1+x2

2x3
,x1]

T. A correct simplified vector is obviously α̃ = [x2
2x3,x1]

T. The one-forms
are [

ω1
ω2

]
=

[
− 1

(x1+x2
2x3)2 − 2x2x3

(x1+x2
2x3)2 − x2

2
(x1+x2

2x3)2

1 0 0

]dx1
dx2
dx3

 .

Null space of [αi j] is [0,− x2
2x3

,1], thus we are seeking for the function X = X(x1,x2,x3), being solution of
the PDE

− x2

2x3

∂X
∂x2

+
∂X
∂x3

= 0.

The Mathematica function DSolve yields X =C(x1,x2
√

x3), where C is an arbitrary function. Choosing
C as the identity function yields the simplified vector α̃ = [C1,C2] = [x1,x2

√
x3]

T, which is not the desired
solution, because x2

√
x3 is more complex than x2

2x3 and, additionally, the domain of the function has also
changed. There are two ideas that may offer a solution in this situation.

First, observe that choosing α̃ = [C1,C2
2] would result in the desired solution. The problem here is that

though the solution is easy to see through in the case of simple examples, it is hard to generalize into the
universal algorithm.

Second, it turns out that reordering the state coordinates also gives the desired solution. The choice
x = (x1,x3,x2) causes the second and the third columns of the matrix [αi j] to be swapped and therefore, the
null space of the new matrix will be [0,−2x3

x2
,1]. Solving the respective PDE

−2x3

x2

∂X
∂x3

+
∂X
∂x2

= 0

yields X = C(x1,x2
2x3). Unfortunately, again there is no method to determine the suitable order or the

coordinates a priori.

Moreover, sometimes Mathematica fails to solve the PDEs, even if the solution exists.

Example 11. Let α = [x1 +x2x3 +x4, x1x2 +x3,x4]
T. This vector can be clearly simplified. The variable x4

appears independently as an element of the vector, thus

α ∼= [x1 + x2x3, x1x2 + x3,x4]
T. (18)

J. Belikov et al.: Software for functions’ algebra 101

However, if we find the matrix

A =

 1 x3 x2 1
x2 x1 1 0
0 0 0 1

 ,

compute its null space
[x3−x1x2

x1−x2x3
,

x2
2−1

x1−x2x3
,1,0

]
, we have to solve the PDE(

x3 − x1x2

x1 − x2x3

)
∂X
∂x1

+

(
x2

2 −1
x1 − x2x3

)
∂X
∂x2

+
∂X
∂x3

= 0.

Mathematica is not able to solve this PDE and the simplification program fails. Note that changing the order
of the coordinates to [x1,x3,x2,x4] leads to the PDE(

x1 − x2x3

x2
2 −1

)
∂X
∂x3

+
∂X
∂x2

+

(
x3 − x1x2

x2
2 −1

)
∂X
∂x1

= 0,

which Mathematica can solve, yielding the vector function (18). However, there is no general method to
determine the right order or the coordinates a priori.

As a temporary solution we have implemented the program which finds all permutations of coordinates
and then tries to solve the respective PDEs in turn until one of them yields the solution. The time limit 0.5 s
has been set for each PDE; if the solution is not found within this time, the program turns to the next PDE.

4.2. Replacement rules

This approach uses certain replacement rules, based on theoretical justification. The important advantage of
this method is that it is applicable also to non-smooth functions. A few well-known equivalence rules are
listed below9:
(i) const ∼= 1,
(ii) α(x)+ const ∼= α(x),
(iii) αk(x)∼= α(x), k ∈ Z,
(iv) k

√
α(x)∼= α(x), k ∈ Z.

Generalizing these rules yields the following three simplification methods.
1. Replacing square blocks by identity matrices. Let x = [x1, . . . ,xn], α = [α1, . . . ,αn]. Assume that

rank[αi j] = n in (2) (if non-differentiable functions appear in α , then formal derivation is applied). In such
case α ∼= [x1, . . . ,xn]. Note that the square block may appear as a minor of [αi j]. The program searches for
such minors and replaces them by identity matrices. The minors can be from order 1 up to the order n. For
example, in the case of the 2nd-order minor the matrix [αi j] has to be in the form

[αi j] =


· · · 0 · · · 0 · · ·
0 αi1 j1 0 αi1 j2 0
· · · 0 · · · 0 · · ·
0 αi2 j1 0 αi2 j2 0
· · · 0 · · · 0 · · ·

 . (19)

In such a case, if the rank of the minor is 2, we have the equivalence [αi1 ,αi2]
T ∼= [x j1 ,x j2]

T.
Unfortunately, currently the program does not recognize the minors with zero elements.
2. Reducing operators. The generalization of rules (iii) and (iv) leads to the idea that in principle we

may consider G(g(x))∼= g(x) for any (single-valued) elementary function G. For instance, the functions G,

9 Rules (iii) and (iv) hold only in case of non-strict equivalence.

102 Proceedings of the Estonian Academy of Sciences, 2017, 66, 1, 89–107

involving trigonometric functions, loga g(x) and exponent ga(x), where a is a real number or a function that
does not depend on x, may be removed.

3. Reducing sums and products. The third simplification algorithm is based on the observations that

[β (x)+ γ(x1, . . . ,xi),x1, . . . ,xi]
T ∼= [β (x),x1, . . . ,xi]

T,

[β (x)γ(x1, . . . ,xi),x1, . . . ,xi]
T ∼= [β (x),x1, . . . ,xi]

T.
(20)

If the term γ = const, we obtain from (20) the well-known rule (ii). This program is able to efficiently handle
Example 11, in which case the integration failed.

This program has much space for improvements. For instance, the vector [sin(x1x2)x3, x1x2]∼= [x3, x1x2].
However, currently the program does not recognize the equivalence, since x1x2 is a product, not a pure
coordinate.

Combining the three methods. The program LatticeSimplify applies all three methods in turn
repeatedly until the expression no longer changes.

Example 12. (Continuation of Example 10). The application of the 2nd method to α = [1
x1+x2

2x3
,x1]

T yields

ᾱ = [x1 + x2
2x3,x1]

T. The application of the 3rd method to ᾱ yields the final result [x2
2x3,x1]

T.

5. NON-SMOOTH CASE

Regarding the non-smooth functions, the book [13] gives the algorithm to check the relation α 6 β if β has
non-smooth components.

Algorithm 7.
1. Rewrite β (x) in the form (this form always exists) β (x) = β̄ (x,ϕ(ζ (x))), where β̄ and ζ are smooth

functions and ϕ is non-smooth.
2. Introduce the additional vector x̄ := ϕ(ζ (x)).
3. Rewrite β in the ‘smooth’ form β = β̄ (x, x̄).
4. The relation α 6 β holds if α 6 ζ and [αT, x̄T]T 6 β̄ .

The implementation of this algorithm is straightforward.
Unfortunately, there is no theoretical solution for the case when α has non-smooth components; thus,

there is no method for checking the equivalence of two vectors. We see two practical approaches, which
may offer a solution.

The first approach is based on the notion of equivalence. Regarding the properties of the absolute
value and signum function, we can consider the derivatives d

dx |x| ∼= signx and d
dx(signx) ∼= 0 if x ̸= 0. The

implementation of this replacement is simple: Mathematica denotes, by default, derivatives of |x| and signx
by formal functions Abs' [x] and Sign' [x], respectively. All we have to do is to replace these functions
by Sign [x] and by 0, respectively. The approach is used for checking partial preorder by condition (9),
equivalence, computation of ⊕, binary relation ∆, m(α), and M(α).

The second approach is based on the fact that, in general, non-smooth functions can be considered as
smooth in different regions. Then one can apply the methods developed for the smooth case in these regions
and if in all the regions a property is true, it is true also for a given non-smooth function. For example, let
α = x and β = |x|. Then β is smooth in (−∞,0) and [0,∞). In the region (−∞,0) β =−x and β 6 α , α 6 β
is true. The same is true for the region [0,∞) and thus α ∼= β .

6. APPLICATIONS

In this section we demonstrate the application of functions’ algebra to nonlinear control problems using the
developed software. In the first example the accessibility condition from Theorem 6 will be checked.

J. Belikov et al.: Software for functions’ algebra 103

Example 13. Consider the non-smooth system

x+1 = x2u, x+2 = x1signx3, x+3 = u. (21)

First, define the system
In[15]:= f = {x2 u, x1 Sign [x3], u}; Xt = {x1, x2, x3}; Ut = {u};

steq = StateSpace [f,Xt,Ut, t, Shift];

Checking accessibility requires finding δ 1

In[16]:= δ1 = Delta1 [steq]

Out[16]= {x1/x3, x2}

and computing the sequence δ i, i > 1 by Algorithm 1, implemented as the function MinFInvariant:
In[17]:= δk = MinFInvariant [δ1, steq,All]

Out[17]= {{x1/x3, x2}, {x1/x3}, Const, Const}

Since the last element of the sequence is constant, the system is, according to Theorem 6, accessible. The
simplest way to check accessibility (by Algorithm 1) is to use the command
In[18]:= Accessibility [steq,Method→ Lattice]

Out[18]= True

In order to check the static state feedback linearizability, it is again necessary, according to Theorem
7, to compute the sequence δ i, i > 1. As found in the previous example, for system (21), δ 1 and δ 2 are
non-constant functions while δ 3 is a constant function; thus system (21) is feedback linearizable. The new
state coordinates, allowing one to find the linearized system equations, may be obtained, by Theorem 7, as
follows: the first coordinate z1 = δ 2; to get the second coordinate, the operator M has to be applied to δ 2,
z2 = M(δ 2), and the third coordinate z3 = M2(δ 2). The new coordinates are
In[19]:= {z1 = δk [[2]], z2 = OperatorCapitalM [z1, steq],

z3 = OperatorCapitalM [z2, steq]}

Out[19]= {x1/x3, x2, x1 Sign [x2]}

The function Linearization first checks if the system is linearizable; in the case of an affirmative answer, it
finds the linearized equations, state coordinate transformation, and static state feedback10:
In[20]:= BookForm [Linearization [steq, z# [t] &, v [t],Method→ Lattice]]

Out[20]= {{z+1 = z2, z
+
2 = z3, z

+
3 = v},

{z1 = x1/x3, z2 = x2, z3 = x1 Sign [x2], v = z2 u Sign [x3]}}

The solution of the DDDPM problem has been implemented as the function DisturbanceDecoupling.
The detailed algorithm is given in Appendix 1.

Example 14. Consider the system

x+1 = u+ x1(1+ x2), x+2 = x1 + x4, x+3 = w+ x3 + x1(x2 + x3),

x+4 = x3 − x4, y1 = x1, y2 = x4, y∗1 = x1.

After defining the system by
In[21]:= f = {u+ x1 (1+ x2, x1+x4,w+x3+x1 (x2+x3), x3−x4};

Xt = {x1, x2, x3, x4};

10 The function BookForm prints the state equations in the form (1). For the sake of compactness, the equations are given in
rows, not in a column.

104 Proceedings of the Estonian Academy of Sciences, 2017, 66, 1, 89–107

Yt1 = {y1, y2}; h1 = {x1, x4}; Yt2 = {y*1}; h2 = {x1};
steq = StateSpace [f,Xt, {{u}, {w}}, t, {h1, h2}, {Yt1,Yt2}, Shift];

we can find the decoupled system as follows:
In[22]:= BookForm [DisturbanceDecoupling [steq,

z#[t] &, v#[t] &,Method→ Lattice]]

Out[22]= {{z+1 = v1+y1, z
+
2 = y1+y2, u = v1−y1 z2},

{z1 = x1, z2 = x2}}

7. DISCUSSION AND CONCLUSIONS

This paper documents an ongoing effort to implement a mathematical framework, called functions’ algebra
within Mathematica-based symbolic software NLControl. We do hope that the developed software will
facilitate further study of various control problems. Moreover, since the functions’ algebra approach for
nonlinear control systems is developed in full accordance with the algebra of partitions for finite automata
[4], it is especially suitable for handling hybrid systems, i.e., systems governed by differential equations
whose parameters change due to discrete input or event-driven state transition. The first steps in this direction
have been made in [7]. However, recall that in this paper a control system is assumed to be described by
difference equations.

The extension of the results for the continuous-time case is not immediate. In general, one cannot
find the derivative of a non-smooth function, while forward-shifting of a non-smooth function is not a
problem; also, the integration of a vector function is not straightforward and requires the assumption of
differentiability of vector functions. In the continuous-time case there is no general formula/algorithm to
compute m(α), and as a consequence, also the sequence δ i, i > 0. Moreover, unlike the discrete-time case,
the inequality δ k−1 > m(δ k−2) does not yield the inequality M(δ k−1) > M(m(δ k−2)) on which the proof
of Theorem 7 relies.

Finally, a few problems are left for the future study. First, some functions can be improved, most
importantly, by finding the simplest representative of the equivalence class and computation of the operator
M. Second, several algorithms/programs, described in Section 3, require at some point going to the level of
one-forms. This concerns, in particular, checking partial order by condition (9), equivalence, computation of
⊕, binary relation ∆, M(α), and M(α). If the non-smooth functions are involved, these algorithms/programs
require splitting the domain into the regions where the functions are smooth. Currently no software exists
for the dividing. Third, currently the approach based on strong partial relation is not supported. Here, again,
splitting the domain into suitable regions is necessary.

ACKNOWLEDGEMENTS

The work of A. Kaldmäe, V. Kaparin, Ü. Kotta, and M. Tõnso was supported by the Estonian Research
Council, personal research funding grant PUT481. The work of A. Ye. Shumsky and A. N. Zhirabok was
supported by a grant of Russian Scientific Foundation, project 16-19-00046. We thank B.P. Podkopaev and
the anonymous referee for constructive reviews on the manuscript. The publication costs of this article were
covered by the Estonian Academy of Sciences.

J. Belikov et al.: Software for functions’ algebra 105

APPENDIX 1
DISTURBANCE DECOUPLING ALGORITHM

The function Disturbance Decoupling is based on Algorithm 2 in [6] and follows the steps below.
Given system (6) in the form
system = StateSpace [f, x, {u, w}, t, {h, h

*
}, {y, y*}, Shift],

state variable of the compensator z, and new input variable v, the algorithm below finds compensator (7) and
the relation z = α(x).

Step 1.
1. α0 = Alpha0 [system]

2. α = MinHFInvariant [α0, system]

3. Define z = α(x) as new variables and construct the system z+ = F(z,y,u).
4. Check whether α 6 h∗ by PartialPreOrder [α , h*, x]

If True, then define h∗∗ such that y∗ = h∗∗(z). If False, then STOP, the DDDPM is not solvable.
5. Collect the components of z, the function h∗∗ depends on, into Z∗ by

Z∗ = Cases [h**,_[t],−1].

Step 2.
1. Split the vector y into two disjoint subvectors yg and yb. The element yi of y belongs to yg if

PartialPreOrder [α , hi, x] gives True or
Complement [Cases [{F},_[t],−1],Complement [y,yi],u,z] is an empty list.
All other elements of y belong to yb: yb = Complement [y,yg].

2. For j = 1, . . . ,dimz check whether Fj depends on yb.
If Complement [Cases [{Fj},_[t],−1],z,u,yg] === { } gives True, then Fj does not depend on yb;
increase j. Otherwise, check whether Fj depends also on u.
If Complement [Cases [{Fj},_[t],−1],z,y] === { } gives True, then Fj does not depend on u; add z j
to the set Zb. Otherwise, increase j.

Step 3.
Until Zb = /0 or remains unchanged, proceed as follows:
1. Let Zvb = /0.
2. For each z j ∈ Zb find the function Fi depending on z j by checking whether

Complement [Cases [{Fi},_[t],−1],Complement [z,zj],u,y] === { }

gives False (in which case Fi depends on z j).
3. Check whether Fi depends on u by

Complement [Cases [{Fi},_[t],−1],z,y] === { }.
If True, then add zi to Zvb; if False, then add z j to yb.

4. If Zvb ∩Z∗ ̸= /0, then STOP (no solution), otherwise set Zb = Zvb.

Step 4.
1. Collect all Fi’s, which depend on elements from yb and denote them by F1. Thus, a function Fi belongs

to F1 if
Complement [Cases [{Fi},_[t],−1],Complement [z,yb],u,yg] === { }

gives False.

106 Proceedings of the Estonian Academy of Sciences, 2017, 66, 1, 89–107

2. Collect all elements F1
i of F1, which depend on u and denote them by F2. Thus, a

function F1
i belongs to F2 if

Complement [Cases [{F1i },_[t],−1],z,y] === { } gives False.
3. Construct the system of equations

equ = Table [F2i == vi,{i,Length [F
2
i]}], if dimF2 < dimu or

equ = Table [F2i == vi,{i,Length [u]}], if dimF2 > dimu.
4. Define

u1 = DeleteDuplicates [Complement [Cases [{F2},_[t],−1],y,z,v]]

5. Solve the equations equ in variables u1

solut = Solve [equ,u1] [[1]]

6. Define
u2 = DeleteDuplicates [Complement [Cases [u1/. solut,_[t],−1],y,z,v]]

Step 5.
1. Substitute u1 by solut in F .
2. Compute ξ by

ξ = MaxHFInvariant [h**,StateSpace [F,z,{u,v,y}, t,{ },{ },Shift]] [[−1]]

3. For all i, check whether ξ+
i depends on yb. If not for all i, then END. If yes, then check whether ξ+

i
depends on u. If not, STOP (no solution), otherwise, let u = u2 and return to Step 4.
If the algorithm finds the solution, it gives
{StateSpace [F,z,v, t,u/. solut,u,Shift], z == α(x)}

REFERENCES

1. Aranda-Bricaire, E., Kotta, Ü., and Moog, C. H. Linearization of discrete-time systems. SIAM J. Contr. Optim., 1996, 34(6),
1999–2023.

2. Belikov, J., Kaparin V., Kotta, Ü., and Tõnso, M. NLControl website. Online, www.nlcontrol.ioc.ee, 2016 (accessed 20
June 2016).

3. Conte, G., Moog, C. H., and Perdon, A. M. Algebraic Methods for Nonlinear Control Systems. Springer, London, 2007.
4. Hartmanis, J. and Stearns, R. E. The Algebraic Structure Theory of Sequential Machines. Prentice-Hall, New York, 1966.
5. Isidori, A. Nonlinear Control Systems. Springer, London, 1995.
6. Kaldmäe, A., Kotta, Ü., Shumsky, A. Ye., and Zhirabok, A. N. Measurement feedback disturbance decoupling in discrete-time

nonlinear systems. Automatica, 2013, 49(9), 2887–2891.
7. Kaldmäe, A., Kotta, Ü., Shumsky, A. Ye., and Zhirabok, A. N. Disturbance decoupling in nonlinear hybrid systems. In 12th

IEEE International Conference on Control & Automation (ICCA), Kathmandu, Nepal. 2016, 86–91.
8. Kaparin, V., Kotta, Ü., Shumsky, A. Ye., Tõnso, M., and Zhirabok, A. N. Implementation of the tools of functions’ algebra:

First steps. In Proceedings of MATHMOD 2012 – 7th Vienna International Conference on Mathematical Modelling,
Vienna, Austria. 2012, 1231–1236.

9. Kotta, Ü. and Tõnso, M. Linear algebraic tools for discrete-time nonlinear control systems with Mathematica. In Nonlinear
and Adaptive Control, NCN4 2001. Lecture Notes in Control and Information Sciences, 2003, 281, 195–205.

10. Kotta, Ü., Tõnso, M., Belikov, J., Kaldmäe, A., Kaparin, V., Shumsky, A. Ye., and Zhirabok, A. N. A symbolic software
package for nonlinear control systems, In Proceedings of the 2013 International Conference on Process Control (PC),
Štrbské Pleso, Slovakia. 2013, 101–106.

11. Kotta, Ü., Tõnso, M., Shumsky, A. Ye., and Zhirabok, A. N. Feedback linearization and lattice theory. Syst. & Contr. Lett.,
2013, 62(3), 248–255.

12. Nijmeijer, H. and van der Schaft, A. J. Nonlinear Dynamical Control Systems. Springer, New York, 1990.
13. Zhirabok, A. N. and Shumsky, A. Ye. The Algebraic Methods for Analysis of Nonlinear Dynamic Systems. Dalnauka,

Vladivostok, 2008 (in Russian).

J. Belikov et al.: Software for functions’ algebra 107

Funktsioonide algebra mittelineaarsete juhtimisüsteemide uurimisel: arvutuslikud
aspektid ja tarkvara

Juri Belikov, Arvo Kaldmäe, Vadim Kaparin, Ülle Kotta, Alexey Ye. Shumsky, Maris Tõnso ja
Alexey Zhirabok

On kirjeldatud Mathematica keskkonnas väljatöötatud tarkvara (ja selle aluseks olevaid algoritme), mis
realiseerib matemaatilisel lähenemisel, mida nimetatakse funktsioonide algebraks, põhinevaid meetodeid
mittelineaarsete juhtimissüsteemide valdkonnas olevate probleemide lahendamiseks. Antud lähenemise
eelis tuntud diferentsiaalgeomeetria ja diferentsiaalsetel 1-vormidel põhinevate meetoditega võrreldes on
rakendatavus ka mittesiledatele süsteemidele. Puuduseks on arvutuste suurem keerukus, kuna lähenemine
opereerib vahetult süsteemi kirjeldavate funktsioonidega ja mitte nende diferentsiaalidega, mis lihtsustavad
(lineariseerivad) arvutusi.

Tarkvaraliselt on realiseeritud funktsioonide algebra põhioperatsioonid ja seosed, nagu osaline järjestus,
ekvivalents, liitmine ning korrutamine, aga ka lihtsaima esindaja leidmine ekvivalentsiklassis. Teine suur
rühm Mathematica funktsioone on seotud juhtimissüsteemiga defineeritud binaarse suhte ja operaatoritega
m ning M, aga ka teatud invariantsete funktsioonide jada leidmisega süsteemi võrrandite põhjal. Kolmas
hulk funktsioone lahendab hulga juhtimisülesandeid diskreetsete mittelineaarsete juhtimissüsteemide
jaoks, nagu juhitavuse kontroll, staatilise olekutagasisidega olekuvõrrandite lineariseerimine ja häiringute
dekomponeerimine väljundtagasisidega. Artiklis toodud näited demonstreerivad tarkvara kasutamist.

