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Abstract. Cyber-Physical Systems (CPS) present the greatest challenges but also the greatest opportunities in several critical
industrial segments such as electronics, automotive and industrial automation. Governing the complexity and design correctness
issues of CPS software requires methodologies and tools that address the problems of intrinsic concurrency and timing constraints
over a large spectrum of CPS architectures. In this paper we present DTRON, a framework for model-based testing that addresses
the issues of distributed execution and real-time constraints imposed by the design of networked CPS. DTRON extends the Uppaal
model checking tool and online test execution tool TRON enabling coordination, synchronization, and online distributed testing.
The notion of ∆-testability required to guarantee the controllability of distributed tests is one of the main design considerations for
DTRON. The core part of the paper presents the architectural solutions for implementing DTRON and then special focus is put on
the performance evaluation of the tool taking into account the communication and test adapter delays in networked systems. We
demonstrate that the co-use of Spread message serialization service and Network Time Protocol allows reducing ∆ down to the
1 ms range, which is sufficient for testing timing properties of a substantial class of networked CPS. We exemplify the applicability
of DTRON with three distributed testing case studies, namely, city street light controller network, interbank trading system, and
robot navigation system.

Key words: computer science, formal methods, model-based testing, distributed systems, real-time systems, cyber-physical
systems, Uppaal timed automata.

1. INTRODUCTION

Cyber-Physical Systems (CPS) combine a cyber side
(computing and networking) with a physical side (mech-
anical, electrical, and chemical processes). Contem-
porary CPS often grow to the scale of global geo-
graphic distribution and latency requirements are mea-
sured in nanoseconds. Governing the complexity and
design correctness issues of CPS software requires
major advancement in models, algorithms, methods, and
tools that will incorporate verification and validation
of software and systems at the design stage [1]. In
particular, the problems of intrinsic concurrency and
timing constraints over a wide spectrum of CPS hetero-
geneous architectures need to be addressed. Among
other design related issues the time criticality where
the reaction time is a primary design consideration is a

serious challenge also to existing integration and/or
system level testing techniques and tools. Although sta-
te-of-the-art testing tools support the prescribed input
profiles, they seldom provide enough reactivity to run the
tests with simultaneous and interdependent input profiles
at remote frontends. The complexities emerge due to
severe timing constraints the tests have to satisfy when
the required reaction time of the tester ranges near the
message propagation time.

Recently David et al. [2] proposed explicit test cont-
rollability criteria, the so-called ∆-testability criteria, for
model-based remote online testing where ∆ denotes an
upper bound of message propagation delay between the
remote tester and the ports of the System Under Test
(SUT). For generating test stimuli based on SUT outputs
the tester needs to wait the reactions to earlier inputs
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generated and sent to the SUT. So, the input stimuli
can reach the SUT earliest in 2∆ after preceding outputs
have occurred on SUT ports. This is the theoretical
minimum reaction time the tester can account on to
guarantee the controllability of tests. However, even
this condition makes remote testing problematic when
2∆ is close to timing constraints to be tested and the
delay of generating test stimuli within test adapters is
non-negligible. For example, in CPS such as traffic
control systems it is common that the time window of
receiving inputs at various ports has a definite effect on
the system reaction. Thus, to achieve the test coverage
of such behaviours under study, the test deployed on the
test execution environment should strictly guarantee that
the actual time interval between receiving a SUT output
and sending the subsequent test stimulus satisfies these
timing conditions.

The theoretical foundations of testing time critical
distributed systems have been presented in several
papers, for example in [3–6]. Tools such as Uppaal
TRON [7], TTG [8], etc. have been developed to
support online testing of time critical systems locally,
in a non-distributed manner. To the best of our know-
ledge, very few attempts have been made to develop
proper tool support with the necessary synchroniza-
tions/coordinations between distributed local testers for
testing distributed (hard) real-time systems. Ru Dai et
al. [9] presented TimedTTCN-3, a real-time extension
for TTCN-3 (Testing and Test Control Notation) for
testing the functional behaviour of distributed systems.
The framework does not adhere to the notion of Model-
Based Testing (MBT) where the test cases are generated
from formally specified models and it is assumed that
the necessary tester synchronizations would be addressed
by the test execution environment without presenting
further details on this important issue. The commercial
tool TestComplete by SmartBear [10] targets distributed
testing for websites and server applications when they
work with multiple clients simultaneously. An attempt
to extend the existing theoretical results by Khoumsi [6]
with an actual tool implementation for overcoming
synchronization issues between local testers and their
attached clocks is presented in [11] where the IEEE 1588
Precision Time Protocol is partly implemented. The
implementation targeted strictly a specific multicomputer
system with PowerPC computing nodes interconnected
with a RACEway Interconnection through sockets. The
tool is non-existent currently and its applicability for
networked real-time applications over the internet cannot
be assessed. Hence, the proper tool support for
distributed ∆-testing of critical real-time systems is still
missing.

In this paper we present DTRON [12], an execution
framework for distributed model-based testing that
addresses the issues of concurrency, scalability, and real-
time constraints imposed by the design of networked
CPS. DTRON is one of the first attempts to merge timing
with specifics of remote and distributed testing. It relies
on the Uppaal model checking tool [13] and on-line test

execution tool Uppaal TRON. The Uppaal tool includes
a model editor, simulator, and model checking engine
for Timed Computation Tree Logic (TCTL). Uppaal
TRON is a local testing tool, based on the Uppaal
engine, suited for black-box conformance testing of
timed systems, mainly targeted for embedded software.
DTRON extends these tools by enabling coordination
and synchronization of distributed tester components.

The core part of the paper focuses on the
performance characteristics of DTRON in distributed
MBT taking into account the communication and
additional processing delays in networked systems. The
relevance for ∆-testing that is required to guarantee
the controllability of distributed tests, is one of the
main design concerns for DTRON studied in this paper.
After the presentation of the required preliminaries for
DTRON, the key solutions of DTRON’s architectural
design are introduced. Special focus is put on the
performance evaluation of the tool taking into account
the communication and test adapter delays in networked
configurations. We demonstrate that the co-use of
Spread message serialization service and Network Time
Protocol allows reducing ∆ down to the 1 ms range,
which is sufficient for testing timing properties of a
substantial class of networked CPS. We exemplify the
usability of DTRON with three distributed testing case
studies, namely, a city street lighting control network,
interbank trading and stock exchange system, and Robot
Operating System (ROS)-based navigation system.

2. PRELIMINARIES

2.1. Model-based testing

DTRON is one component in the provably correct
model-based design (MBD) tool chain [14]. The
emphasis in this paper is put on online distributed
MBT, although DTRON is also applicable as an
execution platform for distributed model-based control
applications [15]. In this paper, we interpret MBT
in the standard way, i.e. as conformance testing that
compares the expected behaviours described by the
system requirements model with the observed behaviours
of an actual implementation of the SUT. In MBT the
development is manifested in five main steps. Step 1
is about the modelling of the SUT. Step 2 concerns
the specification of the testing goal applied in different
forms: a set of test scenarios, safety constraints to be
followed, the target state of the SUT to be reached, etc.
All of these goals need to be expressed in terms of the
SUT model elements and their attributes. In Step 3 a
set of tests (test suite) is generated to reach the testing
goal and in Step 4 the adapters that interface models with
the SUT are implemented. In Step 5 the executable test
configuration is deployed on the SUT and executed.

Scalable integration and system level testing of
networked CPS require complex tools and techniques
to assure a good quality of the test results. To achieve
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trustworthy test results, the generated test suite needs to
be verified and its execution tool validated. Therefore,
the development process of DTRON executable tests
considers development phases paired with verification
and timing correctness assurance steps. The formal
properties verified in the course of modelling the
SUT are connectedness of the model control graph,
output observability, input enabledness, the absence
of deadlocks, and strong responsiveness. Besides
these, the application specific correctness properties
are verified by model checking and static analysis.
Additionally, simulation with the Uppaal tool is used
for visual inspection of behaviours and for detection
of inconsistencies between the model and the system
described. These measures cannot fully guarantee the
absolute correctness of the SUT models, but they provide
confidence that the properties needed for automatic test
generation from the SUT model are satisfied.

Another usability issue is uniformness of methods
and tools needed to implement different steps of the
development processes. It means covering the SUT
model construction, test goal specification, tester synthe-
sis, test adapter building, and deployed test configuration
execution steps by the same tool set. Along with
the Uppaal family toolset, DTRON focuses on specific
development steps such as SUT adjustment for defining
test interfaces, test deployment, and execution.

While SUT modelling is mostly formalizing SUT
design requirements and the test purpose, the deployment
and model-based execution are the steps where beside
formal semantics of models also real world constraints
need to be taken into account, e.g. test components,
computational and communication deployment archi-
tecture, how the test i/o alphabet is mapped to test
interfaces, scheduling policy, software/hardware jitter,
and implementation imperfections. The main goal in
designing the deployment architecture and execution
environment is to achieve that the physical test execution
follows the SUT model defined semantics as much as
possible. The conceptual execution architecture of MBT
is shown in Fig. 1. The SUT is first manipulated and
its reaction is observed by a Test Adapter; the Monitor
(test oracle) estimates if the observed state of the SUT
conforms to the state predicted by the model; TestSpec
comprises the model of implementation and its environ-
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Fig. 1. Conceptual view of the DTRON model-based testing
architecture.

ment. Testing goals are stated by Coverage criteria/facts,
and the Selector is responsible for guiding the test case
selection and test execution functionality.

2.2. Uppaal Timed Automata

Uppaal Timed Automata (UTA) [16] is the formalism
of choice for modelling and test case generation for
DTRON because it is expressive enough to support
the real-time constraints modelling and the decision
procedures are efficient enough to support the practical
verification. Also, the need to test the SUT with timing
constraints so that the impact of propagation delays
between the SUT and the tester can be taken into account
further motivates the choice for UTA.

UTA are defined as a closed network of extended
timed automata that are called processes. The processes
are combined into a single system by the parallel
composition known from the process algebra CCS. A
UTA is given as the tuple (L,E,V,CL, Init, Inv,TL), where
L is a finite set of locations; E is the set of edges defined
by E ⊆ L×G(CL,V )×Sync×Act ×L, where G(CL,V )
is the set of constraints allowed in guards, Sync is a set of
synchronization actions over channels. An action send
over a channel h is denoted by h! and its co-action
receive is denoted by h?. Act is a set of sequences of
assignment actions with integer and boolean expressions
as well as with clock resets. V denotes the set of integer
and boolean variables. CL denotes the set of real-valued
clocks (CL∩V = ∅). Init ⊆ Act is a set of assignments
that assigns the initial values to variables and clocks.
Inv : L → I(CL,V ) is a function that assigns an invariant
to each location, I(CL,V ) is the set of invariants over
clocks CL and variables V . TL : L →{ordinary, urgent,
committed} is the function that assigns the type to each
location of the automaton.

We introduce the semantics of UTA as defined in
[16]. A clock valuation is a function valcl : CL → R≥0
from the set of clocks to the non-negative reals. A
variable valuation is a function valv : V → Z∪ BOOL
from the set of variables to integers and booleans. Let
RCL and (Z ∪ BOOL)V be the sets of all clock and
variable valuations, respectivelly. The semantics of a
UTA is defined as a Labelled Transition System (LTS)
(Σ, init,→), where Σ ⊆ L×RCl ×(Z∪BOOL)V is the set
of states, the initial state init = Init(cl,v) for all cl ∈CL
and for all v∈V , with cl = 0, and →⊆Σ×{R≥0∪Act}×
Σ is the transition relation such that:
• (l,valcl ,valv) d−→ (l,valcl + d,valv) if ∀d′ : 0 ≤ d′ ≤

d⇒ valcl +d′ |= Inv(l), and
• (l,valcl ,valv) act−→ (l′,val′cl ,val′v) if ∃e=

(l,act,G(cl,v),r, l′) ∈ E s.t. valcl ,valv |= G(cl,v),
val′cl = [re 7→ 0]valcl , and val′cl ,val′v |= Inv(l′),

where for delay d ∈R≥0, valcl +d maps each clock cl in
CL to the value valcl + d, and [re 7→ 0]valcl denotes the
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clock valuation which maps (resets) each clock in re to 0
and agrees with valcl over CL\ re.

2.3. Distributed testing of timed systems

In MBT, the model formalizes the set of requirements
the SUT is expected to comply with. These requirements
are therefore subject to (abstract) test generation
(and selection) and checking the conformance relation
between the requirements specification model and the
SUT, namely, if the exposed i/o behaviour conforms to
that of requirements model. A variety of conformance
relations exist such as the relation of testing equivalence,
which relates specification process behaviour to SUT
process behaviour in the domain of process algebra
[17]. Peleska and Siegel applied this relation to CSP
[18]. Springintveld et al. used bi-similarity as a testing
relation [19], while Tretmans introduced the input–
output conformance (IOCO) relation [20]. The common
part of these conformance relations is that they are
defined on the model semantics.

The testing methods applied within DTRON rely on
the timed version of the IOCO relation. In general, IOCO
theory reasons about black-box conformance testing
[20]. We say that an implementation I IOCO conforms
to a specification S (denoted by I ⊑IOCO S) when at any
point in execution it can handle at least as many inputs
as the specification and at most as many outputs. The
one exception to this rule is that implementation is not
allowed to be quiescent (i.e. not provide any output)
when the specification prescribes at least one possible
output [21]. The semantics of the IOCO relation and
the related testing theory [20] is originally formulated
using LTS and input/output transition systems (IOTS).
The conformance relation in timed systems is defined
using timed traces of timed IOTS (TIOTS) and of timed
LTS (TLTS).

A SUT could be any system that is effectively
controllable and observable through test adapters. An
adapter is a piece of code that acts as an interpreter
between the i/o events of the model and the SUT.
An abstract event in the model possibly triggers an
executable code in the SUT. This is done by transforming
the abstract event to a SUT executable form in the
adapter.

Distributed testing presumes handling issues that
typically accompany execution in a distributed compu-
tational environment. True parallelism and timing im-
perfections due to hardware/communication jitters are
common examples of such issues. Also, timing aspects
due to the delays in test adapters need to be accounted
for in the IOCO testing of distributed CPS. To minimize
the delay effect adapter implementations are ideally kept
as simple as possible. If adapters delays start distorting
the timing specified in the models, these effects need to
be explicitly taken into account also in the test models,
and the correctness of tests needs to be re-verified in the
presence of these delay effects. Otherwise, although the

SUT is a correct wrt model, the extra delay introduced
by adapters would violate the test execution timing and
give false-negative results.

For time critical systems the correctness of timing
needs to be included in the conformance relation, thus,
applying the RT-IOCO relation instead of the untimed
IOCO was suggested in [22]. Ideally, the RT-IOCO
needs to be supported in distributed testing but due to
the aforementioned test implementation related issues in
distributed systems the RT-IOCO testing is practically
infeasible. This has led to the need for relaxing the
conformance relation between the model and the SUT.
Therefore the notion of a weaker conformance relation –
∆-testability [2] – is a main performance consideration
the execution environment DTRON is designed for.
In brief, the ∆-testability criterion takes advantage of
the timing information that is not available in untimed
models and accounts for the signal propagation delays
of input and output such that wrong input/output
interleaving never occurs and the test verdict is correct.
In other words, the goal is to minimize the effect of
messaging and adapter latency overhead and represent
this latency explicitly in the model. While the test model
augmented with deployment overhead is still proven to
be correct, it avoids producing false test verdicts.

In the case of remote testing, all test inputs are
generated by a single centralized tester. This means
that the centralized tester will generate an input for a
certain SUT port, will wait for the result from some
(possibly different) output port, and will continue with
the next set of inputs and outputs until the test verdict
(passed, failed, inconclusive) can be made. If the SUT is
distributed in a way that signal propagation time is non-
negligible, this can lead to a situation where the tester
is unable to generate the necessary input for the SUT in
time specified by the test model. These timing issues
can render testing a SUT impossible if the SUT is a
distributed system with strict real-time constraints.

To overcome the timing problem, the distributed
testing approach described in [23] extends the ∆-testing
idea by splitting the monolithic remote tester into
multiple local testers directly attached to the ports of the
SUT and capable of synchronizing between each other.
The adapters still remain between the SUT and the local
testers. Thus, instead of bidirectional communication
between a remote tester and the SUT, only unidirectional
synchronization messages between the local testers are
required to update the other testers on the i/o events that
occur on a tester’s local port. At the same sites as the test
ports of SUT the communication delay between a local
tester adapter and the SUT port is negligible.

To implement the model level synchronization of
local testers, e.g. to force two test inputs to be inserted
at different ports of remote locations at the same time
(in the sense of the model time), DTRON implements
these synchronization channels between local tester
models using Spread services, as it will be described in
more detail in subsection 3.2. We also assume output
observability, which means that the tester attached to
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some port is waiting for the expected output from this
port and after receiving it, propagates it to other testers
whose behaviour depends on it. While in the remote
tester case the test stimulus travels from the tester to
some SUT port in one ∆ and the response from the
SUT back to the tester takes another ∆ (bidirectional
communication), the distributed testers’ communication
with local ports can be ignored. Only (unidirectionally)
propagating locally observed SUT outputs or locally
inserted inputs for synchronization purposes to other
testers at different sites are needed, which means the
delay for test controllability globally is one ∆.

According to the method introduced in [23], the local
testers are generated in two steps: first, a centralized
remote tester is generated by applying the reactive
planning online-tester synthesis method of [24], and
second, a set of synchronizing local testers is derived
by cloning the monolithic tester and mapping them to
location specific tester instances. The local testers project
the global test run to that of observable on local ports of
the SUT, and inter-location synchronization events are
linked to them. Although the communication overhead
of test run increases due to the synchronization traffic,
one of the DTRON design solutions, namely multi-cast
communication mode, allows compensating for this and
reduces the testers’ reaction time by half compared to the
centralized approach.

3. DISTRIBUTED TEST EXECUTION
ENVIRONMENT DTRON

This section presents the DTRON software architecture
by providing the details of the subsystems, the
communication model, and the integration mechanism.
The architecture of DTRON comprises the following
subsystems: Uppaal TRON, Spread toolkit, and API.

DTRON [12] extends the functionality of Uppaal
TRON [7] by enabling distributed and coordinated
execution of tests across networked architectures. The
test execution relies on Network Time Protocol (NTP)
based on clock corrections to give a global timestamp
(t1) to events arriving at the SUT adapter. These
events are then globally serialized and published to other
subscribers using the Spread toolkit [25]. Subscribers
can be other SUT adapters as well as DTRON instances.
Subscribers that have clocks synchronized with the NTP
also timestamp the event of receiving a message (t2) to
compute and if necessary and possible, to compensate for
the messaging time overhead ∆ = t2 − t1. The parameter
∆ is essential in real-time executions to compensate for
messaging delays in test verdicts that may otherwise lead
to false-negative non-conformance results for the test
runs.

3.1. DTRON architecture

Architecturally, DTRON forms a wrapper around the
Uppaal TRON tool by incorporating three other key
components:

Reporter

Adapter

amount=m

m:int[0,100]
move!

./tron

move?

Spread
DTRON

SUT

DTRON API

Fig. 2. DTRON configuration for remote testing.

• Reporters/Adapters to communicate directly with
instances of the TRON tool and to convert test
model symbolic inputs/outputs to data communica-
ted over Spread to the SUT;

• Spread toolkit to interface the runtime with other
major languages and platforms and Google Protocol
Buffers for message serialization;

• DTRON API that serves as a local test adapter having
a direct connection with SUT ports.

The DTRON Adapter is automatically generated by
DTRON and linked to the Spread multicast network.
The byte-level data traversing in the Spread network
is serialized and de-serialized using Google Protocol
Buffers. Figure 2 shows a fragment of the DTRON
configuration for remote testing. In the following the
functionalities of DTRON components and the main
design solutions motivated by these key components are
described.

3.1.1. Uppaal TRON

Uppaal TRON is a model-based online testing tool
based on Uppaal model checking engine. The abstract
tests, represented by Uppaal models, are executed
and the conformance of SUT to a model is checked
simultaneously while maintaining connection to the
system in real-time. In order to interface with SUT,
an adapter needs to be defined to interpret the model
stimuli to SUT and transform the reactions back to I/O
symbols of the model. Uppaal TRON provides a C and
Java application programming interface (API) for this.
The API consists of two classes: the Reporter and the
Adapter (see Fig. 3).

The immediate connection to Uppaal TRON runtime
and the underlying UTA model is handled by Reporter.

(a) (b)

Fig. 3. (a) Uppaal TRON Adapter class. (b) Uppaal TRON
Reporter class extract.
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Whenever Reporter first connects to the runtime,
the settings for the following session are configured.
This is the ‘handshake’ phase implemented at method
void configure(Reporter) that is invoked by TRON
giving access to the actual Reporter object for session
configuration. Within the handshake the following are
configured:
• the time unit that defines how many microseconds

the unit of model clock is;
• the length (in microseconds) ofs the timeout that

bounds the model execution time;
• inputs–outputs that are declared as channels

between the Uppaal model and the SUT.
Note that not all the channels specified in the testing

model belong to the test input–output alphabet, but
only the ones explicitly declared to be so upon the
handshake phase. The other, ‘internal’, channels are
used for synchronization of model processes internally
only. By using the API a user can register the Adapter to
get notified when a synchronization event (denoted by
a channel) occurs in the model. An input assignment
is declared calling the int addInput(String) method
on the Reporter object reference. String argument
has the value of the corresponding channel name
in the model. Outputs are declared respectively by
invoking int addOutput(String). Note that declaring a
synchronization as SUT output changes its interpretation
in the model. The output channel is not enabled until it
has been triggered by Adapter. This is done by invoking
the report(int) method on the Reporter object reference.

The protocol implementing the immediate connec-
tion between the model and Adapter is optimized in a
way that it does not transport the synchronizations with
the actual channel names. When registering inputs and
outputs each channel is assigned an integer index instead.
This index is returned by the corresponding addInput
or addOutput method and used then to encode which
synchronization exactly occurred during the runtime.
Keeping track of these indexes is the responsibility
of the programmer in TRON, but DTRON hides this
complexity behind a more generic object-oriented API.

Whenever a subscribed synchronization event
occurs, the Adapter method perform(int, int[]) gets
called, providing the related information about the
event in the argument list. The first integer value
denotes the channel index of the synchronization that
occurred and the second argument of the integer
array gives the integer variable values attached to the
event. Attaching variables to a channel is done by
the invoking methods addVarToInput(int; String) and
addVarToOutput(int; String) on the Reporter object
reference during handshake. The first integer parameter
denotes the channelId index bound to have variables
attached. The channel needs to be registered first in order
to get the index assigned. The second parameter String
defines the variable name in the model. The second
argument of the integer array of the method perform(int,
int[]) gives the values of the attached variables. The
variable names are not transported, but only their values

in the order of declaration when attaching them to a
channel. With such an explicit naming mechanism the
scalability issues of Uppaal TRON become evident, e.g.
the TRON Adapter specification gets easily untractable
when the models reach the practical ‘industrial’ size.
Making changes to parts of the model that modify the
input or output alphabet contract implies immediate
changes to the Adapter code in TRON as well. This is
because the API does not support easy channel/variable
mappings. It is left to the responsibility of the developer
using the API. This motivated the decision that the API of
DTRON needs to abstract away the low-level interfacing
details related to channels and provide the API in a
domain specific language.

Another problem with the applicability of Uppaal
TRON is that it cannot be applied in distributed testing
scenarios. This is where the SUT has multiple physical
ports, possibly on different machines. This requires
a timing-aware messaging medium to coordinate the
Adapters and enable messaging between multiple Uppaal
TRON sessions needed for distributed execution. The
primary design objective for introducing an additional
messaging layer was not to break the underlying formal
semantics of UTA. In the first place, the messages
need to preserve their order in distributed execution
and, secondly, due to real-time constraints to model
execution the messaging transport overhead needs to be
kept to a minimum and possibly measurable to enable
compensation for sporadically changing communication
delays.

3.1.2. Spread toolkit and Google Protocol Buffers

DTRON utilizes the Spread toolkit [25] for
implementing the message interchange. The messaging
pattern is publish–subscribe. Local testers subscribe
for messages and get notified by callback methods
when new messages are available. The Spread toolkit
provides a high performance messaging service that is
resilient to faults across local and wide area networks.
Spread functions as a unified message bus for distributed
applications and provides application-level multicast,
group communication and point to point support. Spread
services range from reliable messaging to fully ordered
messages with virtual synchrony delivery guarantees.
DTRON uses Spread API supported SpreadGroups to
define publishable SpreadMessages. Each group has a
name and a set of subscribed members. Group members
subscribe by joining the group or unsubscribe by leaving
it. Spread group messaging relies on a broker that is
responsible for the actual message queuing mechanism.
Broker is a server-like program that binds to a network
socket to accept requests. Members connect to a broker
to subscribe to groups or to publish messages.

Spread has six levels of message delivery guarantees
that can be set: unreliable messages, reliable messages,
FIFO (by sender), casual, agreed, and safe (total order).
The messages used in DTRON are flagged as safe to gain
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the guarantee they are delivered in exactly the same order
as produced to all recipients and not possibly break the
underlying UTA semantics. DTRON wraps the Spread
API and configures the group memberships and message
configuration. DTRON is packaged in two different
ways: embeddable and standalone (executable bundle).
During the standalone execution the Uppaal model file
given as input is parsed for channel variables prefixed
with i (inputs) or o (outputs). The naming convention
is given from the adapter perspective – inputs to the
adapter (from the SUT) and outputs from the adapter
(inputs to model). Whenever an input prefix is found,
it is registered with Uppaal TRON API to get notified
when it occurred. Also the appropriate SpreadGroup
is created at the broker or joined if it already exists.
Whenever an input channel is then triggered at the
model, its name and the associated variable values are
published to the appropriate group. Integer variables can
also be associated to a publishable channel by prefixing
their names with the corresponding channel name. For
instance, when having a channel i test and an integer
variable i test n, a message to a group test is sent with
attached variable n with its value. When an output prefix
is found in the model, it is registered to be an output in the
TRON Adapter API. Whenever a model reaches a state
where the outgoing transitions are labelled with output
channels, the channels are bound to be disabled until
they get triggered by the adapter and become enabled.
For each output channel a corresponding Spread group is
subscribed to. Whenever a message is then published
to this group, the adapter triggers the corresponding
labelled transition to be enabled at the model. Similarly
to incoming channels, outgoing channels could also have
associated integer variables.

The main criteria for choosing the appropriate
message serialization framework for DTRON was that
it needs to be as fast as possible and support language
bindings for at least Java, C/C++, and Python. Since
DTRON runtime is expected to operate with around
1 millisecond granularity, it needs a microsecond scale
serialization. Google Protocol Buffers [26] meets these
requirements and relies on an intermediate data definition
language to define message types and structure used for
serialization.

3.1.3. DTRON API

DTRON API is mostly for interacting with Spread
messaging runtime. DTRON uses this API internally
to proxy UTA events via Spread. Users can apply the
API also to write adapters to the SUT. Adapters can also
implement other functions, e.g. logging, time manipu-
lation, etc. The DTRON API domain model is depicted
in Fig. 4. Class Dtron is responsible for handling the
connection to the Spread broker, i.e. allocation and
release of related resources. It serves as a main entry
point for the API since this requires a connection. The
DTRON connection is used to assign DtronListeners.

Fig. 4. DTRON API domain model.

Listeners are built based on specific IDtronChannels
that hold the details about the model channel, i.e. the
name and possible variable assignments. Whenever
an IDtronChannel matching synchronization occurs and
is published to a Spread group, the listeners get
notified by DTRON invoking the callback method
messageReceived(IDtronChannelValued) and passing
the values in the corresponding object as an argument.

To publish events to a Spread group, the class
Dtron provides a method send(). The required argument
object cannot be constructed directly. An IdtronChannel
template has to be constructed first to declare the channel
name and related variables. The resulting template object
holds the appropriate constructValued(data) method to
assign concrete values to the variables. The assignment
is cross-validated to the variable list declared in
the template to avoid illegal assignments. While
implementing DtronListener as anonymous inner classes
or a subclass, there is a convenience method getDtron()
to get a handle to the send() method for immediate
inline reply back to Spread. The infrastructure code
in DtronListener constructs a new object based on
the provided template with immutable map of variable
names and values for intentional use and eliminates
direct access to underlying (immutable) pointers. So
accidental variable manipulation would not cause the
runtime to crash.

3.1.4. Distributed execution

In distributed testing there are multiple physical ports for
interactions between the tester and the SUT. A DTRON
instance running on one port serves as a local tester and
the publish–subscribe messaging allows the observation
of a global trace [3]. Figure 5 shows a conceptual view
of the distributed runtime deployment configuration of
DTRON. From bottom up, there is a SUT or a set of
distributed SUT components that have ports for stimuli
and observations. Each port used in the test is directly
connected to a DTRON instance running against it. This
instance can be an Adapter, a Model, or a combination
of both. DTRON instances communicate over Spread,
which can be clustered.

The local testers embedded into DTRON instances
are interfaced to SUT ports via adapters and subscribed
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SUT

Port Port Port Port

DTRON-1 DTRON-2 DTRON DTRON-x

spread s

spread

socket-1 socket-2 socket socket

Fig. 5. Distributed testing data-flow in DTRON.

to their corresponding Spread broker. There can be
many brokers while preserving the correct message
serialization over all brokers. DTRON binds its
communication socket to a specific broker to publish
and subscribe for messages. Spread takes care of the
network route discovery and planning. So, a message
published to one broker can be received by a subscriber
to another broker in another network segment. Uppaal
TRON uses the socket based interface for API integration
since it provides support for Java integration and for
virtual clocks, which are a mechanism to agree on how
time passes and allows for ∆-testability. This addresses
the problem of non-uniform message transmission delays
between distributed DTRON testers. Consider the Fig. 5
example. We would normally expect that if DTRON-1
publishes a message at time point t1 and DTRON-2 after
that at t2, then t1 < t2. However, if DTRON-1 exhibits
an internal delay longer than DTRON-2, it could happen
that t2 is actually published before t1 and therefore t2 < t1
instead, thus leading to a conformance violation with the
model. But with DTRON we can measure the delays
at the Adapter level and use virtual time to agree that
t1 < t2 even if by receiving side observations it was t2 < t1
instead. We refer to ∆ as the time interval during which
we allow events to be swapped in this manner.

4. PERFORMANCE EVALUATION

The performance evaluation presented in this section
aims at estimating the computational impact of a local
instance of DTRON upon the latency of test stimuli.
The latency upper bound is crucial when deciding on
the applicability limits of DTRON to avoid inducing
false-negative test verdicts. Scalability and latency are
concerned with the number of nodes (and SUT ports) in
the network. This directly relates to the performance of
Spread since nodes have their local instances of DTRON
that run in parallel. So the limiting factor of scalability is
rather the Spread toolkit, whose performance depends on
the number of communicating nodes and their generated
load. According to the analysis in [27 (Fig. 6.14)], the
increase of latency between 180 and 350 microseconds of
Spread is almost linear up to a throughput of 1500 mbps
on a 10-gigabit network. A further increase of the load
causes an exponential increase of latency, making further
upscaling clearly infeasible. Up to this threshold our

measurements have confirmed that, as a rule, the end-to-
end latency of two DTRON instances is within the range
0.6–0.7 ms, as will be shown in the following.

Having the load–performance dependence and
usability limits of Spread available, the goal of this paper
is to determine the latency overhead DTRON has due
to introducing an extra layer of messaging abstraction.
The focus is on measuring the effect of the Spread
toolkit as messaging service with the combination of
Google Protocol Buffers. The latency benchmarking
is carried out in three different execution environments
to demonstrate the scalability with respect to different
application constraints. The results are presented with
focus on clarifying the DTRON application limits.

4.1. Experiment setup for performance evaluation

The experiment setup is based on the latency analysis
model that comes bundled with Uppaal TRON, the
Ticker. A Ticker (see Fig. 6) executes a clock tick every
certain time interval. The time interval is designated
with variables p = 250 and t = 50, a guard condition
on a reflective transition and a location invariant that
forces a tick on average every 250 UTA clock units with
the deviation within time interval td = [−50,50]. The
experiment measures synchronization channel reports
(messages) arriving at the TRON Java API as a baseline
and then measures the extra delay it takes to pass this
information through DTRON. Figure 7 outlines the data
flow and timing points. Messages first arrive at the
Spread adapter and t1 times the event. The second timing
t2 is taken when the message arrives at DTRON adapter.
The difference t∆ = t2−t1 is computed and then analysed
over the experiment time. We execute this sample model

x<=(n+1)*p+t

x>=(n+1)*p t

n++
s

i_tick!

Fig. 6. Ticker UTA model.

Fig. 7. Experiment setup data flow (architecture).
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with DTRON only in eager mode and measure the time
instances of the arrival of the incoming synchronization
event in the TRON Java adapter. ‘Eager’ mode is a
feature of Uppaal TRON and is related to the way it
handles enabled transitions. In this mode an enabled
transition is taken immediately when it becomes enabled.

4.2. Results

Figure 8 shows the results of latency benchmarking
experiments in three different execution environments:
1. Messages transmitted over a network loop-back inter-

face. That is, the Spread broker runs on the same
machine as the Adapter.

2. Messages transmitted over a switched 1Gbps Ethernet
network.

3. Messages transmitted over a loaded switched 1Gbs
network with 50% of the bandwidth allocated by
Distributed Internet Traffic Generator [28].

Figure 9 shows empirical results of a Windows
operating system networking stack where regardless of
some caching symptoms the mean latency drops to a
consistent 1 ms. Figure 10 shows aggregated latency
results revealing correlation between the latency and
computation time. Computation time is emulated to 1 ms
by utilizing sleep(1) instruction for simplicity. Instant
low computation events overwhelm the networking
stack. This in turn causes packet buffers to
fill and maintenance subsystems try to compensate.
This changes the network throughput and occasional
bursts/peaks may occur. Note that instant computation
(0 ms sleep) is for informational purposes only. Stress
test results in Fig. 11 show a mean latency of 5 ms
while stimulating events with UTA at maximum capacity.
Even with anomalous behaviour exposed as fluctuation at
samples 415–420 in Fig. 9 the stimulation computation
time is known not to fall below 1 ms by experimental
results.
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Fig. 8. Latency results. β is the mean, σ is the standard
deviation, and t△max is the maximum latency in milliseconds.
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Fig. 11. Eager UTA at 5 ms.

The minimal 1 ms latency lag is caused by the TRON
Java adapter that communicates with TRON executing a
UTA model over a SocketAdapter. The reason is latency
due to the networking stack. Given a computationally
non-intensive function, the execution can be considered
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to be instantaneous, which would result in heavy packet-
intensive traffic of messages to the Spread network.
Since Nagle’s algorithm for improving the efficiency of
TCP/IP networks by reducing the number of packets that
need to be sent over the network has been turned off, this
would result in a huge overhead of decorating the actual
message with TCP/IP packets and in significant loss and
fluctuations in the throughput. A sleep interval of 0 ms
in Fig. 10 illustrates this scenario. In other words, this
shows how the ‘networking’ aspect affects the real-time
performance of DTRON. An ‘anomaly’ will occur if an
adapter does zero work and produces output at maximum
speed, essentially ‘flooding’ the networking stack. This
is what the 0 ms sleep interval column in Fig. 10 shows.
The performance is still reasonable though. The diagram
also shows a deviation of 8 ms that results in a latency
of 0 ms. This is the product of the networking stack
buffering the packets. On the other hand, when the
adapter does at least some work (>=1 ms) one can
expect a consistent latency of around 1 ms or less.

Figure 12 shows sleep-vs-latency analysis when
using the nanoSleep() function for computation simula-
tion. It allows a nanosecond scale control over the
thread blocking time instead of milliseconds – that is
with regular sleep. Although both functions seem to
implement the same thing, the nanoSleep is internally
implemented in a different way, being computationally
more intensive. A marginal increase in such computation
time results in a substantial drop in latency and its
fluctuations.

Since this stress test runs fast, the experiment is
carried out with 10 K samples instead of 1 K previously
used. This is to demonstrate how it would scale after
1 K. The nanoSleep() internal implementation uses pro-
cessor core ticks to count time instead of a real-time clock
module. Firstly, this is computationally more expensive
than querying a real-time clock. Secondly, although the
processor tries to coordinate core times to be equivalent,
it is not always guaranteed to be so. At nanoscale re-
solution it is often the case that processor cores have
temporal misalignment that can introduce violation of
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Fig. 12. Aggregated latency using nanoSleep().

hardware clock synchronization. Given the nature of
processor coordination of individual tasks distributed
around cores, it might happen that the difference between
consecutive nanoTime() readings turns out to be negative.
The clock misalignment does not influence Spread or
DTRON. It is about how time is measured on a concrete
(hardware) platform during experiments. The sleep()
function measures time in milliseconds, but DTRON
together with Spread is considerably faster than that,
hence the need for nanoSleep() experiments.

5. USABILITY STUDY

The usability of DTRON functional and performance
characteristics outlined in Section 4 has been shown
in several distributed testing case studies: a city street
lighting control network [29], a ROS-based navigation
system [30], an interbank trading and stock exchange
system [23], etc.

The city street lighting control network involves
up to 1000 controllers spread over the city area
(depending on the deployment needs), one central
server, and one or more backup servers. The system
aims to automate turning city lighting on and off or
dimming depending on the atmospheric illumination
threshold in different places of the city. Controllers
are low-power and low-computation embedded systems.
The controller communication medium is General
Packet Radio Service (GPRS) over 2G Global System
for Mobile communications (GSM). This medium
introduces computation and communication delays that
are hard to handle with non-distributed MBT methods
due to the conformance problems caused by observation
time uncertainties. DTRON and ∆-analysis were used to
address conformance problems with extensive automated
testing.

The SUT was server software. The servers monitor
the illumination conditions over the city and, depending
on the weather conditions, compute the control settings
for local light controllers. Each controller controls a
feeder for lights of one or two streets. Controllers
regularly initiate communication sessions with the server
to update their settings and report on their status. If
the connection fails, the controller repeats the session
initiation procedure and along failed data also the latest
changes are transferred. Controllers work with their
earlier settings until they succeed with the new session
and settings update. The test suite emulates the sensor
data and controller status under different illumination
conditions and in the presence of communication
failures.

More than 120 test cases were generated by varying
controller communication settings (session frequency,
duration of the session, number of communication
failures per session, location of controller, etc.) and
system operator profiles. The model of the user perform-
ing actions against the Light controller Web UI was
introduced to test simultaneous correction of settings
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done by operators at different geographic locations
(within an area of approximately 30 km diameter).
Distributed execution means here that n instances of
the operator model were executed at different sites to
simulate load and possible ‘state’ faults that could occur
on the server side due to their possible interference.
Although the timing constraints in this case study were
not critical, generating the short distributed load burst
patterns of over 1000 controllers presumed server side
message receiver modelling in 10 ms scale. This load did
not cause false conformance violations (due to DTRON
performance limits) between the SUT and the model.

The case study of ROS packages testing addressed
in [30] involves high level robot control, such as
e.g. localization and navigation of mobile robots. The
approach of Robot Unit Testing by Bihlmaier and Wörn
[31] is extended in two ways: first by introducing a white
box metric of code coverage, in particular statement
and branch coverage, and second, by combining a
DTRON based testing into the test set-up, which allows
formalizing the requirements of the stack of ROS
packages together with either a real or simulated set
of sensors and actuators. The experiments involve
modelling and testing the navigation and localization
components of the software stack developed in the
STRANDS project [32]. The stack was chosen as the
SUT because it involves multiple layers of functionality
on top of the standard ROS move base mobile base
package responsible for accomplishing navigation. It is
open sourced, accessible on GitHub, contains a working
simulation environment built using Morse [33], and
many existing quality assurance techniques are actively
used in the project, including unit tests and a Jenkins
based continuous integration system. The test goal is
to check if the robot maintains correct (in the sense
of navigation constraints) behaviour in the presence
of multiple static and moving obstacles (humans/other
robots). The appearance of static obstacles (30 objects)
and dynamic obstacles (5 and 9 objects) was the test input
to the SUT whereas the inputs were distributed in the
virtual environment of a building floor. Robot reactions
were the test outputs. The delays of receiving/sending
respectively inputs/outputs were due to the execution
time of the software stack. The test suite involved
different scenarios, i.e. high level test cases. The tests
were run in two different simulated environments and
repeated in the same scenarios by sending the goals to
the move base and topological navigation action servers.
Altogether 12 high level test scenarios were generated
and executed in two different virtual environments. In
the best case the topological navigation test provided
code coverage respectively by packages of the ROS
stack: action lib – 54%, strands navigation – 17%,
topological navigation – 28%, localization node – 73%,
and navigation node – 73%. In the presence of none
dynamic objects DTRON could perform fast enough to
maintain the realistic repositioning of those objects and
processing robot reactions when visiting the navigation
waypoints at a speed of 1.4 m/s.

The third case study [23] includes a fragment
of an interbank trading system (ITF). Four ports
of the SUT are involved in the test configuration
representing respectively clients and banks that are
geographically located in different places. In such a
situation, the propagation of the input and output signals
is not negligible and may affect the interbank bidding
processes. Each port consists of inputs and outputs, but
not necessarily both. The ports represent the quotes (bid
and ask prices), order requests, and order confirmations.
The test configuration consists of two banks (A, B),
interbank market (M), and a client (C). The client (C) is
connected to each bank information system. The banks
are connected to the clients and to the interbank market
(M). The test suite includes four cases where a client
wants to engage in arbitrage and therefore is waiting for
a situation where the banks have different prices for the
same financial instrument. The test scenario covers the
situations where the client receives the prices from banks
and sends an order request (buy or sell) to the bank they
want to buy or sell that financial instrument. The banks
receive the interbank prices from the interbank market
and they buy and sell the instrument they do not possess
themselves from that market for order clearing. An
arbitrage opportunity arises when one bank’s information
system has different prices than the price at the market.
The bank forwards the price that it perceives to be the
current price to the client, but in reality the price has
already changed in the market. This issue is completely
due to latency, and testing the performance of the ITF
requires distributed testers instead of one centralized
remote tester to be as close as possible to real low latency
bidding situations.

In all these cases the integration testing time was
reduced on average by 24% due to the automated
generation of tests and easier test deployment and
execution. The most time consuming parts of the testing
process were formalization of requirements and test case
definition.

The DTRON testing experiments were conducted
by authors of references [29] and [23] in parallel with
the development team who scripted tests in TTCN-3
manually and ran them on the commercial tool TestCast
(http://www.elvior.com/). The test suites compared
were almost identical in their number of test cases
and coverage. The test development effort in time was
estimated in both cases and compared. When the
commercial development team tried modelling the test
cases in UML state charts and rendering them into
TTCN-3, it took longer than direct scripting in TTCN
due to the learning curve of the proper usage of UML.
The test execution time itself was negligible compared to
the test definition and modelling time. The advantage
of using UTA was revealed also in modelling timing
constraints on more abstract level than that of TTCN-
3 language where timeouts need to be given explicitly
in the code for each expected test reaction. The UTA
model used in the case study in [30] was generated
completely automatically based on the robot navigation
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map, navigation goal (waypoints), and obstacles that
influence the trajectory planning. The same test cases
were programmed also manually and their coverage was
compared. Together with creating the test adapters
and test deployment the total test development and test
execution time using models and DTRON was almost
35% shorter compared with the testing process where the
tests were written manually in C++.

The testing of the city lighting project revealed a
timing non-conformance bug when executing multiple
copies of testers mimicking different users where one
or the other user was denied access to the system.
The erratic occurrence of this bug could not be made
reproducible, but it gave enough insight to the developer
to fix the (session management) problem.

The bug described in [29] was detected when the
system operator models were executed simultaneously
at n different sites to hit the server. There occurred a
server-side session management failure where some of
the operators (model execution instances) were denied
access to the system and became forcibly logged out.
The SUT exhibited the expected behaviour in most of
the cases, but for some cases the server showed the lights
to be off when the controllers had actually the lights on
and the status was expected to be synchronized with the
server. An example test run was screencaptured and is
available for design analysis on DTRON website [12].

Similarly, the ROS case study published in [30]
revealed an incorrect mapping of virtual coordinates of
the waypoints in the laser scan map. This appeared to be
a mistake in the navigation task specification rather than
a bug in the ROS stack.

6. CONCLUSION

This paper presents the architectural design solutions
and the results of computational (and timing) overhead
analysis of DTRON, a distributed test execution tool.
DTRON, as one of the first model-based test execution
environments for distributed testing of systems with strict
timing constraints, is specifically designed to reduce
the runtime overhead and minimize the tester reaction
time to make it suitable for low response time ∆-testing.
The resulting framework, capable of operating in the
millisecond scale, is of acceptable precision for a wide
spectrum of cyber-physical systems. Three case studies
highlighted in the paper assure that DTRON has practical
value in various testing contexts ranging from robot real-
time navigation to geographically distributed systems
testing. Future work will include the implementation of
monitors within DTRON for collecting online data about
the network non-static latency characteristics that may
violate preset ∆-parameters of remote and distributed
tests.
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Ajakriitiliste rakenduste mudelipõhise hajustestimise vahend DTRON

Aivo Anier, Jüri Vain ja Leonidas Tsiopoulos

Küberfüüsikalised süsteemid (KFS) pakuvad suuri võimalusi, kuid ka suuri väljakutseid mitmes valdkonnas,
näiteks elektroonikatööstus, transpordisüsteemid ja tööstuse automatiseerimine. Väga keeruka KFS-i tarkvara
disaini korrektsuse tagamine nõuab uusi arendusmetoodikaid ja vahendeid, mis peavad olema suunatud laia-
le arhitektuurilahenduste spektrile. Samuti peavad KFS-i arendusvahendid lahendama olulise paralleelsuse ja
ajastamiskitsendustega seotud probleeme. Käesolevas artiklis on käsitletud mudelipõhise testimise vahendit
DTRON, mis on välja töötatud ajatundlike hajusarhitektuuriga süsteemide testimiseks. DTRON on loodud
mudelkontrollivahendi Uppaal ja online’i testimisvahendi TRON baasil, laiendades nende funktsionaalsust
online’i hajustestimiseks vajalike koordineerimis- ning sünkroniseerimisfunktsioonidega. Hajustestide juhitavuse
tagamiseks on DTRON-i projekteerimisel lähtutud ∆-testitavuse nõudest. Artiklis on esitatud DTRON-i
arhitektuurilahendus ja analüüsitud selle jõudlusnäitajaid, arvesse võttes võrguühenduse ning testiadapteritest
tingitud hilistumisi. Jõudluseksperimentide abil on näidatud, et implementeerimiseks kasutatud vahevara
Spread sõnumite järjestamisteenus ja võrgu ajakorraldusprotokoll Network Time Protocol võimaldavad kahandada
hajustestide juhitavuse tagamiseks vajaliku parameetri ∆ alla 1 ms piiri. See näitaja on piisav paljude
võrkarhitektuuriga küberfüüsikaliste süsteemide hajustestimiseks. DTRON-i rakendatavust valideerivad kolm
rakendusnäidet: tänavavalgustussüsteemi kontrollerite võrgustiku, pankadevahelise kauplemissüsteemi ja mobiilse
roboti navigatsioonisüsteemi testimine.


