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Abstract. The time-dependent theory of the three-step absorption of three different light pulses in the electronic four-level 
systems is considered using the time-dependent perturbation theory. The first, the second, and the third pulse are in resonance with 
transitions from level 0 to level 1, from level 1 to level 2, and from level 2 to level 3, respectively. The spectral and temporal 
behaviour of the probability that the fourth level is excited at the moment of time t depends on the energy relaxation constants  
of the excited electronic levels, the frequencies of the maxima, the spectral widths (and so the durations) of the light pulses, and 
the time delays between the pulses. To conclude, there are 12 parameters that affect the spectra in the simple model used. We 
calculate and analyse the case where the frequencies of the maxima of the first and the second pulse are fixed and the frequency of 
the maximum of the third pulse varies. On the whole, three lines may exist, one of which corresponds to the coherent contribution 
and the others do not. 
 
Key words: theory of three-step absorption, time-dependent perturbation theory, three different light pulses. 

 
 
1.  INTRODUCTION  
 
Two-step absorption of light by matter has been researched for decades [1–6]. In this paper the time-
dependent theory of three-step absorption in the electronic four-level model is presented. We used time-
dependent perturbation theory. Using the simplest model in calculations, we analyse the temporal and 
spectral behaviour of the spectrum. The probability that the fourth level is excited at the moment t depends 
on the energy relaxation constants of the excited electronic levels, the frequencies of the maxima, the 
spectral widths (and so the durations) of the light pulses, and the time delays between the pulses. The 
phase relaxation and the phonon wings are not taken into account. The absorbed pulses are different and 
may have arbitrary spectral widths and arbitrary durations.  

Different limit cases are studied analytically. The spectra with fixed frequencies of the maxima of the 
first and second pulses and with varied frequency of the maximum of the third pulse are calculated and 
analysed. On the whole, three lines may exist; one of these corresponds to the coherent contribution [4] 
and the others do not. The three-step absorption allows deeper understanding of which lines, coherent  
or non-coherent, appear in the absorption spectrum and of which parameters their widths depend on.  
The present consideration applies for impurity centres at low temperatures with weak electron–phonon 
coupling. 
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2.  PROBABILITY  OF  THREE-STEP  TRANSITION 
 
The process started from ground level 0. Resonance conditions are ω1 ≈ Ω01, ω2 ≈ Ω12, and ω3 ≈ Ω23, 
where Ω01, Ω12, and Ω23 are the frequencies of the transitions 0→1, 1→2, and 2→3, and ω1, ω2, and ω3 are 
the frequencies of the maxima of the pulses.  

Let us find the probability that at time t the system is in the final state by applying time-dependent 
perturbation theory. First we find the amplitude of the probability. For general consideration we need 
formulas in which the initial state of the system consists of the electromagnetic field and matter is given at 
initial time t0 = – ∞. In this case we can use any shapes of excitation pulses of light. 

The system is described by the Hamiltonian  

 .CR C RH H V H H V
     
      (1) 

At initial time t0 the system is in the state  

      0 0 0 .C Rt t t    (2) 

In Eq. (1) CH


 is the Hamiltonian of matter, RH


 is the Hamiltonian of the electromagnetic field, V


 is  
the Hamiltonian of interaction. In Eq. (2)  0C t  and  0R t  are the initial states of matter and of the 
electromagnetic field. 

The characteristic states and eigenvalues of these Hamiltonians are the following: 

 , , .CR C Rj iH j E j H i E i H   
  

    (3) 

The initial state of matter  

    0 ' ' 0
'

' expC i i
i

t b i iE t    (4) 

and the initial state of the electromagnetic field (three light pulses)  

 

         

   

0 1 1 0 2 2 0

3 3 0

exp ' ' exp '

'' '' exp '' , ', '' ,

R t d B i t d B i t

d B i t

        

      

 

 




    

  

 



 

(5) 

where  

      2 2 2
1 2 31, ' ' 1, '' '' 1.d B d B d B     

  

  

      (6) 

Equations (6) describe normalization conditions of three single photon wave packages with maxima at 
frequencies ω1, ω2, and ω3, respectively. 

The amplitude of the probability of finding the system at time t ≥ t0 in the state j according to the 
Hamilton equation is  

 

     

 

       

   

0 0

0 ' ' 0
'

1 1 2 2 3 3 0

0 ' ' 0
'

exp

' '' exp ' , ', '' exp( )

' '' exp ' ''

exp ' exp .

j

i i
i

j j
j

c t j i t t H t

d d d j i t t H i b iE t

B B B i t

j i t t H j b iE t



     

        



   

  



 
   

 

 
    

 

        
 

    
 

   

  (7) 
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Let us take into account that at y ≥ 0 

  
0

exp exp exp ,
y

CRiy H iy H T i dsV s
      

       
      
  (8) 

where   exp exp ,CR CRV s is H V is H
          

   
 T is the operator of chronological arranging, which puts the 

operators from right to left in the order of increasing s. To go to limit t0 → – ∞, the decay of the 

characteristic states of the Hamiltonian CRH


 has to be taken into account. Then the amplitude cj(t) can be 
approximately presented as follows: 

 

      

    

11

1 2 0 0 0

1 1

,

1 2 1 1
1 , ,...,

1 2 1 2 1

... exp

exp ... exp ,

n

n

n n

ttt
n

j n j j
n j j j t t t

j j n n j j n

c t i dt dt dt i E i t t j V j

i E i t t j V j j V j b iE t





 



 



      

      

    

 (9) 

where γj is the decay constant of the state j  and the apostrophe means that the terms with the coinciding 
numbers of states are omitted. This formula can be used for all values of t0 including –∞ only if the 
interaction is small enough.  

Here we assume that the final state does not coincide the with the initial state (bj = 0), the integration 
variables t1, t2, …, tn are the times of the transitions of the amplitude of the probability from one 

characteristic state of Hamiltonian H


 into the other, and the differences t – t1, t1 – t2, … tn–1 – tn, and tn – t0 

determine time intervals during which the amplitude of the probability is in state 1 1, , ..., nj j j  , 

and nj , respectively. 

To describe the process with the three photons the term of the third order of expansion is needed: 

 

       

    

1 2

1 1

1 2 3 0 0 0

2 2 3 3

,

1 2 3 1 1 1 2
, ,

1 2 2 3 2 3 3

exp exp

exp exp .

t tt

j j j j j
j j j t t t

j j j j

c t i dt dt dt i E i t t j V j i E i t t

j V j i E i t t j V j b iE t

 





 

            

      

   

 (10) 

Since 

 1 1 1 1

2 2 2 2 3 3

, '',

' '', ' '',

j j i i j j i i

j j i i j i

E i E i E i E i

E i E i E E

    

      

      

        
 (11) 

then 

 

    

  

  

1 2

1 2 3 0 0 0

1 1

2 2

3 3

,

1 2 3 1
, ,

1 1 2 1 2

2 3 2 3

' '' exp

0 '' exp '' '' ', ''

exp ' '' ', '' , ', ''

exp ' '

t tt

j i i
i i i t t t

i i

i i

i i

c t i d d d dt dt dt i E i t t

i V i i E i t t i V i

i E i t t i V i

b i E

   

     

       

  

  

  

 



      

      

       

    

      

       3 1 1 2 2 3 3' ' '' .t B B B            (12) 
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Let us introduce the single photon matrix elements 

 1

2 3

', '' , ', '' ,

'' ', '' , 0 '' ,

v V

v V v V



 

    

   



 



 
 (13) 

and the functions Bi(t), which determine time profiles of the pulses: 

  ( ) exp( ) .i iB dt i t B t 




   (14) 

In the end we get 

 

       

          

1 2

3 1 1

1 2 3

2 2 2 3 3

,

1 2 3 1 1 1 2
, ,

1 2 2 3 2 3 3 1 3 2 2 3 1

exp exp

exp exp ,

t tt

j i i i i
i i i

i i i i

c t i dt dt dt i E i t t i v i i E i t t

i v i i E i t t i v i b iE t t t t



 

 

   
  

            

      

   

 (15) 

where 
      exp .i i it i t B t    (16) 

In Eq. (16) it is assumed that the pulses are quasi-monochromatic, i.e. Bi(t) are slowly changing functions 
in comparison with exp(–iωit).  

To get the probability it is necessary to average the quantity |ci(t)|
2 over the initial states and to 

summarize over the final states. In the conditions of thermal equilibrium 

  
3 3 3 3 3 3 3

*
' '

1
, exp ,i i i i i i ic

b b n n E kT
Z

    (17) 

where Z is the statistic sum, T is temperature, and ...  is the mark of averaging over ensemble.  
Taking the preceding into account, we get 

 

     

  

    

1 1

3

3 1 2 1 2

2 2

1 2 2 2

1 1 3

'

1 1 3 1 1 2 2 2 2 2
, , , ' , '

'

3 3 3 2 ' ' 2 3 2 1

' ' 1 2 1 1 1 1 1

' , ' ' , '

' ' exp ' ' ' '

exp ' ' ' exp ' (2 ' )

t tt t

i
i i i i i i

t t

i i

i i i i

W t n dt dt S t t dt dt S t t

dt dt i v i i E i t t i v i

i E i t t i v i iE t t t t t

 





 

   

 

 





    

         

     

 

  

      
3 1 1 2

2 2 1 3

1 1 2 1 2

2 3 2 3 3 3 1 3 3

exp

exp exp ' , ' .

i i

i i i

i v i i E i t t i v i

i E i t t i v i iE t t S t t

 









     
            (18) 

Here 

      , ' * 'i j j i j i j
R

S t t t t   (19) 

are the correlation functions of the absorbed pulses, ...
R

denotes averaging over states of pulses. The 

functions Si(tj,t’j) are considerably different from zero in the region |tj|, |t’j| ≤ Δi
–1, where Δi is the spectral 

width of pulse i. If the pulse is coherent, its duration is determined by the time Δi
–1. 

Taking into account that i CE i H i


  and introducing the operator of damping ,i i i 


  Eq. (18) 
can be rewritten in the form:  
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          
1 1 2 2' '

1 1 3 1 1 2 2 2 2 2 3 3 1 1 2 2 3 3 1 3 3' , ' ' , ' ' , , ' , , ' , , ' , ' ,
t t t tt t

W t dt dt S t t dt dt S t t dt dt F t t t t t t t S t t
     

        (20) 

where 

 

     

   

 

1 2

3 3 2

1

1 1 2 2 3 3 2 3 1 2

1 1 1 1 1 2

2 3

, , ' , , ' , , ' exp ' ' exp ' '

exp ' (2 ' ) exp

exp exp

C C

C C

C

F t t t t t t t v i H i t t v i H i t t

v i H t t t t t v i H i t t v

i H i t t v i

 

  



 

 



 
 

 




      
           

      
    

           
    

  
      

  
 3 3' .C CH t t

 
  

 
(21) 

At the end this probability W(t) decreases to zero with the increase of time t. 
 
 

3.  MODEL 
 
In our model the pulses are coherent and of a single-sided exponential shape. The corresponding 
correlation functions are 

 
1 3 3 3 1 3 1 1 3 3 1 3 3 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 1 1 1 3 1 3 3 1 1 3 1 1 3

( , ' ) ( ) ( ' )exp[ ( ' ) ( ' 2 ) / 2],

( , ' ) ( ) ( ' )exp[ ( ' ) ( ' 2 ) / 2],

( , ' ) ( ) ( ' )exp[ ( ' ) ( ' 2 ) / 2],

S t t t t i t t t t

S t t t t i t t t t

S t t t t i t t t t

     
     
     

      

      
      

 (22) 

where  

 

0, 0,
( )

1, 0,

if x
x

if x



    

τ1, τ2, and τ3 are the time moments when the pulses begin to pass through the impurity centre, Δ1, Δ2, and Δ3 
are the spectral full widths at half maximum (FWHM) of the pulses. 

In the model used the rates of energy relaxation γ1, γ2, and γ3 describe the relaxation processes of the 
excited levels 1, 2, and 3. In this model the phase relaxation and the phonon wings are not taken into 
account. Then the correlation function of the four-level system is 

 
1 1 2 2 3 3 3 1 1 23 1 1 2 1 1 2 2 12 2 2

1 2 2 3 3 01 3 3

( , , ' , , ' , , ' ) exp[ (2 ' ) / 2 ( ' ) ( ' ' ) / 2 ( ' )

( ' ' ) / 2 ( ' ),

F t t t t t t t C t t t i t t t t t t i t t

t t t t i t t

 


             

       (23) 

where C is a constant.  
Even in this elementary model there are 12 parameters that have an influence on the spectra.  
 
 

4.  MONOCHROMATIC  LIGHT 
 
If monochromatic light is used at all three steps of the absorption process, i.e. in Eq. (22), the FWHM 
spectral widths of the pulses Δ1 = Δ2 = Δ3 = 0 (stationary case). Then 

 
     2 2 22 2 2

01 1 1 01 12 1 2 2 01 12 23 1 2 3 3

1 1 1
.

4 4 4
W

        

                             

(24) 

(23) 
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In Eq. (24) the first term describes the absorption of light with frequency ω1 between the levels 0→1, the 
second term describes the absorption of light with frequency ω1 + ω2 between the levels 0 →2, and the 
third term describes the absorption of light with frequency ω1 + ω2 + ω3 between the levels 0 →3. In the 
case where the frequencies ω1 and ω2 are fixed and the frequency ω3 varies, only the line between the 
levels 0 →3 exists, which corresponds to the coherent contribution. The width of this line depends only on 
the rate of energy relaxation γ3 of the final state 3. It is so only in this model. If we take into account the 
phase relaxation of levels 1 and 2, other two lines, which correspond to the non-coherent contribution, will 
appear. If the light is not monochromatic, i.e. spectral widths of the coherent pulses Δ1 ≠ 0, Δ2 ≠ 0, and 
Δ3 ≠ 0, these other two lines will appear even though the phase relaxation is not taken into account (see 
Chapter 6). In [7] it is shown that the ratio of non-coherent and coherent parts, i.e. the ratio of 
luminescence and scattering of resonant secondary radiation (the process between levels 0→1→0, the 
second order of perturbation theory), is determined by the ratio of the rates of the phase relaxation and the 
rate of the energy relaxation of the excited level 1. 
 
 
5.  ULTRASHORT  PULSES 
 
1. The first pulse is much shorter than the relaxation time of the second level γ1. Then  

 1 3 3 3 1 3 1 1 3 3( , ' ) ( ) ( ' ) exp[ ( ' )],S t t t t i t t         (25) 

        
1 1

1 1 1 1

'

1 1 3 1 1 2 2 2 2 2 1 1 2 2 1 1' , ' ' , ' , , ' , , ' , , .
t tt t

W t dt dt S t t dt dt S t t F t t t t t
   

       (26) 

Equation (26) describes two-step absorption between levels 1→2→3. The initial level 1 is excited at the 
time moment τ1. In our model with correlation functions from Eqs (22) and (23) the probability is the 
following: 
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Here y ≡ Ω12 – ω2 and z ≡ Ω23 – ω3. 

 (27) 
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2. When the second pulse is ultrashort 
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then 
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Here we have multiplication of two one-step processes: 0→1 and 2→3, in the latter case level 2 is excited 
at moment τ2. In our model the probability is the following: 
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Here x ≡ Ω01 – ω1 and z ≡ Ω23 – ω3. 
3. In the case where the third pulse is ultrashort, 
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Here two-step absorption 0→1→2 takes place. In our model the probability is the following: 
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Here x ≡ Ω01 – ω1 and y ≡ Ω12 – ω2. 

    (30) 
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6.  RESULTS  OF  CALCULATIONS  
 
Due to an abundance of parameters, only some characteristic spectra are presented. Hereafter τ1 = 0, 
T1 ≡ τ2 – τ1, and T2 ≡ τ3 – τ2. Here we analysed the case where z ≡ Ω23 – ω3 is variable (the frequency of the 
maximum of the third pulse ω3 varies) and x ≡ Ω01 – ω1 and y ≡ Ω12 – ω2 are fixed (the frequencies of the 
maxima of the first and second pulses ω1 and ω2 are fixed) and chosen different from zero to separate 
spectroscopically possible lines.  

The dependence of the spectrum on the parameter Δ2 at a fixed time t is presented in Fig. 1. We get 
three lines with maxima: at z = – (x + y), z = – y, and z = 0. The location of the maximum of the first line 
from the right at z = – (x + y) (ω3 = Ω01 + Ω12 + Ω23 – ω1 – ω2) shows that the three pulses are absorbed 
together so that x + y + z = 0 (ω1 + ω2 + ω3 = Ω01 + Ω12 + Ω23) without excitation of levels 1 and 2 and 
therefore this is the coherent contribution. The locations of the maxima of the other two lines, at  
z = –y (ω3 = Ω12 + Ω23 – ω2) and z = 0  (ω3 = Ω23), show that absorption takes place correspondingly 
0→1→3 and 0→1→2→3 or 0→2→3 and therefore these are not coherent contributions. In the first case 
the second and the third pulse are absorbed together from level 1. With the increase of the spectral width of 
the second pulse Δ2 the intensity of the line at z = 0 increases and the intensities of the other lines decrease. 

In Fig. 2 time t is much longer compared with Fig. 1. In this case the width of the line with the 
maximum at z = – (x + y) (corresponds to the coherent contribution) diminishes, the limit width of this line 
is determined by the spectral widths of the pulses Δ1, Δ2, and Δ3 and with the energy relaxation constant γ3 

of the excited electronic level 3. From a certain time t with the increase of time t the intensity and the 
width of the lines decrease. In Fig. 2 curve 1 (Δ2 = 0) is 3.2 times as large as the corresponding curve 1 in 
Fig. 1.  

Figure 3 illustrates the dependence of the spectrum on the parameter γ2 at different values of time t. 
Analysis of these three figures and the other spectra with different parameters shows that the limit 

width of the line with maximum at z = – y is determined by the spectral widths of the pulses Δ2 and Δ3 and 
by the energy relaxation constants γ1 and γ3. The limit width of the line with maximum at z = 0 is 
determined by the spectral width of the pulse Δ3 and by the energy relaxation constants γ2 and γ3.  

 
 

  
 

Fig. 1. Dependence of the probability W(t) on z ≡ Ω23 – ω3 at 
the fixed value of x ≡ Ω01 – ω1 = –15γ3, y ≡ Ω12 – ω2 = –10γ3 
for different values of Δ2 (in γ3). Δ1 = 0.1γ3, Δ3 = γ3, γ1 = 5γ3, 
γ2 = 5γ3, T1 = 10–7γ3

–1, T2 = 0.1γ3
–1, t = 1.1γ3

–1. All curves are 
normalized to 1. 

 

Fig. 2. Dependence of the probability W(t) on z ≡ Ω23 – ω3 at 
the fixed value of x ≡ Ω01 – ω1 = –15γ3, y ≡ Ω12 – ω2 = –10γ3 
for different values of Δ2 (in γ3). Δ1 = 0.1γ3, Δ3 = γ3, γ1 = 5γ3, 
γ2 = 5γ3, T1 = 10–7γ3

–1, T2 = 0.1γ3
–1, t = 5.1γ3

–1. All curves are 
normalized to 1. 
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In the case of our correlation functions of the excitation pulses the limit values of FWHM of the lines 
are the following (ω1 and ω2, i.e. x and y, are fixed): 
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 (34) 

The other parameters influence only the intensities of these lines. 
Analysis shows that in the general case where the spectral widths of the pulses Δ1, Δ2, and Δ3 are 

comparable with the energy relaxation constants γ1, γ2 , and γ3, if the frequency of the maximum of the first 
pulse ω1 (ω2, ω3 are fixed) is variable, three lines with the maxima at x = 0, x = – y, and x = – y – z exist in 
the spectra. In the case where the frequency of the maximum of the second pulse ω2 (ω1 and ω3 are fixed) 
is variable, four lines with the maxima at y = 0, y = – x, y = – z, and y = –  x – z exist in the spectra. 

 
 

7.  CONCLUSIONS 
 
A time-dependent theory of three-step absorption of three different light pulses with arbitrary duration in 
the electronic four-level model is proposed. The probability that the fourth level is excited at the time 
moment t is found depending on the time delays between pulses T1 and T2, the spectral widths of the 
pulses Δ1, Δ2, and Δ3, and the energy relaxation constants γ1, γ2, and γ3 of the excited electronic levels 1, 2, 
and 3. 

In calculations the pulses are taken as coherent and of a single-sided exponential shape; ω1, ω2, and ω3 
are the frequencies of the maxima; 0, T1, and T1 + T2 are the time moments when the pulses begin to pass 
through the impurity centre. The resonance conditions are ω1 ≈ Ω01, ω2 ≈ Ω12, and ω3 ≈ Ω23 where Ω01, Ω12, 
and Ω13 are the frequencies of the transitions 0 → 1, 1 → 2, and 2 → 3 and ω1, ω2, and ω3 are the 
frequencies of the maxima of the pulses.  

In the general case (the spectral widths of the pulses Δ1, Δ2, and Δ3 are comparable with the energy 
relaxation constants γ1, γ2, and γ3), if the frequency ω1 or the frequency ω3 is variable (ω2 and ω3 are fixed 

 
 
 

Fig. 3. Dependence of the probability W(t) on z ≡ Ω23 – ω3

at the fixed value of x ≡ Ω01 – ω1 = –15γ3, y ≡ Ω12 – ω2 = –10γ3
for different values of γ2 (in γ3) and t (in γ3

–1). Δ1 = 0.1γ3,
Δ2 = γ3, Δ3 = γ3, γ1 = 5γ3, γ2

 = 5γ3, T1 = 10–7γ3
–1, T2 = 0.1γ3

–1.
All curves are normalized to 1. 
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or ω1 and ω3 are fixed), three lines exist in the spectra. In the case where the frequency ω2 (ω1 and ω3 are 
fixed) is variable (ω1 and ω3 are fixed), four lines exist in the spectra. 

Analysis of the case where the frequencies ω1 and ω2 are fixed and the frequency of the maximum of 
the third pulse ω3 varies, shows that the widths of three possible lines depend on different parameters. The 
limit width of the line with the maximum at ω3 = Ω01 + Ω12 + Ω23 – ω1 – ω2 is determined by the spectral 
widths of the pulses Δ1, Δ2, and Δ3 and by the energy relaxation constant γ3 (the coherent contribution), the 
limit width of the second line with the maximum at ω3 = Ω12 + Ω23 – ω2 is determined by the spectral 
widths of the pulses Δ2 and Δ3 and by the energy relaxation constants γ1 and γ3, and the limit width of the 
third line with the maximum at ω3 = Ω23 is determined by the spectral width of the pulse Δ3 and by the 
energy relaxation constants γ2 and γ3.  
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Kolme  valgusimpulsi  kolmeastmelise  neeldumise  ajast  sõltuv  teooria 
 

Inna Rebane  
 

Kasutades ajast sõltuvat häiritusarvutust, on esitatud kolme valgusimpulsi kolmeastmelise neeldumise 
ajast sõltuv teooria elektroni neljanivoolistes süsteemides. Esimene, teine ja kolmas impulss on resonantsis 
vastavalt nivoo 0 ja nivoo 1, nivoo 1 ja nivoo 2 ning nivoo 2 ja nivoo 3 vaheliste üleminekutega. Tõenäo-
suse, et hetkel t on ergastatud nivoo 3, spektraalne ja ajaline käitumine sõltub ergastatud elektroni nivoode 
energia relaksatsiooni konstantidest, valgusimpulsside maksimumide sagedustest ja spektraalsetest laiustest 
(ja samuti kestusest) ning impulssidevahelistest ajalistest viivistest. Kokkuvõttes: kasutatud lihtsas mudelis 
on kaksteist parameetrit, mis mõjutavad spektreid. Arvutused on tehtud juhtumi jaoks, kus esimese kahe 
impulsi maksimumide sagedused on fikseeritud ja muutub kolmanda impulsi maksimumi sagedus. Üld-
juhul võib spektris eksisteerida kolm spektraaljoont, üks neist vastab koherentsele panusele spektrisse ja 
teised kaks mittekoherentsele panusele. 
 
 


