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Abstract. This paper is concerned with boundedness inequalities in the variation for the higher order derivatives of general Schurer-
type operators. In particular, the boundedness inequalities in the variation for the higher order derivatives of the Bernstein–Schurer,
Kantorovich–Schurer, and Durrmeyer–Schurer operators are derived.
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1. INTRODUCTION

The Bernstein polynomials,

(Bn f )(x) =
n

∑
k=0

f
(

k
n

)(
n
k

)
xk(1− x)n−k (x ∈ [0,1]),

have influenced many branches of the approximation theory and their properties have been prototypes for
our research as well.

Dealing with the class of functions of bounded variation BV [0,1], the Bernstein polynomials have the
total variation diminishing property

V[0,1][Bn f ]≤V[0,1][ f ], (1.1)

where V[0,1][ f ] is the total variation of f and f ∈ BV [0,1] (see [10], which is the first paper in this direction).
In [2] this has been called the variation detracting property (VDP). The total variation diminishing property
of this kind is known for many positive operators. In the case of the Kantorovich operators

(Kn f )(x) = (n+1)
n

∑
k=0

pk,n(x)
∫ k+1

n+1

k
n+1

f (u)du (x ∈ [0,1]), (1.2)
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where

pk,n(x) :=
(

n
k

)
xk(1− x)n−k,

the variation detracting property holds as follows.

Theorem A ([2], Proposition 3.3). If f ∈ BV [0,1], then

V[0,1][Kn f ]≤V[0,1][ f ].

Also the Durrmeyer operators (see [7])

(Dn f )(x) = (n+1)
n

∑
k=0

pk,n(x)
∫ 1

0
pk,n(t) f (t)dt (x ∈ [0,1]), (1.3)

have the variation detracting property.
For the Bernstein operator there has been some interest in investigating the variation detracting property

for the derivatives in the form (see, e.g. [9])

V[0,1][(Bn f )′]≤V[0,1][ f
′]. (1.4)

In this paper we investigate boundedness inequalities for the higher order derivatives of some, quite
general, Schurer-type operators, in particular cases the Bernstein–Schurer, the Kantorovich–Schurer, and
the Durrmeyer–Schurer operators.

Let Ln be a polynomial positive operator, i.e., we have a polynomial Ln f ≥ 0 on [0,a] for every f ≥ 0,
f ∈ BV [0,b], (a,b > 0).

Due to (1.1) and (1.4) there arises the question of determining the constant Mr > 0, independent of
f , f (r) ∈ BV [0,b], for which

V[0,a][(Ln f )(r)]≤ MrV[0,b][ f
(r)], r = 0,1,2, ... . (1.5)

We call inequality (1.5) the boundedness inequality. If Mr ≤ 1, we call inequality (1.5) the variation
detracting property.

2. BOUNDEDNESS INEQUALITIES FOR DERIVATIVES OF SCHURER-TYPE OPERATORS

In [1,4,11,12], certain Schurer-type operators are defined and their approximation properties are
investigated. We investigate boundedness inequalities (1.5) of some general Schurer-type operators in a
unified approach. Let

(Un,p,a f )(x) :=
n+p

∑
k=0

pk,n+p,a(x)Fk,n,p( f ), x ∈ [0,a], (2.1)

where Fk,n,p( f ) is some positive linear functional of f ∈C[0,1+ p], p = 0,1,2, ..., and

pk,m,a(x) :=
1

am

(
m
k

)
xk(a− x)m−k, k = 0, ...,m, x ∈ [0,a]. (2.2)

We consider here the following cases:
1. If in (2.1) we put a = 1 and

Fk,n,p( f ) := f (
k
n
), (2.3)

then we get the Bernstein–Schurer operator Bn,p; the subcase p = 0 gives us the Bernstein operator Bn.
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2. If in (2.1) we put a = 1 and

Fk,n,p( f ) := (n+ p+1)
∫ k+1

n+1

k
n+1

f (t)dt =
n+ p+1

n+1

∫ 1

0
f
(

k+ v
n+1

)
dv, (2.4)

then we get the Kantorovich–Schurer operator Kn,p; the subcase p = 0 gives us the Kantorovich opera-
tor Kn.

3. If in (2.1) we put a = p+1 and

Fk,n,p( f ) :=
n+ p+1

p+1

∫ p+1

0
pk,n+p,p+1(t) f (t)dt, (2.5)

then we get the Durrmeyer–Schurer operator Dn,p; the subcase p = 0 gives us the Durrmeyer operator Dn.
Since Un,p,a f as a polynomial is continuously differentiable on [0,a], then for the left-hand side of (1.5)

it is known that
V[0,a][(Un,p,a f )(r)] =

∫ a

0
|(Un,p,a f )(r+1)(x)|dx.

So let us find the r+1-th derivative of the polynomial Un,p,a f .
We introduce differences by the first index:

△0Fk,n,p := Fk,n,p, △1Fk,n,p ≡△Fk,n,p := Fk+1,n,p −Fk,n,p,

△rFk,n,p := △(△r−1Fk,n,p), (r = 2,3, ...).

We use next a lemma, which is generalized from [14], Chap. II, §19, Lemma 2 (see also [6], p. 306,
formula (2.3)).

Lemma 1. For r = 0,1, ...,n+ p, p = 0,1, ... we have

dr

dxr (Un,p,a f )(x) =
r!
ar

(
n+ p

r

) n+p−r

∑
k=0

pk,n+p−r,a(x)△rFk,n,p( f ). (2.6)

This assertion can be proved by induction as in the book [14].
The following proposition gives us a general idea for studying the variation detracting property for

operators (2.1).

Proposition 1. Let r = 0,1, ...,n+ p−1. Then

V[0,a][(Un,p,a f )(r)]≤ r!
ar

(
n+ p

r

) n+p−r−1

∑
k=0

|△r+1Fk,n,p( f )|. (2.7)

Proof. Since the beta function yields ∫ a

0
pk,m,a(x)dx =

a
m+1

, (2.8)

by Lemma 1 we have

V[0,a][(Un,p,a f )(r)] =
∫ a

0
|(Un,p,a f )(r+1)(x)|dx

≤ a
n+ p− r

(r+1)!
ar+1

(
n+ p
r+1

) n+p−r−1

∑
k=0

|△r+1Fk,n,p( f )|

=
r!
ar

(
n+ p

r

) n+p−r−1

∑
k=0

|△r+1Fk,n,p( f )|.

�
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Next, we have to express differences through derivatives. First, we need a definition of r − 1 times
absolutely continuous functions on the interval [0,b] (compare, e.g. [3], p. 7).

Definition 1. We say that f ∈ ACr−1[0,b], r ∈ N, the space of all (r − 1)-times absolutely continuous
functions on [0,b], if f (x) admits for every x ∈ [0,b] the representation

f (x) =
r−1

∑
k=0

Akxk +
∫ x

0
du1

∫ u1

0
du2 · · ·

∫ ur−2

0
dur−1

∫ ur−1

0
g(ur)dur

for some g ∈ L1[0,b] and some constants Ai, i = 0, ...,r−1.

We introduce differences

△1
h f (x)≡△h f (x) := f (x+h)− f (x), △k

h f (x) :=△h(△k−1
h f (x)) (k = 2,3, ...).

The class ACr−1[0,b] allows us to represent the differences △r
h f (x) via the derivatives f (r) of f ∈ACr−1[0,b].

The next lemma is from [13] (see Chap. 3, §3, formula (4)).

Lemma 2. Let f ∈ ACr−1[0, p + 1], where p = 0,1,2, ... and r ∈ N. Moreover, let n ∈ N, 0 ≤ k ≤
n+ p− r−1, 0 ≤ v ≤ 1. Then

△r
1/n f

(
k+ v

n

)
=

∫
[0,1/n]r

f (r)
(

k+ v
n

+ t1 + ...+ tr

)
dt1...dtr. (2.9)

Now we have to calculate, according to (2.7), the sum of differences (2.9).

Lemma 3. Let f ∈ ACr−1[0, p+1], r = 1,2, ...,n+ p−1. Then for 0 ≤ v ≤ 1 we have

m

∑
k=0

∣∣△r
1/n f

(
k+ v

n

)∣∣≤ 1
nr−1

∫ m+r
n

0

∣∣ f (r)
(

u+
v
n

)∣∣du, (2.10)

where m ≤ n+ p− r for v = 0 and m ≤ n+ p− r−1 for 0 < v ≤ 1.

Proof. By Lemma 2 we have

∣∣△r
1/n f

(
k+ v

n

)∣∣ ≤
∫ 1/n

0
dt1...

∫ 1/n

0
dtr−1

∫ 1/n

0

∣∣ f (r)
(

k+ v
n

+ t1 + ...+ tr

)∣∣dtr

=
∫ 1/n

0
dt1...

∫ 1/n

0
dtr−1

∫ k+1
n

k
n

∣∣ f (r)
( v

n
+ t1 + ...+ tr

)∣∣dtr.

Taking the sum we get

m

∑
k=0

∣∣△r
1/n f

(
k+ v

n

)∣∣≤ ∫ 1/n

0
dt1...

∫ 1/n

0
dtr−1

∫ m+1
n

0

∣∣ f (r)
( v

n
+ t1 + ...+ tr

)∣∣dtr. (2.11)

By introducing the new variables u1 = t1, ...,ur−1 = tr−1,ur = t1 + ...+ tr, we have

0 ≤ ui ≤
1
n
, i = 1, ...,r−1, (2.12)

u1 + ...+ur−1 ≤ ur ≤ u1 + ...+ur−1 +
m+1

n
(2.13)
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and the Jacobian determinant J = 1. We get from (2.12) and (2.13) the estimate

0 ≤ ur ≤
m+ r

n
.

Hence, the integral on the right-hand side of inequality (2.11) is estimated by∫ 1/n

0
du1...

∫ 1/n

0
dur−1

∫ m+r
n

0

∣∣ f (r)
( v

n
+ur

)∣∣dur =
1

nr−1

∫ m+r
n

0

∣∣ f (r)
(

u+
v
n

)∣∣du. (2.14)

From (2.11) and (2.14) we obtain our assertion. �
Let us first investigate the boundedness inequality for the derivatives of the Bernstein–Schurer

polynomials.

Theorem 1. Let f ∈ ACr[0, p+1], r = 0,1, ...,n+ p−1. Then

V[0,1][(Bn,p f )(r)]≤ (n+ p)!
(n+ p− r)!nr V[0,p+1][ f

(r)]. (2.15)

Proof. For the Bernstein–Schurer polynomials Fk,n,p( f ) = f ( k
n), a = 1. In the case r = 0 the proof is almost

identical to the proof of Proposition 3.1 in [2]. In the case r = 1, ...,n+ p−1 by Proposition 1 and Lemma
3 (v = 0) we have

V[0,1][(Bn,p f )(r)] ≤ (n+ p)!
(n+ p− r)!nr

∫ p+1

0
| f (r+1)(u)|du

=
(n+ p)!

(n+ p− r)!nr V[0,p+1][ f
(r)].

�
As a corollary, we get now a statement for the Bernstein operators, proved also in [14], Chap. II, §19,

Lemma 3.

Corollary 1. Let f ∈ACr[0,1], r = 0,1, ...,n−1. Then for the arbitrary derivatives of the Bernstein operator
the VDP holds, i.e.

V[0,1][(Bn f )(r)]≤ n!
(n− r)!nr V[0,1][ f

(r)]. (2.16)

For the proof we take in Theorem 1 p = 0.
Similarly to the case of derivatives of the Bernstein–Schurer polynomials we can investigate the

boundedness inequality for the derivatives of the Kantorovich–Schurer polynomials.

Theorem 2. Let f ∈ ACr[0, p+1], r = 0,1, ...,n+ p−1. Then

V[0,1][(Kn,p f )(r)]≤ (n+ p+1)!
(n+ p− r)!(n+1)r+1V[0,p+1][ f

(r)]. (2.17)

Proof. In the case r = 0 the proof is almost identical to the proof of Proposition 3.3 in [2]. In the case
r = 1, ...,n+ p−1 by Proposition 1 (a = 1) and Lemma 3 we have

V[0,1][(Kn,p f )(r)] ≤ (n+ p)!
(n+ p− r)!

n+ p+1
n+1

n+p−r−1

∑
k=0

|△r+1
1/(n+1)

∫ 1

0
f
(

k+ v
n+1

)
dv|

≤ (n+ p+1)!
(n+ p− r)!

1
n+1

∫ 1

0

n+p−r−1

∑
k=0

|△r+1
1/(n+1) f

(
k+ v
n+1

)
|dv

≤ (n+ p+1)!
(n+ p− r)!(n+1)r+1

∫ 1

0
dv

∫ n+p
n+1

0
| f (r+1)(u+

v
n+1

)|du.
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Taking s = u+ v
n+1 , t = u we have

V[0,1][(Kn,p f )(r)] ≤ (n+ p+1)!
(n+ p− r)!(n+1)r+1

∫ p+1

0
| f (r+1)(s)|ds

=
(n+ p+1)!

(n+ p− r)!(n+1)r+1V[0,p+1][ f
(r)].

�
We get now in the case p = 0

Corollary 2. Let f ∈ ACr[0,1], r = 0,1, ...,n− 1. Then for the arbitrary derivatives of the Kantorovich
operator the VDP holds, i.e.

V[0,1][(Kn f )(r)]≤ (n+1)!
(n− r)!(n+1)r+1V[0,1][ f

(r)].

To investigate the variation detracting property for the Durrmeyer–Schurer operators by Proposition 1
we need to calculate △r+1Fk,n,p( f ). By definition (2.5) we write

△r+1Fk,n,p( f ) =
n+ p+1

p+1

∫ p+1

0
△r+1 pk,n+p,p+1(t) f (t)dt.

It appears that the differences of the basic polynomials pk,n+p,p+1(t) can be represented via derivatives.
The next result in a particular case is obtained in [5], proof of Theorem II.6, p. 332; however, for the
completeness of the presentation we will give an elementary proof.

Lemma 4. For the basic polynomials in (2.2) the following equality

dr

dxr

(
pk,m,a(x)

)
= (−1)r r!

ar

(
m
r

)
△r pk−r,m−r,a(x), (2.18)

where m ≥ k ≥ r ≥ 0, x ∈ [0,a], holds.

Proof. We prove (2.18) by induction on r. For r = 0 it is obvious by definition. For r = 1 we get

d
dx

pk,m,a(x) =−m
a

(
pk,m−1,a(x)− pk−1,m−1,a(x)

)
. (2.19)

Let us assume that (2.18) holds for some 1 ≤ r < m. Differentiating (2.19) r times and using (2.18) we get

dr+1

dxr+1

(
pk,m,a(x)

)
= −m

a
(−1)r r!

ar

(
m−1

r

)(
△r pk−r,m−r−1,a(x)−△r pk−r−1,m−r−1,a(x)

)
= (−1)r+1 (r+1)!

ar+1

(
m

r+1

)
△r+1 pk−r−1,m−r−1,a(x).

�
To estimate the constant Mr in (1.5) for the Durrmeyer–Schurer operators we need

Lemma 5. Let

Pr,m,a(t) :=
m−r

∑
k=0

pk+r,m+r,a(t), m ≥ r ≥ 0, t ∈ [0,a].

Then

max
0≤t≤a

Pr,m,a(t) = Pr,m,a

(a
2

)
=

1
2m+r

m−r

∑
k=0

(
m+ r
k+ r

)
. (2.20)
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Proof. In the case r = 0 for any t ∈ [0,a] we have

P0,m,a(t) =
m

∑
k=0

pk,m,a(t) = 1.

Looking for the global maximum on [0,a] we have Pr,m,a(0) = Pr,m,a(a) = 0, r ≥ 1. By Lemma 4 we have

(
Pr,m,a(t)

)′
=

m−r

∑
k=0

p′k+r,m+r,a(t)

= −m+ r
a

m−r

∑
k=0

(
pk+r,m+r−1,a(t)− pk+r−1,m+r−1,a(t)

)
= −m+ r

a

(
pm,m+r−1,a(t)− pr−1,m+r−1,a(t)

)
.

So we get that the equation P′
r,m,a(t) = 0, or the equation pm,m+r−1,a(t) = pr−1,m+r−1,a(t), has its unique

solution at t = a/2. �
Now we are in a position to get the variation detracting property for the derivatives of the Durrmeyer–

Schurer operator. In what follows we generalize the known result of Derriennic [5] (see the proof of
Proposition 4.1) for the Durrmeyer operators.

Theorem 3. Let f ∈ ACr[0, p+1], r = 0,1, ...,n+ p−1. Then the relation

V[0,p+1][(Dn,p f )(r)] ≤ (n+ p)!(n+ p+1)!
2n+p+r+1(n+ p− r)!(n+ p+ r+1)!

×
n+p

∑
l=r+1

(
n+ p+ r+1

l

)
V[0,p+1][ f

(r)] (2.21)

holds.

Proof. From Proposition 1 we conclude

∥(Dn,p f )(r+1)∥1 ≤
(n+ p)!

(p+1)r(n+ p− r)!

n+p−r−1

∑
k=0

|△r+1Fk,n,p( f )|. (2.22)

Since by definition (2.5)

△r+1Fk,n,p( f ) =
n+ p+1

p+1

∫ p+1

0
△r+1 pk,n+p,p+1(t) f (t)dt,

from Lemma 4 we have

△r+1Fk,n,p( f ) =
(−1)r+1(p+1)r(n+ p+1)!

(n+ p+ r+1)!

∫ p+1

0
p(r+1)

k+r+1,n+p+r+1,p+1(t) f (t)dt. (2.23)

By Leibniz formula for partial integration (see, e.g. [8], Chap. VIII, §1, p. 270, formula (5)) we get∫ p+1

0
p(r+1)

k+r+1,n+p+r+1,p+1(t) f (t)dt =
(

f (t)p(r)k+r+1,n+p+r+1,p+1(t)− f ′(t)p(r−1)
k+r+1,n+p+r+1,p+1(t)

+ · · ·+(−1)r f (r)(t)pk+r+1,n+p+r+1,p+1(t)
)∣∣∣p+1

0

+(−1)r+1
∫ p+1

0
f (r+1)(t)pk+r+1,n+p+r+1,p+1(t)dt.
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Since 0 ≤ k ≤ n+ p− r−1, on the right-hand side all the terms in parentheses are zeros, and we have∫ p+1

0
p(r+1)

k+r+1,n+p+r+1,p+1(t) f (t)dt = (−1)r+1
∫ p+1

0
f (r+1)(t)pk+r+1,n+p+r+1,p+1(t)dt. (2.24)

Now by (2.22), (2.23), and (2.24), using Lemma 5 we have Theorem 3 proved. �
Remark. It is interesting to notice that by Theorem 3 we get the VDP with the constant in inequality (2.21)
less than 1.

Corollary 3. Let f ∈ ACr[0, p + 1], r = 0,1, ...,n + p − 1. Then the VDP for arbitrary derivatives of
Durrmeyer–Schurer operators holds, i.e.

V[0,p+1][(Dn,p f )(r)]≤ (n+ p)!
(n+ p− r)!

(n+ p+1)!
(n+ p+ r+1)!

V[0,p+1][ f
(r)].

In the case p = 0 we get the known result of Derriennic [5] (see the proof of Proposition 4.1) for the
Durrmeyer operators.

Corollary 4. Let f ∈ ACr[0,1], r = 0,1, ...,n− 1. Then the VDP for arbitrary derivatives of Durrmeyer
operators holds, i.e.

V[0,1][(Dn f )(r)]≤ n!
(n− r)!

(n+1)!
(n+ r+1)!

V[0,1][ f
(r)].

3. CONCLUSIONS

We investigated the boundedness inequalities for the higher order derivatives of some general Schurer-type
operators in a unified approach. In particular, we proved the boundedness inequality for the higher order
derivatives of the Bernstein–Schurer, Kantorovich–Schurer, and Durrmeyer–Schurer operators. Moreover,
we proved the variation detracting property for the arbitrary derivatives of the Bernstein, Kantorovich, and
Durrmeyer–Schurer operators. For the arbitrary derivatives of the Bernstein–Schurer and Kantorovich–
Schurer operators only the boundedness inequality with the constant Mr on the right-hand side of the
inequality that exceeds 1, holds.
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Teatud Schureri tüüpi operaatorite variatsiooni järgi tõkestatuse võrratused

Andi Kivinukk ja Tarmo Metsmägi

On uuritud teatud üldiste Schureri tüüpi operaatorite kõrgemat järku tuletiste variatsiooni järgi tõkestatuse
võrratusi ühtse skeemi alusel. Sealhulgas on erijuhuna tõestatud Bernsteini, Kantorovichi ja Durrmeyeri-
Schureri operaatorite mis tahes järku tuletiste variatsiooni mittekasvatamise omadus. Bernsteini-Schureri ja
Kantorovichi-Schureri operaatorite mis tahes järku tuletiste korral on tõestatud variatsiooni järgi tõkestatuse
võrratus.


