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Abstract. Generalized analytical orthonormal quasi-hydrogenic radial wave functions with free parameters (radius-dependent
screened nuclear charge) are introduced. By them the analytical expressions for Slater radial integrals are derived. Using the
Racah coefficients of partial parentage, the sequential formulae for branching fractions of equivalent electrons, incorporating LS-
coupling of angular momenta inside terms of unfilled subshells, are proposed. Racah partial parentage or branching coefficients
for the unfilled electron subshells are implicitly generated via the Pauli exclusion principle. The free parameters of the radial
Slater integrals in Hamiltonian are proposed to be optimized by the Levenberg–Marquardt best-fit optimization version of the least
squares method. To its cost function the virial ratio of kinetic and potential energy is added as a Lagrange constraint term. Thus,
the solution of Hartree–Fock eigenvalue equations is proposed to be replaced by a nonlinear optimization method. The integrals
in Hamiltonian correspond to the kinetic energy of electrons, their interaction with the atomic nucleus and electrostatic interaction
between electrons. This interaction includes the Coulomb and exchange interaction between equivalent and non-equivalent electron
pairs, including the multi-configurational interaction contribution. A general compact formula for 6 j-symbols is presented and used
to describe the interaction of single excited electrons with electrons in filled or unfilled atomic subshells. It is proposed to realize
generalization of the single configuration approach to a multi-configuration mixing in the n-dimensional Euclidean space, where
the mixing coefficients are the polar direction cosines.
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1. INTRODUCTION

A complicated but important topic in astrophysics is computation of stellar spectral lines of atoms and
their ions. Theoretical physicists and astrophysicists both have puzzled over this topic. As a result of
essential successes, extensive spectral line catalogues have been compiled, say, by Kurucz and Vienna
astrophysicists, but much is to be done in order to elaborate more general, elegant, and uniquely treatable
analytical formalism of high precision.

In order to elucidate the situation, we try to describe main milestones in the studies of atomic spectra,
giving mainly references to essential summarizing monographs by prominent contributing theoreticians.
The most important achievement and starting point is the Schrödinger equation for hydrogen atom and
hydrogenic ions. This quantum mechanical equation gave a generalization of the Bohr atomic model. In
it the electron moment was expressed as spatial derivative, scaled via the Planck constant in the central
electrostatic field of proton. The differential equations with partial derivatives were a favourite topic in the
problems of eigenfunctions and discrete eigenvalues, studied by many mathematicians, say by Laguerre,
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Legendre, and Rodrigues. It turned out that the Schrödinger equation for hydrogen was directly connected
with the eigenvalues and eigenfunctions studied by mathematicians.

In order to obtain solutions for more complicated atomic particles, the time-independent Schrödinger
perturbation method and the time-dependent Dirac perturbation method were elaborated. Most spectral
studies have been based on different versions of these methods.

The next essential step was generalization of the Schrödinger equation to the two-electron helium atom.
No exact analytical solution to the problem was found, but the hydrogen wave functions have been modified
in different ways. The most important summary of results in this direction is given in the monograph by
Bethe and Salpeter (1957).

The Hamiltonian for the multi-particle atoms includes kinetic energy of electrons, potential energy
of their interaction, and the electrostatic interaction with the nucleus. This equation must be solved
as the first step in order to compute the line spectrum of atomic particles. The additives in the total
energy, corresponding to this wave function, incorporate the classical direct and quantum theoretical
exchange electrostatic interaction of electrons. In the Hamiltonian these additives incorporate the radial
integrals, called the Slater orbital integrals, which are multiplied by the angular integrals, incorporating
the Racah branching fractions. These fractions in the unfilled electron subshells are directly determined
by the quadratic expressions of fractional parentage coefficients and by seniority numbers, for which the
contribution by Racah (1942a, 1942b, 1943, 1949) has been dominant. A detailed review of the results of
the theory of atomic spectra is given in the monograph by Sobelman (1972).

The Hartree–Fock equations (Hartree, 1957) for the radial wave functions are usually solved numerically
using complicated multi-configurational approximation schemes (Froese Fischer et al., 2000). Different
attempts have been made to find analytical approximation formulae for them, but these have remained
hitherto without essential success. We hope that the present paper can help to promote the studies.

One of the important fields of quantum mechanics is the theory of the angular momenta, which started
with the Clebsch–Gordan coefficients and 3 j-symbols, and evolved into the complicated n j-symbols theory
for the addition of the multiple angular momenta (Jucys and Bandzaitis, 1977; Johnson, 2007). In the
present paper we try partly to avoid the problems connected with the theory of the addition of angular
momenta, using instead the Racah branching fractions for the unfilled subshells of atoms and ions. It should
be mentioned that by a recurrent use of Racah branching fractions the problems connected with the seniority
of spectral terms can be overcome.

2. RADIAL ORBITALS OF NON-HYDROGENIC ATOMS

For atoms and ions the quasi-hydrogenic form of radial wave functions or Slater orbitals for any subshell is
(Kupliauskis et al., 1971; Sapar, 1973)

Pnl =
n−l

∑
i=1

cl
nir

i+le−Zl
nir, (1)

with is a generalization of the hydrogenic wave functions, where Zl
ni = Z/n. Here radial functions are

expressed in the Bohr atomic units.
The needed orthonormality constraint of radial wave functions is

Ql
nn′ =

∫ ∞

0
PnlPn′ldr = δnn′ , l +1 ≤ n′ ≤ n. (2)

It can be written in the form
n−l

∑
i=1

cl
nib

l
nin′ = δnn′ , l +1 ≤ n′ ≤ n, (3)



380 Proceedings of the Estonian Academy of Sciences, 2016, 65, 4, 378–393

where

bl
nin′ =

n′−l

∑
j=1

cl
n′ jA

l
nin′ j (4)

and here in its turn

Al
nin′ j =

∫ ∞

0
rke−(Zl

ni+Zl
n′ j)rdr =

k!
(Zl

ni +Zl
n′ j)

k+1
, k = 2l + i+ j. (5)

The number of orthonormality conditions from (3) and (4) and the total number of coefficients cl
ni are equal,

namely 1
2(n− l+1)(n− l), and thus these coefficients can be found from the quadratic system of equations.

Based on the constraint n′ ≤ n this system of equations can be reduced to a system of linear equations for
finding consequently the cl

ni values.
It is reasonable to split the system of equations (3) into two subsystems, the first of which corresponds

to the case n′ = n and gives the normalization condition
n−l

∑
i=1

cl
nib

l
nin = 1, bl

nin =
n−l

∑
j=1

cl
n jA

l
nin j, l +1 ≤ n (6)

and the second corresponds to the cases n′ < n, which are the orthogonality conditions of the radial wave
functions:

n−l

∑
i=1

cl
nib

l
nin′ = 0, bl

nin′ =
n′−l

∑
j=1

cl
n′ jA

l
nin′ j, l +1 ≤ n′ < n. (7)

For simplicity it is useful to scale variables in Eqs (6) and (7) to the form

βnin′ =
bl

nin′

cl
n1

, xni =
cl

ni

cl
n1
, (8)

omitting explicitly indices l. Thus, Eq. (7) takes the form
n−l

∑
i=1

xniβnin′ = 0, βnin′ =
n′−l

∑
j=1

xn′ jAl
nin′ j, n′ < n (9)

and the scaled form of normalization condition (6) is

cl
n1

n−l

∑
i=1

xniβnin = 1, βnin = cl
n1

n−l

∑
j=1

xn jAl
nin j. (10)

Due to the scaling we have xn1 = 1. Thus, orthogonality constraint (9) can be written in the form
m

∑
i=2

xniβnin′ =−βn1n′ , m = n− l, n′ < n. (11)

Now we can solve the orthogonality constraints (11), starting from m = 2 and getting values of all scaled
variables xni and βnin′ .

Thereafter the scaling factors cl
n1 are found from normalization conditions

(cl
n1)

2
m

∑
i=1

m

∑
j=1

Al
nin jxnixn j = 1, m = n− l. (12)

If all values of xni are found, then the quantities cl
ni can be found trivially from cl

ni = xnicl
n1.

The quasi-hydrogenic orbitals guarantee also conservation of the node numbers in orbitals similarly to
results of computations by the Hartree–Fock method. If we have the analytical orthonormal orbitals, it will
be simpler to apply the variational minimum principle for the energy expression, avoiding the necessity of
non-diagonal terms and Lagrangian coefficients to guarantee orthogonality of radial orbitals for different
values of principal quantum numbers n.
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3. ENERGY INTEGRALS OF ATOMIC PARTICLES

The energy of electrons in each atomic subshell, specified by ι = nl, consists of three contributions: the
kinetic energy of electrons and the potential energy due to the interaction of electrons with the atomic
nucleus, together denoted as Iι , and the most complicated contribution by the electrostatic repulsive
interaction between electrons. The total energy over all M interacting subshells is

E =
M

∑
ι=1

Eι +
M

∑
ι=2

ι−1

∑
τ=1

Eιτ . (13)

The intrinsic energy of any filled or unfilled subshell ι specified by configuration nlNι , having Nι equivalent
electrons, in the single configuration approximation is

Eι = Nι Iι +
Nι(Nι −1)

2
F0

ιι −
Nι(Nι −1)

2

2lι

∑
k=2,4...

f k
ιιF

k
ιι , (14)

where Fk
ιι specifies the averaged interaction energy by pairs of equivalent electrons.

The electrostatic energy between two subshells ι and τ due to the direct or Coulomb interaction and due
to the exchange interaction is

Eιτ = NιNτF0
ιτ −NιNτ

lι+lτ

∑
k=|lι−lτ |

gk
ιτGk

ιτ , ι > τ. (15)

In these formulae the integrals Fk
ιτ and Gk

ιτ are the radial direct and exchange Slater integrals, respectively.
The values of angular coefficients f k

ιι and gk
ιτ for the filled subshells can be expressed in the form

f k
ιι =

Nι

Nι −1
Λk

ιι , k = 2, ...,2l (16)

and
gk

ιτ = Λk
ιτ . (17)

In these formulae the interaction unit Λk
ιτ is expressed via the reduced 3 j-symbol defined by

⟨lι ||Ck||lτ⟩= [lι ]
(

lι k lτ
0 0 0

)
[lτ ], [lι ] =

√
2lι +1, [lτ ] =

√
2lτ +1 (18)

in the form

2Λk
ιτ =

(
⟨lι ||Ck||lτ⟩
[lι ][lτ ]

)2

=

(
lι k lτ
0 0 0

)2

. (19)

The contribution by k > 0, i.e. due to multipole contribution of terms, reduces somewhat the Coulomb
repulsion between electrons. Denoting 2g = l1 + l2 + l3 and δe(2g) = 1+(−1)2g

2 , we can write compactly the
expression (cf. Johnson, 2007, equation (1.85)) that removes automatically the odd values of the summed
orbital parameters 2g, namely(

l1 l2 l3
0 0 0

)
= δe(2g)(−1)g g!√

(2g+1)!
W1W2W3, (20)

where Wj =

√
(2g−2l j)!
(g−l j)!

.
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4. RADIAL SLATER INTEGRALS OF NON-HYDROGENIC ATOMS

The needed unshielded Slater integrals in the energy Hamiltonian are

Iι = Inl =−1
2

∞∫
0

Pnl(r)
(

d2

dr2 +
2Z+

r
− l(l +1)

r2

)
Pnl(r)dr =−1

2

(
D2 +

2Z+

r̄1 − l(l +1)
r̄2

)
, (21)

where Z+ is the nuclear charge. Further, for the compactness of formulae, we here denote in Pnl(r)
expressions

Ci = cnli, Zi = Zl
ni. (22)

Taking into account that
∫ ∞

0 rSe−Zrdr = S!/ZS+1, we obtain

D2 =
n−l

∑
i=1

n−l

∑
j=1

CiC j

(κ!Z2
j

Zκ+1
i j

−
2Znl j(l + j)(κ −1)!

Zκ
i j

+
(l + j)(l + j−1)(κ −2)!

Zκ−1
i j

)
, (23)

where Zi j = Zi +Z j and κ = 2l + i+ j. Further

1
r̄1 =

n−l

∑
i=1

n−l

∑
j=1

CiC j
(κ −1)!

Zκ
i j

, and
1
r̄2 =

n−l

∑
i=1

n−l

∑
j=1

CiC j
(κ −2)!

Zκ−1
i j

. (24)

As an important generalization for the theory of spectral lines, the radial integrals of the k order electron
multipole transition probabilities can be expressed by integrals

Ik
nln′l′ =

∞∫
0

Pnl(r)rkPn′l′(r)dr =
n−l

∑
i=1

n′−l′

∑
j=1

CiC′
j

Si j!
(Zi j)Si j+1 , (25)

where
Si j = n+ l + i+ k+n′+ l′+ j, Zi j = Zl

ni +Zl′
n′ j. (26)

The total electrostatic interaction of electrons for the direct interaction is to be found by radial integrals

Fk
nn′ = Rkll′

nn,n′n′ =

∞∫
0

∞∫
0

P2
nl(r)

rk
<

rk+1
>

P2
n′l′(s)drds (27)

and for the exchange interaction by

Gk
nn′ = Rkll′

nn′,nn′ =

∞∫
0

∞∫
0

Pnl(r)Pn′l′(r)
rk
<

rk+1
>

Pnl(s)Pn′l′(s)drds. (28)

Here r<=min(r,s) and r>=max(r,s). The needed special cases of these integrals of the direct and exchange
interaction of electrons in the total energy of electron subshells have been given in formulae (14) and (15).
Due to the symmetry of integrals relative to subshells we can assume that n ≥ n′.

For the direct interaction Slater integrals reduce to

Rkll′
nn,n′n′ =

n−l

∑
i=1

n−l

∑
p=1

n′−l′

∑
j=1

n′−l′

∑
q=1

CiCpC′
jC

′
qKk

bd(Z,ζ ). (29)
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Here the integrals obtained by the multiplication of two radial Slater orbitals are

Kk
bd(Z,ζ ) =

∞∫
0

∞∫
0

e−Zrrb rk
<

rk+1
>

e−ζ ssddrds, (30)

where the parameters and variables of integrals are linear sums of single Slater orbitals, namely

b = 2l + i+ p, d = 2l′+ j+q, Z = Zl
ni +Zl

np ζ = Zl′
n′ j +Zl′

n′q (31)

and for the superscripts k holds the constraint k ≤ l + l′.
Next we find analytical expressions to the Slater radial integrals. Now we can write

Kk
bd(Z,ζ ) =

∞∫
0

e−ζ s sd

sk+1 ds
s∫

0

e−Zrrb+kdr+
∞∫

0

e−Zr rb

rk+1 dr
r∫

0

e−ζ ssd+kds. (32)

The first integration gives

s∫
0

e−Zrrmdr =
m!

Zm+1

(
1− e−Zs

m

∑
i=0

Zisi

i!

)
, m = b+ k. (33)

Denoting g = d − k−1 we can write the result of the second integration in the form

Ik
bd(Z,ζ ) =

∞∫
0

e−ζ ssgds
s∫

0

e−Zrrmdr =
m!

Zm+1

(
g!

ζ g+1 −
m

∑
i=0

(g+ i)!Zi

i!(ζ +Z)g+i+1

)
. (34)

Thus we have found analytical expressions for the integrals of direct interaction

Kk
pq(Z,ζ ) = Ik

bd(Z,ζ )+ Ik
db(ζ ,Z). (35)

For the exchange interaction the Slater integrals reduce to similar expressions

Rkll′
nn′,nn′ =

n−l

∑
i=1

n′−l′

∑
q=1

n′−l′

∑
j=1

n−l

∑
p=1

CiC′
qC′

jCpKk
b′d′(Z′,ζ ′), (36)

where the integrals of the exchange interaction can be written in the same form as for the direct interaction

Kk
b′d′(Z′,ζ ′) =

∞∫
0

∞∫
0

e−Z′rrb′ rk
<

rk+1
>

e−ζ ′ssd′
drds, (37)

but with different parameters

b′ = l + l′+ i+q, d′ = l + l′+ j+ p, Z′ = Zl
ni +Zl′

n′q, ζ ′ = Zl′
n′ j +Zl

np. (38)

By using notions g′ = d′− k− 1, m′ = b′+ k the expressions of integrals for the exchange interaction can
be expressed in the form

Kk
b′d′(Z′,ζ ′) = Ik

b′d′(Z′,ζ ′)+ Ik
d′b′(ζ

′,Z′). (39)

Thus, we have carried out an analytical integration of all radial Slater integrals needed in the single
configuration approximation.



384 Proceedings of the Estonian Academy of Sciences, 2016, 65, 4, 378–393

We give here also an analytical expression for an average radial screening charge, Zsc(r). Using Eqs (1)
and (33), we obtain

Zsc(r) = Nι

∫ r

0
P2

nl(ρ)dρ = Nι

n−l

∑
i=1

n−l

∑
p=1

CiCpKm(Z,r), (40)

where Nι is the number of electrons in the subshell ι and

Km(Z,r) =
m!

Zm+1

(
1− e−Zr

m

∑
j=0

Z jr j

j!

)
, m = 2l + i+ p, Z = Zl

ni +Zl
np . (41)

5. SPECTRAL TERMS OF UNFILLED SUBSHELLS

Partly the spectral terms 2S+1L of unfilled electron subshells of atomic particles are singled out by the Pauli
exclusion principle, demanding lack of electrons with identical set of quantum numbers. We use the spin-
orbital or the LS-coupling concept of electron angular momenta, which holds for lighter chemical elements.
The subshells for which n is the same but the orbital quantum number l has values l = [0,n− 1] belong to
the shell of principal quantum number n. Corresponding spherical harmonics Ylm have 2l+1 z-components,
ml = [−l, l], and in addition each electron can have two z-coordinate projections of spin, ms = [1

2 ,−
1
2 ]. Thus,

the maximal number of electrons in such subshells is Tl = 2(2l+1). If the occupation or population number
of a subshell is p, then the number of possible different microstates in any subshell according to the Pauli
exclusion principle is

N p
l =

Tl!
p!(Tl − p)!

. (42)

The same number of quantum states for any subshell can be expressed also as the sum over the states of
spectral terms i

N p
l =

κ

∑
i
(2Si +1)(2Li +1). (43)

All the filled subshells have only a single term 1S. Also the terms for singly occupied subshells are trivial:
2S, 2P, 2D, 2F, 2G, etc.

The angular parts of terms generate the splitting of their binding energies. Degeneracy of splitting
relative to ml and ms can be removed only due to the presence of a magnetic field, inherent because of
the atomic nucleus or some external source.

Now we present for different configurations their terms and N p
l values, starting from the p-subshell. The

p2 configuration has the terms 1D, 3P, and 1S. The total number of its states is N = 15. The doubly and triply
coinciding terms in the d configuration belong to different seniorities v, shown by subscripts before the L
values. If its place is blank, then v = n.

In order to describe the unfilled configurations compactly, we introduce for them notations ln(N) and
Ln(κ), where L = l for counting the terms, here numerated by κ . Using these notations, we have

p2(15) = (1D, 3P,1S) = P2(3),

p3(20) = (2D, 2P, 4S) = P3(3),

d2(45) = (1G, 3F, 1D, 3P, 1S) = D2(5),

d3(120) = ( 2H, 2G, 4F, 2F, 2
1D, 2

3D, 4P, 2P) = D3(8),

d4(210) = ( 1I, 3H, 3G, 1
2G, 1

4G, 3
2F, 3

4F, 1F, 5D, 3D, 1
2D, 1

4D, 3
2P, 3

4P, 1
0S, 1

4S) = D4(16),

d5(252) = ( 2I, 2H, 4G, 2
3G, 2G, 4

3F, 2
3F, 2

5F, 4D, 2
1D, 2

3D, 2
5D, 4

3P, 2
3P, 6S, 2S) = D5(16),

f 2(91) = ( 1I, 3H, 1G, 3F, 1D, 3P, 1S) = F2(7).



A. Sapar: Analytical formulae for the energy of electron subshells in atoms 385

The current value of any subscript of terms starts from the right hand; for example, D3
1 =

2P. The unfilled
lanthanide and actinide f -subshells with a larger population are very complicated and dominated by j j-
coupling. Therefore these are not analysed by us.

For the terms of all configurations the electron-hole duality principle holds. The filling order of ground
state subshells in the Mendeleyev periodic table of elements is described by the well-known Bohr’s Aufbau
rule detalized by the Madelung energy ordering (n+ l) rule. For valence electron terms of the configurations
of a partly filled subshell the ordering in the ground state is determined by Hund’s selection rules that hold
for the Russell-Sounders or LS-coupling.

6. ANGULAR INTEGRALS OF INTERACTING SPECTRAL TERMS

Spectral terms of unfilled subshells generate additional splitting of atomic states due to Racah angular
integrals of the direct interaction in a subshell ι , denoted by f k

ιι , and of the exchange interaction, gk
ιτ ,

between subshells ι and τ . The splitting depends on the quantum numbers of terms T = livSL, where v is
the seniority number. We try to give the formulae for these angular integrals in a possibly compact form
instead of the usual complicated ones.

We start from formulae for electron pair interaction. The general formulae for angular integrals of the
electron pair in a term ll′SL with angular momentum L can be expressed in the form that is the product
of subshells-dependent and term-dependent parts. For the direct interaction holds (cf. Sobelman, 1972,
equation (17.44); Johnson, 2007, equation (4.50))

f kL(ll′) = (l||Ck||l)(l′||Ck||l′)ϕ kL(ll′), ϕ kL(ll′) = (−1)l+l′+L
{

l l′ L
l′ l k

}
(44)

and for the exchange interaction of electron pairs (cf. Sobelman, 1972, equation 17.45)

gkL(ll′) =−(l||Ck||l′)2γkL(ll′), γkL(ll′) = (−1)l+l′+S
{

l l′ L
l l′ k

}
. (45)

In these formulae the triangular rule |l − l′| ≤ L ≤ l + l′ holds, and the multiplier (−1)S of the phase sign
generates different signs to singlet and triplet terms of a pair of electrons if l = l′. This formula corresponds
to the Hund rule for the ground state, S = 1, of two-electron spectral terms.

The fractional parentage coefficients (genealogical coefficients) of atomic states were conceptually
introduced for the partially filled LS-coupled subshells by Goudsmit and Bacher (1934). Thereafter Racah
(1942a, 1942b, 1943) elaborated a complicated, predominantly algebraic theory for the computation of
angular integrals of p and d subshell electrons. In these papers he also tabulated the coefficients for the
unfilled p, d subshells. Thereafter Racah (1949) published an elegant Lie group theoretical study, in which
f subshells were included. For these subshells a full list of the coefficients was published by Nielson and
Koster (1963).

The Racah coefficients are determined for the study of unfilled atomic multi-electron subshells. We
denote here the Racah overlap coefficients between terms of electron configurations lκ and lλ , where
λ = κ+1, of an unfilled subshell by Gλ

κ . The corresponding redistribution or Racah branching (ramification)
fractions W λ

κ , according to quantum mechanics, are given by

W λ
κ = (Gλ

κ )
2. (46)

The Pauli exclusion principle, including for the spin states, has been taken into account implicitly via the
allowed terms in a given partially filled subshell.
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The fractional parentage coefficients can be treated as the quantum mechanical probability redistribution
amplitudes between interacting equivalent electrons, whereas the normalization condition for each
subsequent branching holds

∑
κ

W λ
κ = 1. (47)

This equation demonstrates well the meaning of Racah fractions as redistribution coefficients between terms
of two consequent configurations of equivalent electrons in unfilled subshells. We accept that a reasonable
approximation to angular coefficients of equivalent electrons can be interpreted in this way. An important
feature is that the Racah branching factors do not depend on the z-components of L and S and on the
multipole index k.

In spectral terms in addition to lSL also the Racah seniority quantum numbers, v, which appear due
to the Pauli principle and generate spectral lines splitting, must generally be taken into account to obtain
orthonormality of the corresponding wave functions. It deserves emphasizing that for single electrons v = 1.
Similarly to the spin, it is reasonable to introduce the seniority phase functions

Ψ(vϕ) =
1√
2π

eivϕ , (48)

which guarantee the orthonormality conditions of the corresponding wave functions∫ 2π

0
Ψ∗(vϕ)Ψ(v′ϕ)dϕ = δvv′ . (49)

Now we can write for seniority modified wave functions recurrent formulae

Φ j = ∑
j−1

Ψ(v j−1ϕ)G j
j−1Φ j−1, (50)

which satisfy the conditions of orthonormality for different terms of an unfilled subshell:∫ π

0
dϑ

∫ 2π

0
dφ

∫ 2π

0
dϕΦiΦ j = δi j. (51)

The total Racah redistribution coefficients, connecting the network branches with the initial term of the
electron pair interaction is given by recurrent equations

W i
2 = ∑

j
W i

jW
j

2 , Ti = Tj+1. (52)

Summation here is over the terms of configuration l j = li−1 and i is the set of li configuration terms. This
quantity is independent of the multipole index k. Via subscript 2 it is dependent on the initial electron
pair interaction terms and the corresponding spectral shifts. The number of these multi-step ramification
coefficients is relatively small and therefore these ramification coefficients can be easily tabulated.

From Eq. (52) it follows that the Racah angular integrals of interacting lili′ configuration electrons are

f k
i =W i

2 f kL(ll′), gk
i =W i

2gkL(ll′). (53)

Due to the particle–hole symmetry the spectral terms relative to i = l + 1±m in subshells are coincident
ones, but they have different, simply connected Racah branching fractions and different interacting electron
pair numbers.

Next we give in a compact form a general expression for 6 j-symbols, using the triangle coefficients

∆( j1 j2 j3) =
(
(2S−2 j1)!(2S−2 j2)!(2S−2 j3)!

(2S+1)!

)1/2

, 2S = j1 + j2 + j3. (54)
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To simplify the formulae, it is useful to write the Wigner 6 j-symbol in the form{
j1 j2 j3

q1 q2 q3

}
≡
{

j1 j2 j3
j4 j5 j6

}
(55)

and to introduce notations

Ji = ji +qi, J =
3

∑
i=1

Ji, q =
3

∑
i=1

qi, j =
3

∑
i=1

ji, yi = q−qi + ji, wi = J− Ji. (56)

Using these parameters we obtain a relatively simple formula (cf. Johnson (2007), formula (4.38)){
j1 j2 j3

q1 q2 q3

}
= ∆

zmax

∑
z=zmin

(−1)z (z+1)!
QzYz

, (57)

where the triangular coefficient

∆ = ∆( j1 j2 j3)∆( j1q2q3)∆(q1 j2q3)∆(q1q2 j3) (58)

and the weight coefficients in denominators are

Qz = (z− j)!
3

∏
i=1

(z− yi)!, Yz =
3

∏
i=1

(wi − z)!. (59)

The limits of summation are here specified by

zmax = min(w1,w2,w3), zmin = max( j,y1,y2,y3). (60)

For the exchange interaction of terms of an electron pair (45), diminishing z by l + l′, it follows that{
l l′ L
l l′ k

}
= ∆

zmax

∑
z=max(L,k)

(−1)z+l+l′(z+ l + l′+1)!
QzYz

, (61)

where
Qz = (z−L)!2(z− k)!2, Yz = (l − l′+L+ k− z)!(l′− l +L+ k− z)!(l + l′− z)!. (62)

Here zmax = min(L+ k−|l − l′|, l + l′) and the triangular part is

∆ = ∆2(ll′L)∆2(ll′k) =
(l + l′−L)!(l + l′− k)!(l − l′+L)!2(l − l′+ k)!2

(l + l′+L+1)!(l + l′+ k+1)!
. (63)

From Eqs (61) and (63) it follows that |l − l′| ≤ k ≤ l + l′ and |l − l′| ≤ L ≤ l + l′.
For the direct interaction of electron pair (44) we obtain similarly{

l l′ L
l′ l k

}
= ∆

min(L+k,l+l′)

∑
z=max(k−|l−l′|,L)

(−1)z+l+l′(z+ l + l′+1)!
(z−L)!2(z− k+ |l − l′|)!2(L+ k− z)!2(l + l′− z)!

. (64)

Here ∆ is the same as for the exchange interaction of electron pairs of different subshells. Thus, relative
separation of such direct and exchange terms does not depend on the triangular part.

For the case l = l′{
l l L
l l k

}
=C(2l,L)C(2l,k)

min(L+k,2l)

∑
z=max(L,k)

(−1)z(z+2l +1)!
(z−L)!2(z− k)!2(L+ k− z)!2(2l − z)!

, (65)
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where the triangular part

∆ =C(2l,L)C(2l,k) =
L!2(2l −L)!
(2l +L+1)!

k!2(2l − k)!
(2l + k+1)!

. (66)

From here it also follows that L ≤ 2l and k ≤ 2l. For special cases if Lk = 0, we have z = 0 and{
l l L
l l 0

}
=

{
l l 0
l l k

}
=

{
l l 0
l l 0

}
=

1
2l +1

=
1
[l]2

. (67)

In addition to the recurrent formulae by the Racah branching coefficients, there are important formulae
for diagonalized quantum states in Hamiltonian, corresponding thus to the eigenvalue problems.

The total splitting of energy states due to Coulomb interaction of electrons in ln configuration between
the terms T = vSL and T ′ = v′SL′ according to Sobelman (1972, cf. (18.22)) is per term

f kL(ln) =
1
2
⟨l||Ck||l⟩2

[
n2

[L]2 ∑
T ′
⟨T ||Uk||T ′⟩2 − n

2l +1

]
. (68)

Total Hamiltonian incorporates summation over all these energetically shifted terms of configuration ln.
The angular overlap integral, corresponding to the Coulomb interaction of equivalent electrons, is

⟨T ||Uk||T ′⟩= n∑
T1

GT
T1

GT ′
T1
(−1)L1+k−l−L[L][L′]

{
l L L1
L′ l r

}
, |L− l| ≤ L1 ≤ L+ l. (69)

Here the triangular coefficient
∆ = ∆(lLL1)∆(llk)∆(L′Lk)∆(L′lL1). (70)

Next we give formulae for the interaction of the ln and l′ configuration terms T1 = v1S1L1 and T ′ = 1
2 l′.

For them we summarize on the basis of formulae by Sobelman (1972, §18) that

f k
T1T ′ = ⟨l||Ck||l⟩⟨l′||Ck||l′⟩(−1)L1+l′−L⟨T1||Uk||T1⟩

{
L1 l′ L
l′ L1 k

}
(71)

and

gk
T1T ′ =−⟨l||Ck||l′⟩2

|l+l′|

∑
r=|l−l′|

(−1)r(2r+1)
{

l l r
l′ l′ k

}
(Ar

T1l′ +Br
T1L′). (72)

The tensor elements in brackets are

Ar
T1l′ =

1
2
(−1)L1+l′−L⟨T1||U r||T1⟩

{
L1 l′ L
l′ L1 r

}
(73)

and

Br
T1L′ = 2(−1)L1−L+S1−S+l′+1/2

√
3
2
⟨T1||V 1r||T1⟩

{
L1 l′ L
l′ L1 r

}{
S1 1/2 S
1/2 S1 1

}
. (74)

Here the allowed values of final quantum numbers, according to the addition of angular momenta, are

S = S1 ±1/2, |L1 − l′| ≤ L ≤ L1 + l′. (75)

The matrix elements of the spin interaction dependent tensor operator V 1r, having rank r relative to spin and
−r relative to L, are

⟨T1||V 1r||T1⟩= n∑
T2

GT1
T2

GT1
T2
(−1) j

√
3
2
[L1]

2[S1]
2
{

l L1 L2
L1 l r

}{
1/2 S1 S2
S1 1/2 1

}
. (76)
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The summary phase sign j and the values of final quantum numbers are here specified by

j = l +L1 −L2 +1/2+S1 −S2 + r+1, S2 = S1 ±1/2, |L1 − l| ≤ L2 ≤ L1 + l. (77)

The contribution due to spin is given by the 6 j-coefficients{
S1 1/2 S
1/2 S1 1

}
= ∆

zmax

∑
z=zmin

(−1)z(z+1)!
QzYz

, (78)

where the limiting functions are

Qz = (z−S1 −S−1/2)!2(z−1−2S1)!(z−2)!, Yz = (S+S1 +3/2− z)!2(2S1 +1− z)!. (79)

The values of limiting quantum numbers are here

zmin = max(2S1 +1,S+S1 +1/2), zmax = min(2S1 +1,S+S1 +3/2). (80)

The triangular coefficient in this case is

∆ = ∆2(S1,1/2,S)∆2(S1,1/2,1). (81)

We note once more that in these formulae both the electrostatic Uk and spin V 1r interaction terms are
diagonalized.

Two unfilled ground state subshells have of neutral atoms only Cr (3d54s), Mo (4d55s), and some
lanthanides, whereas both of these subshells have single electron subshell terms. The problem is more
complicated for highly ionized atoms, where the valence electrons have high velocities, and thus additional
relativistic perturbational corrections are essential. In the study of stellar spectra the high-stage or multiple
ions are not needed, whereas temperatures in the modelling of stellar atmospheres are limited to about 105 K.

7. PROPOSED MODIFIED COMPUTATIONAL METHODS

In the present section we sketch further, dominantly computational aspects for the application of the
formulae given in the present paper.

The concept of constructing the single configuration wave functions is based on the analogy with the
states of hydrogenic atoms. The uniquely fixed quantities of unfilled subshells of complex atoms and ions
are the quantum numbers 2S+1

v L of terms and their configuration ln. The formulae of single configuration
approximation in many cases have too low precision, demanding to apply multi-configurational concept.
This improvement of approximation for spectroscopy was first proposed and applied by Jucys (1952). This
generalization of formulae means that the former atomic states are generalized to the linear combination
of the same term states, having the same number of particles but different l values. Also such mixed states
must be normalized. This is a constraint to new multi-configurational wave functions, which demands to
introduce the mixing coefficients Ci of different configuration states. We propose to parameterize these as
generalized direction cosines on the multi-configurational unit-sphere in polar coordinates of the n-dimen-
sional Euclidean space by recurrence formulae

C1 = cosθ1, Ci = cosθiSi−1, Si =
i

∏
k=1

sinθk, Cn =
n

∏
k=1

sinθk,
n

∑
i=1

C2
i = 1. (82)

The sum of squared mixing coefficients Ci is intrinsically normalized. In the single configuration approach
θi = 0 for all values of i. Thus in this case C1 = 1 and Ci = 0 if i > 1.
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In a multi-configuration approximation the state functions for any term Tk are defined by

Φ(Tk) =
n

∑
i=1

CiΦi(Tk). (83)

The corresponding multi-configurational contribution to energy, EM , is given by a sum over all
corresponding spectral terms

EM = ∑
Tk

E(Tk), E(Tk) =
n

∑
i, j=1

CiC jEi j(Tk), (84)

where subscripts i and j denote the mixed single configurations and k the terms of mixed configurations.
The proposed choice of mixing coefficients removes the necessity to solve any additional secular

equation for the non-diagonal contribution of mixed subshells and guarantees automatically normalization
constraint of mixed states. The values of the final improved polar angles θi correspond to the variational
minimum of energy. Multi-configurational radial Slater integrals can be generalized trivially, ascribing
different subshells even up to four interacting and thereby correlating radial Slater orbitals.

The Racah branching fractions concept must hold also for mixed configuration spectral terms like in the
case of the single configuration approach. Generally different radial Slater integrals can be ascribed to each
term of mixed configuration.

The best way to specify the values of free constants in orbitals is to apply the Levenberg–Marquardt
nonlinear optimization algorithm of the least-squares method applied to the Hamiltonian of binding energy.
We have used such method successfully for modelling stellar atmospheres and their spectra (Sapar et al.,
2013a, 2013b).

The expression to be minimized is

Q =

(
E

Eobs
−1

)2

+

(
E

Ekin
+1

)2

. (85)

This means that we try to obtain the best fit of the computed energy to its observed value Eobs, using as an
additional Lagrange term the virial theorem about the ratio of the kinetic energy to the total negative binding
energy.

In order to avoid the Lagrange conditions in the cost function of best-fit optimization, orthonormality
constraints (2) must be solved also for the ‘virtual’ states between occupied and excited states. In this manner
a new best-fit node in radial sign-alternating parts of wave functions will be generated for each next value
of principal quantum number n.

It is essential to choose rationally the subshells for which the energy is to be minimized. The most
correct way to carry out computations of energies relative to the bare nucleus is using the sum of ionization
energies. However, for large values of nuclear charge Z the needed data are hitherto lacking and therefore
such methods that do not need a priori numerical energy values are to be applied or some of the inner filled
subshells can be treated as the inactive ones.

Thus, we propose not to solve exactly approximate eigenvalue equations but to minimize the
binding energy as described above. In this way one can estimate also the best-fit ionization energies
in the approximation of the theory applied. Probably the small errors in the closed subshell analytical
expressions affect weakly the results of the computations of the observed astrophysical spectra and transition
probabilities.

It is essential to specify reasonably a set for the initial values of parameters Zl
ni in the radial Slater orbitals

for the ground states of atoms and ions. A simple way is to use the ratio

E l
j,n =

EHZ2
j

n2
eff

(86)
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in order to estimate the effective quantum number of valence electrons ne. Here E l
j,n is the ionization energy

of atom or ion j, having ionization stage Z j. Replacing Z j by its effective value, we obtain

Zl
ni =

Z j

neff
=

√
E l

j,n

EH
. (87)

For the low-excited states, corresponding to the principal quantum number n′, we accept for initialization a
similar shift of effective principal quantum numbers

n′eff =
n′

n
neff, (88)

from where

Zl
n′i =

Z j

n′eff
=

n
n′

√
E l

j,n

EH
. (89)

These simple values for Zl
ni can be used in software for the initialization of energy minimization

computations. The screening of the nuclear electrostatic field grows outwards, and correspondingly the
corrected values of the effective Zl

ni/n in exponents must diminish. This generates a growing radial shift of
nodes in the single configuration approximation in the consequential optimization procedure.

8. CONCLUDING REMARKS

In the present paper we have tried to give some contribution to the theory of complex atomic spectra. The
analytical radial orbitals and the corresponding analytical Slater integrals for the solution of the Hartree–
Fock equations by a variational method were proposed and studied by us many years ago (Sapar, 1973).
Due to the lack of computing facilities we made no further efforts in this direction for decades, studying the
stellar spectra and spectra of planetary nebula together with colleagues in the traditional ways, publishing
even a collective monograph (Nikitin et al., 1986). Thereafter we published the Russian and later its English
version of another collective monograph on spectra of planetary nebulae (Golovatyj et al., 1991, 1997).

Several years ago I started anew to discuss problems of analytical general formulae for astro-
spectroscopy. It is worth emphasizing that Rudzikas (2000), analysing in a review paper different self-
consistent methods of the study of many-electron quantum systems, classified the method of analytical radial
wave functions into the category of perspective ideas, forgotten by the mainstream investigators, preferring
numerical computation of the Hartree–Fock–Jucys equations.

Finally, we try to summarize our main results of the present paper. These are:
• elaboration of an algorithm for the construction of the analytical orthonormal quasi-hydrogenic

radial wave functions, including an analytical method of the solution of the system of these equations;
• deduction of analytical Slater integrals from the proposed Slater orbitals;
• elaboration of a general recurrent concept of diagonal Racah branching coefficients for the interaction of

equivalent electrons for terms of unfilled subshells;
• presentation of general angular Racah branching fractions for the Hamiltonian of the binding energy of

unfilled electron subshells;
• proposal to use the least squares method as a nonlinear optimization method in order to optimize

the values of free parameters in the Hamiltonian by the Levenberg–Marquardt method of nonlinear
optimization;

• proposal to specify the mixing coefficients in the Hamiltonian of multi-configurational interaction
as automatically normalized direction cosines in the polar coordinate system of the n-dimen-

sional Euclidian space.
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To conclude, some general remarks. Using the radial integrals and perturbation theory, we also have
derived analytical formulae for a specific mass shift, isotopic and hyperfine shift of spectral lines. The
relativistic Breit–Pauli fine-structure splitting and the nuclear shifts are important, especially for large
Z nuclei and high-stage ions, and mostly can be studied by perturbation theory. The Zeeman splitting
inside spectral terms, generated by the nuclear magnetic field, can also be computed applying perturbation
theory. The suggested proposals can help to avoid solving secular equations for best-fit energy values. The
deducted analytical formulae enable also to carry out unified computations of the atomic electron transition
probabilities. A drawback of the method is that the number of free parameters is large.
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Sapar, A., Poolamäe, R., and Sapar, L. 2013a. A new high-precision correction method of temperature distribution in model

stellar atmospheres. Baltic Astronomy, 22, 145–159.
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Analüütilised valemid aatomi elektron-allkestade energiale
ja nende optimeerimine

Arved Sapar

Aatomite ja ioonide kirjeldamiseks on kasutusele võetud üldistatud analüütilised ortonormeeritud radiaalsed
lainefunktsioonid, mis sisaldavad vabu parameetreid. Need optimeeritavad parameetrid määravad radi-
aalkaugusest sõltuva elektronide varjestatud tuumalaengu. Nende funktsioonide baasil on tuletatud ana-
lüütilised avaldised Slateri radiaalintegraalidele. Kasutades Racahi genealoogilisi koefitsiente, on tule-
tatud valemid ekvivalentsete elektronide hargnemisjaotusele spektritermide vahel erineva osalise täidetusega
ekvivalentsete elektronide allkestades. Pauli keeluprintsiibist tulenevad piirangud on sel teel arvestatud
ilmutamata kujul Racahi koefitsientide baasil, vältides keerukaid arvutusmeetodeid Clebschi-Gordani
koefitsientide abil. Radiaalfunktsioonide vabade parameetrite optimeerimist hamiltoniaanis on otstarbekas
teostada vähimruutude meetodi Levenbergi-Marquardti versioonil, kasutades lisatingimusena viriaali
teoreemi kineetilise ja potentsiaalse energia suhte kohta. Seega on energia omaväärtuste määramine
Hartree-Focki meetodil asendatud mittelineaarse optimeerimismeetodiga. Integraalid hamiltoniaanis vas-
tavad elektronide kineetilisele energiale, elektronide elektrostaatilisele interaktsioonienergiale omavahel
ja aatomituumaga. Viimane võtab arvesse kuloonilise ja vahetusmõju elektronpaaride vahel nende ühises
allkestas või erinevates allkestades. Üleminekuks mitmekonfiguratsioonilisele lähendusmeetodile on soo-
vitatud kasutusele võtta suunakoosinused n-dimensioonilise eukleidilise ruumi polaarkoordinaadistikus.


