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Abstract. Extracting useful information from cardiac signals for the diagnosis of diseases and judgement of heart functioning is 
of special interest to medical personnel. However, exploiting such signals is subject to the availability of the signals themselves 
and to possible measurement errors. We thus argue that modelling such signals offers several advantages as compared to relying 
on measured data only. By using a formalized representation, the parameters of the signal model can be manipulated and/or 
modified, thus providing mechanisms that allow researchers to reproduce and control such signals by means of e.g. simulators. To 
guide both the signal modelling and simulator development phases, we propose a new generic framework. We then illustrate how 
it can be used to guide the modelling of the impedance cardiography and impedance respirography signals. We also show how the 
proposed framework has been used to guide the development of the corresponding Bio-Impedance Signal Simulator (BISS). As  
a result, the implemented BISS generates simulated Electrical Bio-Impedance (EBI) signals and gives freedom to the end-user to 
control the essential properties of the generated EBI signals depending on their needs. Predefined states of human conditions/ 
activities are also included for ease of use. 
 
Key words: electrical bio-impedance (EBI), biological system modelling, biomedical signal processing, cardiography signals, 
respirography signals, signal analysis, signal processing algorithms, signal modelling, signal simulation. 

 
 
1.  INTRODUCTION  

* 
Extracting useful information from cardiac signals  
for the diagnosis of diseases and judgement of heart 
functioning is of special interest to medical personnel. 
Thus, the development of effective, robust, and efficient 
diagnostic tools for heart disease symptoms such as 
cardiac rhythm disorder and arrhythmia is highly desirable 
as they allow investigating and analysing the cardiac 
signals in detail (Gargasas et al., 2004; Kersulyte et al., 
2009).  

Generally speaking, the aim when developing new 
techniques and tools is to minimize the required cost 
and hospitalization times, as well as to increase patients’ 
ease and safety (Solà et al., 2011). Thus, non-invasive 
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electrical-based methods are now commonly used in  
a clinical context. The main advantage of this type of 
procedures is that they do not need to break the skin and 
are used not only for making a diagnosis but also for 
treating patients (e.g. electrotherapy, radiotherapy).  

However, using non-invasive data acquisition 
techniques raises several issues, including: 
•  it is difficult to obtain accurate and valuable in-

formation from the body as it is inhomogeneous;  
•  typical body evaluation models are fairly complex 

since they are a combination of three different sub-
level models, i.e. electrical, mechanical (hydraulic 
and pneumatic), and geometrical models of the body 
(Malmivuo and Plonsey, 1995);  

•  it is important to place the sensors according to the 
body model. The optimal positioning of the measuring 
sensors increases the measurement accuracy and 
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influences the reliability of data, repeatability of the 
measurements, and accuracy of the evaluated haemo-
dynamic parameters;  

•  the measured data is a combination of various signals 
(e.g. cardiac, respiratory, motion artefacts, etc.). For 
example, the measured data are useful only if one 
can separate cardiac and respiratory signals and 
simultaneously suppress the unwanted artefacts such 
as motion artefacts, noise, and stochastic disturbance. 
Because of the above issues, there exist uncertainties 

regarding (a) the properties of the signal such as its 
amplitude, waveform, and components (e.g. cardiac vs 
respiration) and (b) the origin of the signal waveform 
(e.g. configuration/positioning of electrodes/sensors vs 
the condition of the patient). In turn, this limits the quality 
of the diagnostics of diseases and conditions. In this 
paper, we thus argue that modelling the measured signals 
offers several advantages as compared to relying on 
measured data only: 
•  By using a formalized (e.g. mathematical) repre-

sentation, the parameters of the signal model can be 
easily manipulated and/or modified, thus providing 
mechanisms that allow researchers to reproduce and 
control such signals. 

•  In turn, having such a formalized signal model makes 
it possible to develop tools (e.g. simulators) that can 
be used for manipulating and understanding how the 
signal changes depending on various conditions, as 
well as for generating input signals for experimenting 
with and evaluating the performance of useful signal 
extraction methods such as separation algorithms. 
Once the (bioelectrical) data have been measured,  

it is needed to model the corresponding signals for 
analysis. In this case, the so-called advanced user (i.e.  
a person who makes the decisions in each step and 
analyses the results in order to develop an application) 
must follow a structured approach to move from real 
measured data to the signals’ model.  

Our previous studies (Mughal et al., 2013; Mughal, 
2014) provide the motivation for developing a signal 
model that imitates the real phenomena of cardiac and 
respiratory signals. In addition, the end-user (i.e. a user 
of the simulator) has the freedom to generate the 
required simulated signal(s) based on their needs as well 
as mix artefacts and noise artificially.  

 
1.1.  Overview  of  the  existing  methods  of  
modelling  Electrical  Bio-Impedance  (EBI)  signals 
 
Extensive research on modelling and simulation in the 
area of biomedical engineering has been carried out 
over the years. Simulator and software tools generally 
focus on cardiovascular simulation (this provides a general 
basis for how to structure and implement such a simulator) 
and on thoracic electrical bio-impedance (these provide 
valuable insights related to the effects of artefacts and 

estimation errors in EBI measurement and simulation) 
(Heldt et al., 2010; Abtahi et al., 2012; Ulbrich et al., 
2012).  

Several approaches related to cardiovascular simulation 
can be used to model the signals (Mughal et al., 2015a). 
The following three methods are deemed to be most 
relevant with respect to cardiac signal modelling. 
1.  A simple bio-impedance signal synthesizer was pro-

posed by Krivoshei (2006) to generate cardiac and 
respiratory signals. The author used a piece-wise 
linear triangular function to model the cardiac signal 
and a trapezium to model the respiratory signal. The 
model, however, is too simple to fully imitate the 
cardiac and respiratory signals, and thus does not 
allow testing of e.g. separation algorithms (Mughal 
et al., 2015a).  

2.  A cardio model based on the sum of exponential 
functions was proposed by Kersulyte et al. (2009). 
Their purpose was to find an as precise as possible 
model for cardio signals and compare complexity 
parameters of the real signals and those of the model 
for both healthy and sick persons. They compared 
two function types, i.e. polynomial and sum of 
exponentials. Their results indicate that both methods 
lead to similar results in terms of fidelity; however, 
the authors also indicate that the polynomial equation 
depends on the signal length and number of intervals, 
which could lead to too many coefficients and 
increased computational requirements for complex 
signals (Mughal et al., 2015a). 

3.  A cardiac signal model based on a series of real 
signals was proposed by Matušek et al. (2012). By 
filtering and averaging the series of real signals, they 
estimated one average impedance cardiography 
(ICG) signal cycle and simply replicated this cycle 
over time to get the final signal model. One limitation 
of this approach is that it lacks a mathematical model 
and thus the user cannot easily reproduce the model 
and change its parameters (Mughal et al., 2015a). 

 
1.2.  Proposal  for  a  modelling  framework  and  its  
implementation 
 
This work proposes a generic modelling framework and 
its implementation, exemplified with an EBI case.  
•  First, we devise a generic framework that can be 

used to guide both the modelling of the signals of 
interest and the development of an application for 
bio-electrical information for further processing.  

•  Second, we implement the framework as a specific 
example for an EBI case.  
The modelling of the heart and lungs signals allows 

the advancement of knowledge regarding the interplay 
of anatomical structures and physical phenomena that 
contribute to cardiac and respiratory physiological and 
pathophysiological behaviours. 
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The main contributions of this paper are the following: 
•  A novel and unique generic framework for modelling 

the bio-electrical information is proposed. The frame-
work provides a pathway between biological systems 
and bioelectrical applications. 

•  A bio-impedance signal model is derived, and the 
corresponding novel Bio-Impedance Signal Simulator 
(BISS) is developed.  
To the best of our knowledge, the BISS is the first 

EBI signal simulator that both imitates the real 
phenomena related to ICG and Impedance Respiro-
graphy (IRG) signals and gives the freedom to the end-
users to simulate EBI signals as they need. 

 
 

2.  METHODS 
 
This section discusses the measurement of the EBI 
signals, the specific measurement setup used in our work, 
the proposed novel generic framework for modelling the 
bioelectrical information, and finally, as an example, the 
implementation of the proposed novel generic frame-
work for the EBI signals. 

2.1.  Measurement  of  the  EBI  signals 
 
This study focuses on the modelling of the ICG and IRG 
signals as an example. In practice, the measured EBI 
data are used to model those two signals.  

The ICG process does not separate signals from 
different objects during the measurement. Electrode 
positioning can help (somewhat at least) if the electrodes 
are placed properly relative to what is required to be 
both measured and calculated such as heart rate (HR), 
stroke volume (SV), cardiac output (CO), respiration rate 
(RR), muscular movement, etc. In this case ICG is one of 
the very promising methods among non-invasive methods 
(the details are discussed in Section 2.4) (Muhammad, 
2015; Mughal, 2016).  

The measurement set-up and the 16-electrode con-
figuration method used to acquire the EBI data from  
a healthy male subject is described in (Mughal, 2014; 
Mughal et al., 2015a).  

 
2.2.  Measurement  set-up 
 
The measurement set-up shown in Fig. 1 is used to 
acquire the EBI data (corresponding to the measured 

 

 
Fig. 1. Set-up for measuring the electrical bio-impedance (EBI) of a subject. 
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EBI signal). The 16-electrode belt is worn around the 
thorax of the subject.  

A Zurich HF2IS Impedance Spectroscope (Zurich 
Instruments, 2015) is the measurement equipment that 
was used in this work. The HF2IS is used to excite the 
subject and to measure the EBI data sets from the 
subject through sense electrodes. The HF2IS is connected 
to a switch-box with connectors’ cables.  

The HF2IS was limited to two channels (channels 1 
and 2, Fig. 1); because of this, at a given time four 
electrodes (two electrodes from each channel (Excitation A 
and B)) were used to excite the subject, and four 
electrodes (two electrodes from each channel (Sense A 
and B)) were used to sense the EBI data. Thus, eight 
electrodes are active at a time. 

The sensed (measured) EBI data sets were stored in 
a computer for further analysis. The attached computer 
is also used to control the switch-box and HF2IS 
impedance spectroscopy equipment.  

A program developed at Thomas Johann Seebeck 
Department of Electronics, Tallinn University of 
Technology, Estonia, was used to control the switch-
box that automatically switches/selects the configuration 
of the electrodes at each time step. Nevertheless, the 
configuration of the electrodes can also be set up by the 
advanced user.  

 
2.3.  Proposed  novel  generic  framework  for  
modelling  the  bioelectrical  information 
 
A generic framework is proposed to guide the modelling 
of signals and to develop a corresponding simulator for 
the bioelectrical information. First, the bioelectrical 
information must be modelled based on template signals 
(a template signal is an ideal signal that has been measured 
and cleaned) and then a corresponding signal simulator 
must be developed (Mughal et al., 2015b). Before 
describing the proposed framework, a block diagram 

illustrating the relation between the modelling of the 
template signals and the development of the corres-
ponding simulator for the bioelectrical information from 
which the need for the framework arises is proposed 
(Fig. 2). 

The template signals could be modelled with the 
help of methods such as curve fitting (e.g. polynomial), 
sum of sines, Fourier series, etc. (with the help of  
tools such as Matlab Curve Fitting toolbox, EzyFit, 
TableCurve 2D, PeakFit), or waveform generation (e.g. 
Matlab Waveform Generator), etc. (Fig. 2).  

The developed signal model should ideally be 
validated against the template signals. This validation 
could be done based on e.g. statistical parameters such 
as sum of squared error (SSE), correlation between the 
modelled signal and template signal, execution time, 
and so on. The best-fit modelling method can then be 
chosen. Alternatively, a visual inspection could be 
performed to evaluate the fit of the model against the 
template signal. However, if a very accurate model is 
required, both approaches should be used. 

Once the developed signal model has been validated 
against template signals, and thus can imitate the real 
phenomena, the original values of the signal model 
parameters (P1O, P2O, P3O, …, PnO, where the subscript 
O denotes the original signal’s parameters and n the 
number of parameters) are set. These values will only be 
modified in the simulator by the end-user.  

Next, it is necessary to build a corresponding signal 
simulator where the predefined signal model parameters 
(P1O, P2O, P3O, …, PnO) are also possibly controlled 
(i.e. overwritten) by the end-user. Moreover, other 
parameters (internal to the adaptation process) could 
also be introduced in the simulator by the end-user and 
controlled by them. These are used inside the adaptation 
process to tune the signal model in order to reflect  
the actual phenomena that take place in the biological 
system/object of interest. 

 

 
 

Fig. 2. Block diagram of the generic system for modelling the template signals and for developing the corresponding simulator.
P1O … PnO are signal model parameters and P1G … PnG designate end-user prescribed parameters. 
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The core mechanisms of the simulator include 
adaptation. The generator generates the simulated signals 
as per the end-user prescribed parameters (P1G, P2G, 
P3G, …, PnG, where G denotes the generated signal’s 
parameters and n is the number of parameters), so that 
the end-user is able to control the signal model parameters 
and generate the simulated signals as desired.  

The flow diagram proceeds according to the pro-
posed framework as depicted in Fig. 3. This flow chart 
guides the advanced user (technical user who makes the 
decisions on each step) step-by-step with the help of the 
predefined blocks. Each diagram has specific criteria 
that are required to be kept in mind and follow the 
guidelines. 

Figure 3 shows the flow diagram of data acquisition 
and processing as well as modelling and simulation of 
the bioelectrical information. This flow diagram is the 
pathway to application in order to model the signals.  

It is implemented for the specific case of EBI based on 
the IRG and ICG signals. 

In this work the generic framework is implemented, 
as an example, for the EBI case. The generic framework 
provides guidelines on how to measure the EBI data 
from the subject, how to clean the measured EBI signals 
in order to achieve the ideal (template) of ICG and IRG 
signals, and how to build signal models for ICG and 
IRG signals. The signal model approach is discussed  
in (Mughal et al., 2015a). Then, the simulator is actually 
built, as discussed in Section 3. 

 
2.4.  Implementation  of  the  proposed  novel  generic  
framework  for  the  development  of  the  EBI  
signal  simulator 
 
In this section, each step of the framework for developing 
the EBI signal simulator is described in detail.  

 

 
Fig. 3. Flow diagram of the proposed novel generic framework for modelling and simulating the bioelectrical information. 
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2.4.1. Biological system/object (Step 1) 
 
The first part the biological system or object (subject)  
is presented in Fig. 4. It consists of three sub-systems: 
cardiovascular, respiratory, and muscular sub-systems. 
Each sub-system is described through its parameters. 
The relationships between the parameters are shown in 
the form of arrows connecting them with one another, 
mainly within the same system, but some are also 
connected with parameters that belong to one or both of 
the two other sub-systems.  

The following description begins with the baro-
receptor reflexes and follows the natural flow of the 
three sub-systems. 

Parameters of the cardiovascular system: 
•  Baroreceptor Reflexes (BRR) control Blood Pressure 

(BP). Changes in the BP affect the frequency of 
action potentials sent to the cardiovascular control 
centre from the BRR (Timischl, 1998). 

•  Cardiovascular Control Centre (CCC). Heart Rate 
(HR) is controlled by both the sympathetic nervous 
system (SPP) and the parasympathetic nervous 
system (PSP); the SPP increases the HR while the 
PSP decreases it. The HR varies from 60 to 180 beats 
per minute (bpm). 

•  Heart Rate (HR) corresponds to the frequency of heart 
beating, i.e. the number of heart beats per minute or the 
reciprocal of the duration of heart cycle Yc = 1/Tc bpm. 

 

 
 

Fig. 4. Block diagram illustrating relationships between the parameters of the three main systems of the organism (cardiovascular,
respiratory, and muscular). Parameters of the greatest interest are highlighted. Thin arrows (solid line) show dependence on other
parameter(s) within the same system. Thick arrows (solid line) show a direct relation or strong dependence on the other
parameter(s) inside the same system. Thin arrows (dotted line) show dependence on other parameter(s) within other systems.
Thick arrows (dotted line) show a direct relation or strong dependence on parameter(s) within other systems. Thick arrows (in
both directions) show direct proportional dependence on each other within the same system. See Section 2.4.1 for abbreviations. 
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•  Venous Return (VR) is the amount of blood that 
returns to the heart. VR depends on the blood volume. 

•  Stroke Volume (SV) is the volume of blood that  
is pumped out by the heart with a single beat. SV 
depends on the VR and total peripheral resistance. 
The typical SV value for a healthy person is approxi-
mately 50 mL in a single stroke. The HR and SV are 
proportional to each other. 

•  Cardiac Output (CO) is the volume of blood that is 
pumped out by the heart per minute. It is a function 
of the HR and SV and can be calculated based on the 
HR and SV: CO = HR · SV. 

•  Blood Pressure (BP) usually refers to the arterial 
pressure of the systemic circulation. It is partly 
dependent on the CO and the vessels, and directly 
(strongly) depends on the blood volume and the 
blood flow (Timischl, 1998). For a healthy person, 
the typical upper level is 120 mmHg.  

•  Blood Volume (BV) is the volume of blood in the 
circulatory system of any individual. For a healthy 
person it typically ranges from 3 to 5 L. 

•  Total Peripheral Resistance (TPR). The blood vessels 
provide resistance to the flow of blood. The resistance 
and pressure are directly proportional to each other. 
If the resistance increases, the pressure will increase 
(TPR depends on CO, BV, BP, BF, and MAP).  

•  Blood Flow (BF). The flow of blood through the 
vessels of the circulatory system is a function of  
the BP and TPR (BF depends on BP, TPR, and CO 
(Timischl, 1998)). It is approximately equal to the CO. 

•  Mean Arterial Pressure (MAP) represents the average 
driving force for the blood flow through the arterial 
system (MAP depends on the CO and BV and is 
directly proportional to the TPR). It is approximately 
20% lower than the upper BP. 

•  Saturation Pressure of Oxygen (SPO2). The muscles 
highly depend on the SPO2 because if the muscle 
starts to work, it requires more oxygen (SPO2 depends 

on muscles, CO, and BF). For a healthy person, the 
typical percentage is about 100%. 

•  Intra-Cardiac Impedance (ICI) reflects the variations 
of the cardiac output internally. 

•  Epicardial Potential (EPC) is the internal ECG 
potential. 

 

Parameters of the respiratory system: 
•  Respiration Rate (RR) is the number of cycles per 

minute. It is not directly dependent on the HR but, under 
certain conditions, it depends on the HR and SPO2. 

•  Respiration Flow (RF) is the inspiration or expiration 
volume of airflow in a minute. It depends on the SPO2. 

•  Respiration Volume (RV) is the volume of air that is 
inhaled and exhaled per minute. It is a function of 
the RR and RF. For a healthy person, the typical RV 
ranges from about 2 to 5 L/min. 

•  Tidal Volume (TV) is the volume of gas inhaled or 
exhaled during one respiratory cycle; details are dis-
cussed in (Krivošei, 2009). 

 

Parameters of the muscular system: 
•  Muscles: The ability of muscles to work is highly 

dependent on the oxygen supply (SPO2).  
•  Movement: Body movement from Biological Systems/ 

Object as prescribed. 
•  Oxygen Usage: It depends on the real physical load. 

 

2.4.2. Selection of the data source of interest (Step 2) 
 

The diagram of selecting the data source (2 in Fig. 3)  
is divided into three sub-diagrams as shown in Fig. 5.  
In this diagram, the objective is to select the desired 
physiological parameters of interest; here these are HR 
and RR, which are both directly measurable. Based on 
the selected area of thorax, it is assumed that strong 
variations of the ICG and IRG signals can be obtained 
and that it is possible to measure the physiological 
parameters HR and RR. 

 

 
 

Fig. 5. Flow diagram of the selection process of the data source of interest. The box on the right shows the specific parameters of
interest selected by the advanced user for this example. HR – heart rate, RR – respiration rate. 
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After selecting the source of data and acquiring the 
EBI data set and physiological parameters, it is necessary 
to ensure that these are as per the user’s needs.  
 
2.4.3. Measurement of parameters (Step 3) 
 
The diagram of measuring the parameters of interest  
(3 in Fig. 3) is divided into four sub-diagrams as shown 
in Fig. 6. In this step, the objective is to select the type 
and configuration of the electrodes. For acquiring the 
EBI data set, a 16-electrode configuration belt was worn 
on the human thorax area and 3M disposable surface 
EMG/ECG/silver/silver chloride electrodes were chosen 
to measure the physiological parameters, namely HR and 
RR, and the ICG and IRG signals.  

After deciding the parameters for all these sub-
diagrams, the EBI data, which are location and time 
dependent, can finally be measured. 

2.4.4. Data cleaning (Step 4) 
 

The fourth diagram of data cleaning (4 in Fig. 3) is 
divided into two sub-diagrams as shown in Fig. 7. In 
this diagram, preprocessing is performed to clean the 
ICG and IRG signals, including EBI signal normalization 
(scaling), conditioning, and filtering to attenuate the 
undesired parts of the signal. 

After preprocessing the EBI signal, further processing 
is performed to extract the features (e.g. waveform and 
trend) from the clean ICG and IRG signals. At this point, 
careful visualization of the representation of the ICG 
and IRG signals waveform with templates of the ideal 
ICG and IRG signals waveform is required. 

 

2.4.5. Modelling and building a simulator (Step 5) 
 

The diagram of building and testing a simulator (5 in 
Fig. 3) is divided into two sub-diagrams: modelling of 

 

 
 

Fig. 6. Flow diagram for the measurement of the parameters of interest. The box on the right shows the specific configuration of
electrodes and the measurement method selected by the advanced user for this example. EBI – electrical bio-impedance.  

 
 

 
Fig. 7. Flow diagram of the data cleaning process. The box on the right shows the cleaning of the impedance cardiography (ICG)
and impedance respirography (IRG) signals and extraction of the feature from the cleaned signals. EBI – electrical bio-impedance. 
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the signals and building a corresponding simulator, as 
shown in Fig. 8. In the diagram, the signals are modelled 
based on the clean features of the extracted ICG and 
IRG signals. The Fourier series method was chosen from 
among other curve-fitting methods to model the ICG 
and IRG signal parameters, as discussed in our previous 
study (Mughal et al., 2015a). 

The corresponding simulator, BISS, was built based 
on the modelled parameters of the ICG and IRG signals.  

2.4.6. Selection Bio-electrical applications (Step 6) 
 
The sixth diagram in Fig. 3 is that of the bio-electrical 
application. The application BISS, which simulates the 
EBI signal, was developed (Fig. 9). The BISS can be  
a useful tool to simulate the EBI signals in order to e.g. 
evaluate the performance of signal processing algorithms 
as well as for teaching and training in physiological 
courses to engineering and health science students as  

 

 
 

Fig. 8. Flow diagram for modelling the impedance cardiography (ICG) and impedance respirography (IRG) signal parameters
based on Fourier series and for building a corresponding bio-impedance signal simulator (BISS). EBI – electrical bio-impedance.  

 

 

Fig. 9. Block diagram of the BISS for the modelling of the impedance cardiography and (ICG) and impedance respirography
(IRG) signals and for the development of a corresponding simulator for electrical bio-impedance (EBI) signals. HR – heat rate,
RR – respiration rate, SICG – impedance cardiography signal, SIRG – impedance respirography signal, SEBI – impedance electrical
bio-impedance signal. 
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it can give hands-on means to the students to understand 
the complicated physiological phenomena. 
 
 
3.  RESULTS 
 
The signal model used in the BISS was built based on 
the Fourier series, which is discussed in our earlier 
publication (Mughal et al., 2015a).  

The simulated EBI signal is generated by summing 
the ICG signal (SICG), IRG signal (SIRG), artefacts 
(SArtefacts), and a white Gaussian noise (SNoise). The 
bandwidth of the Gaussian noise is set to half of the 
sample rate (sampling frequency; here 500 Hz for 1000 
samples per second).  

Figure 9 depicts (a) the modelled SICG and SIRG 
(modelled by means of the Fourier series method 
(Mughal et al., 2014, 2015a), (b) the recorded motion 
SArtefacts (e.g. swinging arm) added to the simulated EBI 
signal, and (c) a SNoise also added to the simulated EBI 
signal. 

The block diagram of the BISS shows that different 
pre-recorded states (d) corresponding to healthy persons 
resting, standing, walking, and running are included in 
the simulator. The parametric values and cardiac relation-
ships with respiration vary between the states/conditions. 

Nevertheless, the end-user also has the possibility of 
changing the parameters as per their needs such as heart 
rate, respiration rate, time frame, amplitude of respiration, 
artefacts, and noise.  

Finally, (e) shows that the simulated EBI signals are 
a mixture of ICG, IRG, artefacts, and noise. Such 
simulated EBI signals can then be used for further 
processing (e.g. to evaluate the performance of separation 
algorithms).  

The outer parameters (blue in Fig. 9) such as heart 
rate (beats/min), time frame (s), respiration rate (cycles/ 
min), amplitude for respiration, artefacts, and noise are 
controlled by the end-user (possibly overriding the values 
loaded from a pre-recorded state).  

The graphical end-user interface (EUI) of the BISS 
is illustrated in Fig. 10 for a healthy running person. The 
interface includes (a) a menu where the end-user can load 
the different states of a person, open existing simulated 
EBI signals, save the current simulated EBI signals, and 
exit from the simulator; (b) the measured and cleaned 
ICG signal; (c) the ICG signal modelled by means of the 
Fourier series method; (d) the measured and cleaned 
IRG signal; and (e) the IRG signal modelled by means 
of the Fourier series method. 

The cardiac amplitude in the BISS (Fig. 10 (f)) models 
the systolic and diastolic activities in order to imitate the 

 

 

Fig. 10. End-user graphical interface of the bio-impedance signal simulator (BISS) with the signals simulated for the state ‘healthy
person during running’.   
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real phenomena of the heart. If the heart rate increases, 
the amplitude of the ICG will decrease and the diastole 
period will also decrease. If the heart rate decreases, the 
amplitude of ICG will increase and so will the diastole 
period. A variation is also introduced in the systolic and 
diastolic activities as per cardiovascular phenomena. 
The ICG signal is continuously moving in time and it  
is simulated where modulation is introduced with each 
cycle in amplitude and frequency. 

In order to imitate the real phenomena, signal 
modulations are included in the BISS. The ICG amplitude 
modulation range is ±25% and the frequency modulation 
range is ±5%, depending on the heart rate. This makes 
cycles different from each other. Similarly, modulation 
is also introduced for the respiration (IRG) amplitude 
(±50%) and frequency (±10%). Medical doctors confirmed 
these modulation ranges as realistic ones.  

The IRG signal is continuously moving in time. It is 
a simulated signal where modulation is introduced with 
each cycle. 

The respiration rate is correlated to the cardiac heart 
rate by means of a ratio. The default ratio is set to 5 : 1 
(5 cardiac cycles for 1 respiration cycle). Nevertheless, 
the end-user can control the respiration rate as well. 

Furthermore, in Fig. 10, (h) is the noise generator, 
(i) the recorded artefacts caused by motion (in this 
example, by swinging the arm during the measurement) 
randomly moving in the defined time window, (j) the 
simulated EBI signals model based on the end-user 
loaded state (healthy running), (k) the detailed summary 
of the simulated EBI signals model, and (l) are buttons 
that let the end-user save the simulated EBI signals, 
open existing simulated EBI signals, clear all simulated 
model signals, and start again and exit from the BISS 
GUI environment. Note that the time scales of (d) and 
(e) are not the same as those of (g) and (j) due to the 
5 : 1 ratio discussed earlier. 

 

 
4.  DISCUSSION 
 
The review performed regarding the ways in which 
other researchers approach the problem to build a signal 
model for cardiac and respiratory signals shows why 
these methods are not suitable. This is mostly because 
other researchers used either a simple method, i.e. one 
which does not model the signal realistically; a method 
lacking a mathematical signal model; or a method which 
is computationally expensive.  

We thus argue that it is preferable to model the ICG 
and IRG signals based on measured EBI data rather than 
relying on measured data only. For this, a novel generic 
framework for modelling the bioelectrical information is 
proposed. The framework provides a pathway between 
biological systems and bioelectrical applications.  

The generic framework was used to implement a 
practical EBI application. Building on the Fourier series 

model, the BISS was developed to simulate the EBI 
signals. The BISS gives the end-user the freedom to 
simulate the EBI signal as per their needs for further 
analysis. Nevertheless, predefined states are included in 
the BISS. The simulator imitates the real phenomena of 
ICG and IRG signals, and thus the EBI simulated signals 
could be used to evaluate and assess the performance  
of separation algorithms, for example. Moreover, the 
developed BISS could also be used for teaching and 
training purposes.  

This being said, there are several limitations that 
should be addressed in the future work. Currently, the 
implementation of the BISS is focused on the simulation 
of the EBI signals and thus only EBI signals are modelled 
(namely ICG and IRG signals); however, the BISS 
could be extended to other methods of bioelectrical 
information, such as Foucault Cardiography (FCG), Opto-
Electronic Plethysmography (OEP), Electrical Impedance 
Tomography (EIT), and so on. This would require 
modelling the signals used in that method (e.g. cardiac 
and respirogram in the Foucault method) and integrating 
them in the BISS. For this purpose, the proposed generic 
framework would provide valuable guidelines about the 
different steps that need to be undertaken to measure 
and model the signals, as well as for building the corres-
ponding simulators. 

Another desirable work would be to relate the 
variations observed in the generated EBI signal to the 
actual physiological phenomena, e.g. the relation between 
the model coefficients and parameters and the states/ 
activities of the subject. This would require extensive 
study of the dynamics of the physiological phenomena, 
which is a very complex task requiring deep knowledge 
of the human physiology.  

Furthermore, the BISS could be advanced by adding 
extra functionalities to calculate physiological features 
such as stroke volume and cardiac output from the 
simulated EBI signals.  

Finally, in the current implementation, the states are 
focused on a healthy person’s resting, standing, walking, 
and running states. However, by repeating the steps 
described in the framework, it would be relatively  
easy to add other states (e.g. for someone with a heart 
condition) to the simulator. This would require acquiring 
a data set (sets) from either new measurements or 
existing databases. 

 

 
5.  CONCLUSIONS 
 
Based on measured and cleaned extracted signals,  
the impedance cardiography (ICG) and impedance 
respirogram (IRG) signals have been modelled, and  
a corresponding bio-impedance signal simulator (BISS) 
has been developed to simulate electrical bio-impedance 
(EBI) signals for evaluating the performance of various 
signal processing algorithms on such signals. 
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In order to guide the development of the above 
signal models and simulator, a significant part of  
this work is focused on developing a physiological 
parametric framework for modelling measurable bio-
electrical information and implementing this parametric 
framework with a pragmatic approach on the bio-
impedance example.  

Thus, a novel generic framework was proposed for 
modelling the bioelectrical information, which was then 
implemented for the case of EBI as an example. Based 
on the results, it is concluded that the proposed bio-
impedance signal model imitates the real ICG and IRG 
phenomena and is realistic to imitate the ICG and IRG 
phenomena. 

Moreover, it is also concluded that the proposed 
framework provides a pathway between biological 
systems and bioelectrical applications by means of 
various steps, including the measurement of the bio-
electrical data from the subject, the cleaning process for 
the measured bioelectrical data, and the development of 
the corresponding simulator.  

Finally, it is also concluded that the novel BISS EBI 
signal simulator implements the developed signal models 
and imitates the real ICG and IRG signal phenomena. 
The BISS also gives the end-user the freedom to simulate 
EBI signals as per their needs.  
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Parameetriline  raamistik  bioelektriliste  signaalide  käsitlemiseks:  rakendamine 
bioimpedantssignaalide  simulaatori  väljatöötamisel 

 
Yar Muhammad, Paul Annus, Yannick Le Moullec ja Toomas Rang 

 
Inimese tervise hindamisel kasutatakse üha enam erinevaid sensoreid ja nendelt saadavaid signaale. Kasuliku, 
näiteks südametegevust iseloomustava komponendi eraldamine sensorsignaalist või signaalide kogumist on aga 
tihti komplitseeritud. Selliste signaalide tekkemehhanismidest ja levimisest arusaamine ning modelleerimine annab 
erinevates rakendustes olulisi eeliseid, võrreldes näiteks ainult mõõteandmete töötlemisega. Üheks simuleeritud signaa-
lide oluliseks rakendusvaldkonnaks on uute signaalitöötlusmeetodite ja algoritmide arendamine ning valideerimine. 

Antud artiklis on välja pakutud üldistatud parameetriline raamistik bioelektriliste signaalide käsitlemiseks. Saadud 
tulemusi on konkreetselt rakendatud bioimpedantssignaalide modelleerimiseks, mis lisaks südametegevuse ja hin-
gamisega seonduvatele komponentidele sisaldab ka häireid ning müra. Uuringute tulemusena loodud bioimpedants-
signaalide simulaator (BISS) võimaldab genereerida erinevaid, kasutaja poolt soovitud parameetritega kunstlike 
mõõteandmete kogumeid. 

 
 


