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Abstract. It is proved that each group of order 32 which has a maximal subgroup isomorphic to C8 ×C2 is determined by its
endomorphism semigroup in the class of all groups.
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1. INTRODUCTION

It is well known that all endomorphisms of an Abelian group form a ring and many of its properties can be
characterized by this ring. An excellent overview of the present situation in the theory of endomorphism
rings of groups is given by Krylov et al. [6]. All endomorphisms of an arbitrary group form only a semi-
group. The theory of endomorphism semigroups of groups is quite modestly developed. In a number of our
papers we have made efforts to describe some properties of groups by the properties of their endomorphism
semigroups. For example, we have proved that many well-known classes of groups are determined by their
endomorphism semigroups in the class of all groups. Note that if G is a fixed group and an isomorphism of
semigroups End(G) and End(H), where H is an arbitrary group, always implies an isomorphism of G and
H, then we say that the group G is determined by its endomorphism semigroup in the class of all groups.
Some of such groups are finite Abelian groups ([7], Theorem 4.2), generalized quaternion groups ([8],
Corollary 1), torsion-free divisible Abelian groups ([11], Theorem 1), etc. On the other hand, there exist
many examples of groups that are not determined by their endomorphism semigroups in the class of all
groups. For example, the following result of Corner is well known [2]: any countable, reduced, torsion-
free, associative ring with unity is an endomorphism ring for a continual number of countable, reduced,
torsion-free Abelian groups. There exist finite groups that are semidirect products of cyclic groups and are
not determined by their endomorphism semigroups in the class of all groups [10].

We know a complete answer to this problem for finite groups of order less than 32. It was proved in [12]
that among the finite groups of order less than 32 only the alternating group A4 (also called the tetrahedral
group) and the binary tetrahedral group 〈a, b | b3 = 1, aba = bab〉 are not determined by their endomorphism
semigroups in the class of all groups. These two groups are non-isomorphic, but their endomorphism
semigroups are isomorphic. In the light of this result it is natural to consider next the groups of order 32.

All groups of order 32 were described by Hall and Senior [5]. There exist exactly 51 non-isomorphic
groups of order 32. In [5], these groups are numbered by 1, 2, . . . , 51. We shall mark these groups
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by G1, G2, . . . , G51, respectively. The groups G1–G7 are Abelian, and, therefore, are determined by their
endomorphism semigroups in the class of all groups ([7], Theorem 4.2). In [3], it was proved that
the groups of order 32 presentable in the form (C4 ×C4) h C2 (Ck – the cyclic group of order k) are
determined by their endomorphism semigroups in the class of all groups. The groups of this type are
G3, G14, G16, G31, G34, G39, G41. In [4], it was proved that the groups of order 32 presentable in the form
(C8×C2)hC2 are determined by their endomorphism semigroups in the class of all groups. The groups of
this type are G4, G17, G20, G26, G27. In [14], Theorem 1.1, it was proved that the groups of order 32 which
have a maximal subgroup isomorphic to C4×C2×C2 are determined by their endomorphism semigroup in
the class of all groups. The groups of this type are G2–G4, G8–G14, G16, G18, G20, G36–G 38.

In this paper, we consider the groups of order 32 that have a maximal subgroup isomorphic to C8×C2
and prove the following theorem:

Theorem 1.1. Each group of order 32 which has a maximal subgroup isomorphic to C8×C2 is determined
by its endomorphism semigroup in the class of all groups.

The groups of order 32 which have a maximal subgroup isomorphic to C8×C2 are:

G4, G5, G6, G17, G19, G20, G21, G22, G26, G27, G28, G29, G30, G32.

To prove the theorem, the characterization of these groups by their endomorphism semigroups will be given.
These characterization properties that are preserved by isomorphisms of endomorphism semigroups will
then be used in the proofs.

We shall use the following notations:
G – a group;
End(G) – the endomorphism semigroup of G;
Ck – the cyclic group of order k;
Qn = 〈a, b | a2n

= 1, a2n−1
= b2, b−1ab = a−1〉 – the generalized quaternion group (n≥ 2);

Q = Q2 – the quaternion group;
Zk – the ring of residual classes modulo k;
〈K, . . . , g, . . .〉 – the subgroup generated by subsets K, . . . and elements g, . . .;
[a, b] = a−1b−1ab (a, b ∈ G);
G ′ – the commutator-group of G;
ĝ – the inner automorphism of G, generated by an element g ∈ G;
I(G) – the set of all idempotents of End(G);
K(x) = {z ∈ End(G) | zx = xz = z};
J(x) = {z ∈ End(G) | zx = xz = 0};
H(x) = {z ∈ End(G) | xz = z, zx = 0};
o(g) – the order of an element g ∈ G.

The sets K(x) and J(x) are subsemigroups of End(G). We shall write the mapping right from the element
on which it acts.

2. GROUPS THAT HAVE A MAXIMAL SUBGROUP C8×C2

According to Hall and Senior [5], the groups of order 32 that have a maximal subgroup isomorphic to
C8×C2 are:
• G4 = C2×C2×C8, G5 = C4×C8, G6 = C2×C16,
• G17 = 〈a, b, c | a8 = b2 = c2 = 1, ab = ba, ac = ca, c−1bc = ba4〉= (〈a〉×〈b〉)h 〈c〉= (C8×C2)hC2,
• G19 = 〈a, b | a4 = b8 = 1, ab2 = b2a, b−1ab = ab4〉= 〈a, b | a4 = b8 = 1, a−1ba = b5 〉= 〈b〉h 〈a〉

= C8 hC4,
• G20 = 〈a, b, c | a8 = b2 = c2 = 1, ab = ba, bc = cb, c−1ac = ab〉= (〈a〉×〈b〉)h 〈c〉= (C8×C2)hC2,
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• G21 = 〈a, b | a4 = b8 = 1, b−1ab = a−1〉= 〈a〉h 〈b〉= C4 hC8,
• G22 = 〈a, b | a16 = b2 = 1, b−1ab = a9〉= 〈a〉h 〈b〉= C16 hC2,
• G26 = 〈a, b, c | a8 = b2 = c2 = 1, ab = ba, c−1ac = a−1, c−1bc = a4b〉= (〈a〉×〈b〉)h 〈c〉

= (C8×C2)hC2 = 〈a, d, c | a8 = 1, a4 = d2, d−1ad = a−1, c2 = 1, cd = dc, c−1ac = a−1〉
= 〈a, d〉h 〈c〉= Q3 hC2 (d = cba6),

• G27 = 〈a, b, c | a8 = b2 = c2 = 1, ab = ba, bc = cb, c−1ac = a−1b〉= (〈a〉×〈b〉)h 〈c〉 = (C8×C2)hC2,
• G28 = 〈a, b, c | a8 = b2 = 1, ab = ba, c2 = a4, bc = cb, c−1ac = a−1b〉,
• G29 = 〈a, b | a8 = b4 = 1, b−1ab = a−1〉= 〈a〉h 〈b〉= C8 hC4,
• G30 = 〈a, b, c | a8 = b2 = 1, ab = ba, c2 = b, c−1ac = a3〉= 〈a, c | a8 = c4 = 1, c−1ac = a3〉

= 〈a〉h 〈c〉= C8 hC4,
• G32 = 〈a, b, c | a8 = b2 = 1, ab = ba, c2 = a−2b, c−1bc = ba4,c−1ac = a−1〉

= 〈a, c | a8 = 1, a4 = c4, c−1ac = a−1〉.
Since each finite Abelian group is determined by its endomorphism semigroup in the class of all

groups ([7], Theorem 4.2), so are the groups G4, G5, and G6. In [11], it was proved that the semidirect
product G = Cpn hCm, where p is a prime number, n and m are some positive integers, is determined
by its endomorphism semigroup in the class of all groups. Hence the groups G19, G21, G22, G29, and
G30 are determined by their endomorphism semigroups in the class of all groups. It was proved
in [4], Theorems 14.2, 14.4, and 14.6, that the groups G17, G20, and G27 are determined by their endo-
morphism semigroups in the class of all groups. The group G26 is also determined by its endomorphism
semigroup ([13], Theorem 13.3). To prove Theorem 1.1, we have to prove in addition that the groups
G28 and G32 are determined by their endomorphism semigroups in the class of all groups. It is done in
Theorems 4.2 and 5.2.

3. PRELIMINARY LEMMAS

For convenience of reference, let us recall some known facts that will be used in the proofs of our main
results.

Lemma 3.1. If x ∈ I(G), then G = Kerxh Imx and Imx = {g ∈ G | gx = g}.

Lemma 3.2. If x ∈ I(G), then

K(x) = {y ∈ End(G) | (Imx)y⊂ Imx, (Kerx)y = 〈1〉}

and K(x) is a subsemigroup with the unity x of End(G) which is canonically isomorphic to End(Imx). In
this isomorphism element y of K(x) corresponds to its restriction on the subgroup Imx of G.

Lemma 3.3. If x ∈ I(G), then

J(x) = {z ∈ End(G) | (Imx)z = 〈1〉, (Kerx)z⊂ Kerx}.

Lemma 3.4. If x ∈ I(G), then

H(x) = {y ∈ End(G) | (Imx)y⊂ Kerx, (Kerx)y = 〈1〉}.

We omit the proofs of these lemmas, because these are straightforward corollaries from the definitions.

Lemma 3.5. ([12], Theorem). Each 2-group G such that |G| < 32 is determined by its endomorphism
semigroup in the class of all groups.

Lemma 3.6. If G is a finite non-Abelian 2-group, then |End(G )| ≥ 20.
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Proof. Assume that G is a finite non-Abelian 2-group. Then the factor-group G /Z(G ) is non-cyclic, i.e.,
|G /Z(G )| ≥ 4 and G has at least 4 inner automorphisms. Therefore, |Aut(G )| ≥ 4. By [15], Theorem 5.3.1,
there exists N C G such that G /N is Abelian and non-cyclic. This implies that there exists M C G such that
N ⊂M and G /M ∼= C2×C2. Choose a1, a2 ∈ G such that

G /M = 〈a1M〉×〈a2M〉.

If G has only one element of order two, then G is isomorphic to a generalized quaternion group ([15],
Theorem 5.3.6) and |End(G )| ≥ 28 ([9], Lemmas 2 and 3), i.e., the statement of the lemma is true. Assume
that G has at least two elements of order two, for example, b and d. We can assume that bd = db. Then there
exist 16 proper endomorphisms zi jkl = πyi jkl of G, where π : G −→ G /M is the canonical homomorphism
and

G
π−→ G /M

yi jkl−→ G, (a1M)yi jkl = bid j, (a2M)yi jkl = bkdl

(i, j, k, l ∈ Z2). Since |Aut(G )| ≥ 4, we have |End(G )| ≥ 4+16 = 20. The lemma is proved.

4. GROUP G28

In this section, we shall characterize the group

G28 = 〈a, b, c | a8 = b2 = 1, ab = ba, c2 = a4, bc = cb, c−1ac = a−1b〉

by its endomorphism semigroup. Clearly, G28 = 〈ba6, c, ac−1〉. Denote next the elements ba6, c and ac−1

by a, b and c, respectively. Then G28 is given as follows:

G28 = 〈a, b, c | c4 = a4 = 1, b2 = a2, b−1ab = a−1, c−1ac = a−1, c−1bc = ba〉.

The group G28 is a group of order 32 and the numbers of its elements of orders 2, 4, and 8 are 3, 20, and 8,
respectively [5]. Clearly,

G28 = 〈a, b〉h 〈c〉= Qh 〈c〉 ∼= QhC4.

It is easy to check that
G

′
28 = 〈a〉 ∼= C4, Z(G28) = 〈a2〉×〈c2〉 ∼= C2×C2,

G28/G
′

28 = 〈bG
′

28〉×〈cG
′

28〉 ∼= C2×C4.

Each element of G28 can be presented in the canonical form cib jak, where j ∈ {0, 1}, i, k ∈ Z4.
Our aim is to prove the following theorem.

Theorem 4.1. A finite group G is isomorphic to G28 if and only if |Aut(G)| = 26 = 64 and there exists
x ∈ I(G) such that the following properties hold:
10 K(x)∼= End(C4);
20 J(x)∩ I(G) = {0};
30 |H(x)|= 8;
40 |{y ∈ End(G) | xy = y}|= 24;
50 |{y ∈ H(x) | {z ∈ K(x) | z2 = 0} · y = {0}|= 2;
60 |{y ∈ End(G) | xy = y, {z ∈ K(x) | z2 = 0} · y = {0}}|= 4.

Proof. Necessity. Let G = G28. Denote by x the projection of G onto its subgroup 〈c〉. Then Imx = 〈c〉 and
Kerx = 〈a, b〉. By Lemma 3.2, K(x)∼= End(Imx)∼= End(〈c〉)∼= End(C4), i.e., property 10 holds.

Note that each endomorphism of G is uniquely determined by its images on generators a, b, and c. By
Lemma 3.3, z ∈ J(x) has the form

cz = 1, az = bia j, bz = bkal; i, k ∈ {0, 1}, j, l ∈ Z4. (4.1)
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The map z : G −→ G given by (4.1) preserves the generating relations of G and induces an endomorphism
of G if and only if i = k = j = 0 and l ≡ 0(mod2). Hence

J(x) = {z | az = cz = 1, bz = a2l0 ; l0 ∈ Z2}

and z2 = 0 for each z ∈ J(x). Therefore, J(x)∩ I(G) = {0} and property 20 holds.
By Lemma 3.4, H(x) consists of endomorphisms y : G−→ G such that

ay = by = 1, cy = bia j (4.2)

for some i ∈ {0, 1}, j ∈ Z4. The map y given by (4.2) preserves the generating relations of G and induces
an endomorphism of G for each values of i and j. Hence

H(x) = {y | ay = by = 1, cy = bia j, i ∈ {0, 1}, j ∈ Z4} (4.3)

and |H(x)|= 8 , i. e., property 30 holds.
Since G = Kerxh Imx, we have

{y ∈ End(G) | xy = y}= {y ∈ End(G) | (Kerx)y = 〈1〉}. (4.4)

Therefore, |{y ∈ End(G) | xy = y}| is equal to the number of homomorphisms Imx = 〈c〉 −→ G, i.e., to the
number of elements g ∈ G such that g4 = 1. By [5], this number is 24. Hence property 40 is true.

By Lemma 3.2,
K(x) = {z | az = bz = 1, cz = ci, i ∈ Z4}.

Hence
{z ∈ K(x) | z2 = 0}= {z | az = bz = 1, cz = c2i0 , i0 ∈ Z2}. (4.5)

By (4.3) and (4.5),

{y ∈ H(x) | {z ∈ K(x) | z2 = 0} · y = {0}}= {y | ay = by = 1, cy = bia j, (cy)2 = 1, i ∈ {0, 1}, j ∈ Z4},

|{y∈H(x) | {z∈K(x) | z2 = 0}·y = {0}}|= |{bia j | (bia j)2 = 1, i∈{0, 1}, j∈Z4}|= |{g∈Q | g2 = 1}|= 2,

i.e., property 50 is true.
By (4.4) and (4.5),

{y ∈ End(G) | xy = y, {z ∈ K(x) | z2 = 0} · y = {0}}

= {y | ay = by = 1, cy = g, g ∈ G, g2 = 1}= |{g ∈ G | g2 = 1}|.
By [5], the last number is 4. Therefore, property 60 holds. The necessity is proved.

Sufficiency. Let G be a finite group such that |Aut(G)| = 26 and there exists x ∈ I(G) which satisfies
properties 10–60 of the theorem. Our aim is to prove that G∼= G28.

By Lemma 3.1, we have G = Kerxh Imx. Property 10 and Lemma 3.2 imply that End(Imx)∼= End(C4).
We have

Imx = 〈c〉 ∼= C4, G = Kerxh 〈c〉, c ∈ G,

because each finite Abelian group is determined by its endomorphism semigroup in the class of all
groups ([7], Theorem 4.2).

Since Aut(G) is a 2-group, we have ĝ = 1 for each 2
′
-element g ∈ G. Therefore, each 2

′
-element of G

belongs into the centre of G. Hence G splits into the direct product G = G2×G2′ of its Sylow 2-subgroup
G2 and Hall 2

′
-subgroup G2′ . Each 2

′
-element of G belongs into Kerx, i.e., G2′ ⊂ Kerx. Denote by z the
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projection of G onto its subgroup G2′ . Then z ∈ J(x)∩ I(G). By property 20, z = 0, i.e., G2′ = 〈1〉 and G is
a 2-group. Clearly, Kerx 6= 〈1〉.

Choose an element d ∈Kerx such that d2 = 1 and define an endomorphism y = πτ of G, where π is the
projection of G onto its subgroup Imx = 〈c〉 and

G π−→ Imx = 〈c〉 τ−→ Kerx, cτ = d.

Then xy = y, yx = 0, i.e., y ∈ H(x). By Lemma 3.2, K(x) consists of maps z, where (Kerx)z = 〈1〉, cz =
ci, i ∈ Z4. This z satisfies z2 = 0 if and only if i = 2i0, i0 ∈ Z2, and for such z the equality zy = 0 is
true. Therefore, by property 50, the subgroup Kerx of G has only one element of order two. By [15],
Theorem 5.3.6, Kerx is a generalized quaternion group or cyclic.

Assume that Kerx is cyclic: Kerx = 〈a〉 ∼= C2n . Then n ≥ 2, because otherwise G = 〈a〉 × 〈c〉 and
the projection of G onto 〈a〉 belongs into J(x)∩ I(G) and is non-zero. This contradicts property 20. By
Lemma 3.4,

H(x) = {y | ay = 1, cy = ai02n−2
, i0 ∈ Z4}

and hence |H(x)|= 4. This contradicts property 30. The obtained contradiction implies that Kerx cannot be
cyclic. Therefore, Kerx is a generalized quaternion group Qn, n≥ 2:

Kerx = Qn = 〈a, b | a2n
= 1, b2 = a2n−1

, b−1ab = a−1〉.
By Lemma 3.4,

H(x) = {y | ay = 1, cy = g, g ∈ Kerx = Qn, g4 = 1}.
Since

{g ∈ Qn | g4 = 1}= {bai, a j2n−2 | i ∈ Z2n , j ∈ Z4},
we have |H(x)| = 2n + 4. Property 30 implies that 2n + 4 = 8, i.e., n = 2 and Kerx is the quaternion group
Q = Q2. It follows also that |G|= |Kerx| · |Imx|= 8 ·4 = 32, i.e., G is a non-Abelian group of order 32.

Let us find the numbers of elements g ∈ G such that g4 = 1 or g2 = 1. Each homomorphism
y0 : Imx = 〈c〉 −→ G can be uniquely extended to an endomorphism y of G such that xy = y by setting
(Kerx)y = 〈1〉. Denote this y by ỹ0. Conversely, each y ∈ End(G) such that xy = y is obtained in this way.
Therefore,

{y ∈ End(G) | xy = y}= {ỹ0 | y0 ∈ Hom(〈c〉, G)},
|{y ∈ End(G) | xy = y}|= |Hom(Imx, G)||Hom(〈c〉, G)|= |{g ∈ G | g4 = 1}|,

(4.6)

i.e., by property 40, the number of elements g ∈ G such that g4 = 1 is 24.
Denote

E = {y ∈ End(G) | xy = y, {z ∈ K(x) | z2 = 0} · y = {0}}.
By property 60, |E |= 4. In view of (4.6),

E = {ỹ0 | y0 ∈ Hom(〈c〉, G), {z ∈ K(x) | z2 = 0} · ỹ0 = {0}}.
By Lemma 3.2, K(x) consists of maps z : G −→ G, where (Kerx)z = 〈1〉 and cz = ci, i ∈ Z4. For those z,
z2 = 0 if and only if i = 2i0, i0 ∈ Z2. In this case, c(zy) = (cy)2i0 = (cy0)2i0 for each y = ỹ0. Therefore,
ỹ0 ∈ E if and only if (cy0)2 = 1. Hence

|E |= |{y0 ∈ Hom(〈c〉, G) | (cy0)2 = 1}|= |{g ∈ G | g2 = 1}|= 4.

It follows that the group G has 3 elements of order two. Since the number of elements g such that g4 = 1
is 24, the group G has 20 elements of order 4. By [5], there exists only one non-Abelian group of order 32
such that |Aut(G| = 26 and which has 3 elements of order two and 20 elements of order 4. This group is
G28. Therefore, G∼= G28. The sufficiency is proved.

The theorem is proved.
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Theorem 4.2. The group G28 is determined by its endomorphism semigroup in the class of all groups.

Proof. Let G∗ be a group such that the endomorphism semigroups of G∗ and G28 are isomorphic:

End(G∗)∼= End(G28). (4.7)

Denote by z∗ the image of z ∈ End(G28) in isomorphism (4.7). Since End(G∗) is finite, so is G∗ ([1],
Theorem 2). By Theorem 4.1, |Aut(G28)|= 26 = 64 and there exists x ∈ I(G28), satisfying properties 10–60

of Theorem 4.1. These properties are formulated so that they preserve in isomorphism (4.7). Therefore,
|Aut(G∗)|= 26 = 64 and the idempotent x∗ of End(G∗) satisfies properties similar to properties 10–60 (it is
necessary to change everywhere z ∈ End(G28) by z∗ ∈ End(G∗)). Using now Theorem 4.1 for G∗, it follows
that G∗ and G28 are isomorphic. The theorem is proved.

5. GROUP G32

In this section, we shall characterize the group

G32 = 〈a, c | a8 = 1, a4 = c4, c−1ac = a−1〉

by its endomorphism semigroup. The group G32 is a group of order 32 and the numbers of its elements of
orders 2, 4, and 8 are 3, 4, and 24, respectively [5]. It is easy to check that

G
′

32 = 〈a2〉 ∼= C4, Z(G32) = 〈c2〉 ∼= C4,

G32/G
′

32 = 〈cG
′

32〉×〈aG
′

32〉 ∼= C4×C2.

Each element of G32 can be presented in the canonical form cia j, where i ∈ {0, 1, 2, 3} and j ∈ Z8.
Our aim is to prove the following theorem.

Theorem 5.1. A finite group G of order ≥ 32 is isomorphic to G32 if and only if it satisfies the following
properties:
10 |Aut(G)|= 64;
20 |End(G)\Aut(G)|= 32;
30 the only idempotents of End(G) are 0 and 1;
40 |{z ∈ End(G)\Aut(G) | z2 = 0}|= 20;
50 there exist z, w ∈ End(G)\Aut(G) such that z2 = w2 = 0 and wz 6= 0;
60 |{y ∈ Aut(G) | x ∈ End(G)\Aut(G) =⇒ yx = x}|= 16.

Proof. Necessity. Let G = G32. To prove properties 10–60 for G, we have to find the endomorphisms of G.
An endomorphism of G is fully determined by its action on the generators c and a. Choose z ∈ End(G).
Then

az = cia j, cz = ckal (5.1)

for some i, j, k, l. The map z given by (5.1) induces an endomorphism of G if and only if it preserves the
defining relations of G. After easy calculations, we obtain that the map z given by (5.1) is an endomorphism
of G only in the following three cases:

cz = c2k0a2l0 , az = a4 j0 ; j0, k0 ∈ {0, 1}, l0 ∈ Z4, (5.2)

cz = c2k0a2l0 , az = c2a2+4 j0 ; j0, k0 ∈ {0, 1}, l0 ∈ Z4, (5.3)

cz = c2k0+1al, az = a j; k0 ∈ {0, 1}; j, l ∈ Z8, j ≡ 1(mod2). (5.4)
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The endomorphisms given by (5.2) and (5.3) are proper endomorphisms and the endomorphisms given
by (5.4) are automorphisms. The numbers of endomorphisms of these three types are 16, 16, and 64,
respectively. Hence G satisfies properties 10 and 20.

Immediate calculations show that 0 and 1 are only idempotents of End(G). Similarly, immediate
calculations show that z2 = 0 only for the following proper endomorphisms z:

cz = a2l0 , az = a4 j0 , l0 ∈ Z4, j0 ∈ Z2,

cz = c2a2, az = a4 j0 , j0 ∈ Z2,

cz = c2a6, az = a4 j0 , j0 ∈ Z2,

cz = 1, az = c2a2+4 j0 , j0 ∈ Z2,

cz = a4, az = c2a2+4 j0 , j0 ∈ Z2,

cz = c2a2, az = c2a2+4 j0 , j0 ∈ Z2,

cz = c2a6, az = c2a2+4 j0 , j0 ∈ Z2.

The number of such endomorphisms is 8+6 ·2 = 20. Hence G satisfies properties 30 and 40.
Property 50 is satisfied for the proper endomorphisms z and w, where

cz = a2, az = 1, cw = 1, aw = c2a2.

Let us prove property 60. Choose an arbitrary y ∈ Aut(G):

cy = c2k+1al, ay = a j; k ∈ {0, 1}; j, l ∈ Z8, j ≡ 1(mod2).

We have to find k, l, j so that yx = x for each x ∈ End(G)\Aut(G). If x is given by (5.2), then

a(yx) = a jx = a4 j j0 = a4 j0 = ax,

c(yx) = (c2k+1al)x = (c2k0a2l0)2k+1a4 j0l = c2k0(2k+1)a2l0(2k+1)a4 j0l = c2k0a4k0k+4l0k+2l0+4 j0l,

cx = c2k0a2l0 ,

and yx = x if and only if
4k0k +4l0k +4 j0l ≡ 0(mod8).

The last congruence is satisfied for each j0, k0, l0 if and only if

k = 0, l ≡ 0(mod2). (5.5)

Assume that x is given by (5.3). In view of (5.5) and c2 ja2 j = c2a2 for odd j, we have

a(yx) = a jx = (c2a2+4 j0) j = c2 ja2 j+4 j0 = c2a2+4 j0 = ax,

c(yx) = (cal)x = c2k0a2l0(c2a2+4 j0)l = c2k0 ·c2l ·a2l0+l(2+4 j0) = c2k0 ·a2l ·a2l0+2l = c2k0a4l+2l0 = c2k0a2l0 = cx.

Therefore, if x is given by (5.3), then always yx = x. It follows that yx = x for each x ∈ End(G) \Aut(G)
if and only if k and l satisfy (5.5). Since j ≡ 1(mod2), the number of such automorphisms y is 4 ·4 = 16.
Property 60 is proved.

The necessity is proved.

Sufficiency. Let G be a finite group of order ≥ 32 which satisfies properties 10–60. Our aim is to prove that
G∼= G32. We shall now introduce a series of lemmas which give the proof.
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Lemma 5.1. The group G is a non-Abelian 2-group and it is not a generalized quaternion group. The group
has at least two elements of order two.

Proof. By property 10, ĝ = 1 for each 2′-element g of G. Hence all 2′-elements of G belong into its centre
Z(G). Therefore, the group G splits into the direct product G = G2′ ×G2 of its Hall 2′-subgroup G2′ and
Sylow 2-subgroup G2. Denote by z the projection of G onto its subgroup G2′ . By property 30, z = 0 or z = 1.
Assume that z = 1. Then G = G2′ is Abelian and, again by property 30, G is cyclic, i.e., G = Cn for an odd
integer n. By properties 10 and 20, we have |End(G)| = n = 64 + 32 = 96. This contradicts the fact that n
is odd. Hence z = 0 and G is a 2-group. The group G is non-Abelian, because otherwise, by property 30, G
would be cyclic and |G| = |End(G)| = 2m = 96 for an integer m, which is impossible. Since a generalized
quaternion group has only four proper endomorphisms ([8], Lemma 2), the group G cannot be a generalized
quaternion group. The last statement of the lemma follows from [15], Theorem 5.3.6. The lemma is proved.

The factor-group G/G
′
splits into a direct product

G/G
′
= 〈a1G

′〉× . . .×〈anG
′〉; a1, . . . , an ∈ G\G

′
.

Denote further by ε the canonical homomorphism ε : G−→ G/G
′
.

Lemma 5.2. n = 2.

Proof. Remark that G/G
′

is not cyclic ([15], Theorem 5.3.1). Hence n ≥ 2. Assume that n ≥ 3. By
Lemma 5.1, G has at least two elements of order two, for example b and d. We can assume that bd = db,
and, therefore, G has at least 64 proper endomorphisms zi jklst :

zi jklst = επi jklst : G ε−→ G/G
′ πi jklst−→ 〈b, d〉,

(a1G
′
)πi jklst = bid j, (a2G

′
)πi jklst = bkd l, (a3G

′
)πi jklst = bsd t ,

(auG
′
)πi jklst = 1, u≥ 3; i, j, k, l, s, t ∈ Z2.

This contradicts property 20. Therefore, n < 3 and n = 2. The lemma is proved.
By Lemma 5.2, we can fix c, a ∈ G\G

′
in the following way:

G/G
′
= 〈cG

′〉×〈aG
′〉 ∼= C2s ×C2t (5.6)

and
o(cG

′
) = 2s, o(aG

′
) = 2t , s≥ t ≥ 1.

By property 30, G does not split into a nontrivial semidirect product. Hence

c2s 6= 1, a2t 6= 1. (5.7)

If g, h ∈ G such that gh = hg and o(g) ≤ 2s, o(h) ≤ 2t , then there exists a proper endomorphism
y(g; h) = ε ·π of G defined as follows:

G ε−→ G/G
′
= 〈cG

′〉×〈aG
′〉 π−→ G, (cG

′
)π = g, (aG

′
)π = h.

In the further proofs, we shall use proper endomorphisms of this kind a number of times.
Next we shall prove that G

′
is cyclic and determine the values of s and t.

Lemma 5.3. The derived group G
′
of G has an element of order four.
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Proof. On the contrary, assume that g2 = 1 for each g ∈ G
′
. Then G

′
is Abelian and splits into a direct

product
G

′
= 〈b1〉× . . .×〈bn〉 ∼= C2× . . .×C2, n≥ 1,

and there exist proper endomorphisms y(bi1
1 . . .bin

n ; b j1
1 . . .b jn

n ), where i1, . . . , in, j1, . . . , jn ∈ Z2. The number
of such endomorphisms is 2n · 2n = 22n, and, by property 20, 22n ≤ 32 = 25, 2n ≤ 5, i.e. n ≤ 2. Let us
consider the cases n = 1 and n = 2 separately.

Assume that n = 1. By (5.7), we have

G
′
= 〈c2s〉= 〈a2t 〉 ∼= C2, c2s

= a2t
, (5.8)

[c, a] = c−1a−1ca ∈ Z(G), c2 ·a = a · c2, a2 · c = c ·a2.

Therefore, there exist proper endomorphisms y(c2i1a2i2 ; c2s−t+1 j1a2 j2). We get all elements of the form
c2i1a2i2 if we take i1 ∈ Z2s and i2 = 0, 1, 2, . . . , 2t−1 − 1. Similarly, we get all elements of the form
c2s−t+1 j1a2 j2 if we take j1 ∈ Z2t and j2 = 0, 1, 2, . . . , 2t−1−1. It follows that the number of endomorphisms
y(c2i1a2i2 ; c2s−t+1 j1a2 j2) is 2s ·2t−1 ·2t ·2t−1 = 2s+3t−2. By property 20,

2s+3t−2 ≤ 32 = 25, 4t ≤ s+3t ≤ 7, t = 1.

In view of (5.6), (5.8), and t = 1, each element g ∈ G of order two is c2s
or has a form g = aci for a suitable

integer i. If g = aci, then G = 〈c〉h 〈g〉 and the projection of G onto 〈g〉 is non-zero and non-identity
idempotent of End(G). This contradicts property 30. Hence G has only one element of order two (it is c2s

)
and, therefore, is cyclic or a generalized quaternion group. This contradicts Lemma 5.1. It follows that
n 6= 1.

Assume that n = 2. Then
G

′ ∼= C2×C2, |G|= 2s+t+2.

The case s = t = 1 is impossible, because |G| ≥ 32. Hence

s≥ t, s≥ 2.

Assume that s > t. Choose g ∈ 〈c2, a, G
′〉. Then g2s

= 1 and there exists the proper endomorphism
y(g; 1) of G. The number of such endomorphisms is |G|/2 = 2s+t+1. Choose g ∈ 〈c2s−t+1

, a2, G
′〉. Then

g2t
= 1 and there exists the proper endomorphism y(1; g) of G. The number of such endomorphisms

is 22(t−1)+2 = 22t . Among endomorphisms y(g; 1) and y(1; g) only zero is a common endomorphism.
Therefore, the number of such endomorphisms is 2s+t+1 +22t−1, and, by property 20, 2s+t+1 +22t−1≤ 32.
The only solution of this inequality under conditions s > t, s≥ 2 is

t = 1, s = 2. (5.9)

Choose g, d, b ∈ G such that

g ∈ 〈c2, a, G
′〉, d ∈ Z(G), o(d) = 2, b ∈ G, o(b) = 2, b 6= d.

By (5.9), we have g4 = 1 and there exist proper endomorphisms y(g; di), i ∈ Z2, and y(1; b) of G. The
number of those endomorphisms is 2 · |〈c2, a, G

′〉|+ 1 = 33. This contradicts property 20. Therefore, the
inequality s > t is false and

s = t ≥ 2, |G|= 22s+2. (5.10)

Choose g1, g2, g3, g4 ∈ G such that

g1, g2 ∈ 〈c2, a2, G
′〉, o(g3) = o(g4) = 2, g3 6= g4.
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Then g2s

1 = g2s

2 = 1 and there exist proper endomorphisms y(g1; 1), y(1; g2), y(g3; g3), and y(g4; g4) of G.
Among these endomorphisms only zero appears twice, and, therefore, their number is

2 · |〈c2, a2, G
′〉|−1+2 = 2 ·22s +1.

By property 20,
2 ·22s +1≤ 32, 2 ·22s ≤ 31, 2 ·22s ≤ 30, 22s ≤ 15,

22s ≤ 8 = 23, 2s≤ 3, s = 1.

This contradicts (5.10). The obtained contradiction implies that the derived group G
′

contains an element
of order four. The lemma is proved.

Lemma 5.4. The derived group G
′
has only one element of order two or s = t = 1.

Proof. Assume that s ≥ 2 and G
′

has at least two different elements b and d of order two. We can assume
that bd = db. In view of Lemma 5.3, there exists an element h ∈G

′
of order four. It is possible to choose so

that h2 = b. There exist proper endomorphisms zi jkl = y(bid j; bkd l) and wαβ = y(hα ; bβ ) = y(hα ; h2β ) of
G, where i, j, k, l, β ∈Z2; α ∈ {1, 3}. By the construction, z2

i jkl = w2
αβ = 0. The number of endomorphisms

zi jkl and wαβ is 24 +22 = 20. By property 40, each proper endomorphism z of G which satisfies z2 = 0 has
one of these two forms.

Let us consider the cases dh 6= hd and dh = hd separately. Assume that dh = hd. There exist proper
endomorphisms ταβ = y(hα ; dβ ), where α ∈ {1, 3}, β ∈ Z2. By the construction, τ2

αβ = 0 and τα1 differs

from zi jkl and wαβ . This contradicts the previous part of the proof. Hence dh 6= hd. Since (w10 · d̂)2 = 0, we
have w10 · d̂ = wα0 for some α ∈ {1, 3}. Therefore,

c(w10 · d̂ ) = hd̂ = d−1hd = cwαβ = hα ,

i.e., d−1hd = h−1. It follows from here that dh is an element of order two and there exists a proper
endomorphism z = y(1; dh). By the construction, z2 = 0 and z differs from zi jkl and wαβ . This contradicts
the first part of the proof. Therefore, the case dh 6= hd is also impossible. Consequently, the assumption that
s ≥ 2 and G

′
has at least two different elements b and d of order two is false. This implies that s = 1 (i.e.,

s = t = 1, because s≥ t) or G
′
has only one element of order two. The lemma is proved.

Lemma 5.5. The case s = t = 1 is impossible, i.e., s≥ 2.

Proof. On the contrary, assume that s = t = 1. Then all elements of order two of G belong to G
′
, because

otherwise the group G would split into a non-trivial semidirect product, which contradicts property 30. By
Lemma 5.1, G

′
has at least two different elements b and d of order two. We can assume that b ∈ Z(G). We

get 16 proper endomorphisms zi jkl = y(bid j; bkdl) of G (i, j, k, l ∈ Z2). By the construction, z2
i jkl = 0.

If G has an element h of order two such that h 6∈ 〈b, d〉, then h ∈ G
′

and we get six additional proper
endomorphisms y(bih; b jh), y(h; 1), and y(1; h) of G such that y(bih; b jh)2 = y(h; 1)2 = y(1; h)2 = 0
(i, j ∈ Z2). Hence we have already 16 + 6 = 22 proper endomorphisms z of G such that z2 = 0. This
contradicts property 40. Therefore, all elements of order two of G belong to 〈b, d〉= 〈b〉×〈d〉 ⊂ G

′
.

Let z be a proper endomorphism of G such that Imz is Abelian. Then G/Kerz is Abelian, G
′ ⊂Kerz and

z = εy for a homomorphism y : G/G
′ −→ 〈b〉×〈d〉. Hence z is equal to zi jkl for some i, j, k, l. By property

40, there exists a proper endomorphism w of G such that w2 = 0 and Imw is non-Abelian. Fix w of this kind.
Define wα = w ·α ∈ End(G) for each α ∈ End(Imw). By the construction,

wαwβ = wαw ·β = 0 ·β = 0, w2
α = 0 (5.11)

(α, β ∈ End(Imw)). Lemma 3.6 implies that the number of such endomorphisms wα is at least 20.
Therefore, by property 40, each proper endomorphism z of G for which z2 = 0 can be presented in the
form wα for some α . In view of (5.11), z1z2 = 0 for each z1 and z2 such that z2

1 = z2
2 = 0. This contradicts

property 50. It follows that the case s = t = 1 is impossible and s≥ 2. The lemma is proved.
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Lemma 5.6. The derived group G
′
is cyclic.

Proof. Lemmas 5.4 and 5.5 imply that G
′
has only one element of order two. By [15], Theorem 5.3.6, G

′
is

cyclic or a generalized quaternion group. Assume that G
′
is a generalized quaternion group Qn, n≥ 2:

G
′
= Qn = 〈a0, b0 | a2n

0 = 1, a2n−1

0 = b2
0, b−1

0 a0b0 = a−1
0 〉.

The elements of order four of Qn are

a2n−2

0 , a−2n−2

0 , b0ai
0, i ∈ Z2n .

The number of them is 2n + 2. Choose an element h ∈ G \G
′

of order two. By Lemma 5.1, it is
possible. Then h = cu2s−1

av2t−1
d for some u, v ∈ Z2 and d ∈ G

′
. If t = 1, then v = 0, because otherwise

h = cu2s−1
ad, G = 〈c, G

′〉h 〈h〉 and the projection of G onto 〈g〉 would be non-zero and non-identity
idempotent of End(G), which contradicts property 30. Let g ∈ G

′
be an element of order four. Since

a2n−1

0 ∈ Z(G) and s≥ 2, there exist proper endomorphisms zg j = y(g; a j2n−1

0 ) and zi jkl = y(hia j2n−1

0 ; hkal2n−1

0 )
(i, j, k, l ∈ Z2). Clearly, z2

g j = 0. The following calculations show that z2
i jkl = 0:

cz2
i jkl = (hia j2n−1

0 )zi jkl = (hzi jkl)i = ((cu2s−1
av2t−1

d)zi jkl)i

= ((czi jkl)u2s−1
(azi jkl)v2t−1

)i = ((hia j2n−1

0 )u2s−1
(hkal2n−1

0 )v2t−1
)i = 1.

The number of endomorphisms zg j and zi jkl is 2(2n + 2)+ 24 = 2n+1 + 20, which contradicts property
40. Therefore, G

′
cannot be a generalized quaternion group. The lemma is proved.

It is now possible to find the values of s and t.

Lemma 5.7. t = 1.

Proof. Assume that t ≥ 2. Choose g ∈ G
′

of order four and h ∈ G \G
′

of order two. By Lemmas 5.1 and
5.3, it is possible. Then h = cu2s−1

av2t−1
d for some u, v ∈ Z2 and d ∈ G

′
. Clearly, g2 ∈ Z(G). Therefore,

there exist proper endomorphisms zi j = y(gi; g j), wkl = y(hg2k; hg2l), and z = y(h; 1) (i, j ∈ Z4; k, l ∈ Z2).
Clearly, z2

i j = z2 = 0. Similarly to the proof of Lemma 5.6, one can prove that w2
kl = 0. The number of

endomorphisms zi j, wkl and z is 16+4+1 = 21. This contradicts property 40. Therefore, t = 1. The lemma
is proved.

Lemma 5.8. Let b ∈ G
′

be an element of order four and h ∈ G \G
′

be an element of order two. Then
h = c2s−1

d for some d ∈ G
′
and

{z ∈ End(G)\Aut(G) | z2 = 0}= {zi jkl, wαβ | β , i, j, k, l ∈ Z2; α =±1},
where zi jkl = y(hib2 j; hkb2l) and wαβ = y(bα ; b2β ).

Proof. Let b ∈ G
′

be an element of order four and h ∈ G\G
′

be an element of order two. By Lemmas 5.1,
5.4, and 5.6, there exist those elements. Then h = cu2s−1

av2t−1
d = cu2s−1

avd for some u, v ∈ Z2 and d ∈ G
′
.

If v = 1, then G = 〈c, G
′〉h 〈h〉, which contradicts property 30. Therefore, v = 0, u = 1, and h = c2s−1

d.
Since b2 ∈ Z(G), the maps zi jkl and wαβ given in the lemma are the proper endomorphisms of G.

Evidently, w2
αβ = 0. Since G

′
zi jkl = 〈1〉 and

cz2
i jkl = (hib2 j)zi jkl = (hzi jkl)i = ((c2s−1

d)zi jkl)i = (czi jkl)i2s−1
= (hib2 j)i2s−1

= 1,

az2
i jkl = (hkb2l)zi jkl = (hzi jkl)k = ((c2s−1

d)zi jkl)k = (czi jkl)k2s−1
= (hib2 j)k2s−1

= 1,

we have z2
i jkl = 0. The number of endomorphisms zi jkl and wαβ is 24 + 2 · 2 = 20. Property 40 implies the

second statement of the lemma. The lemma is proved.
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Lemma 5.9. The group H = 〈a, G
′〉 is cyclic.

Proof. By Lemmas 5.6 and 5.8, H has only one element of order two. Therefore, H is cyclic or a generalized
quaternion group

Qn = 〈a0, b0 | a2n

0 = 1, b2
0 = a2n−1

0 , b−1
0 a0b0 = a−1

0 〉, n≥ 2,

([15], Theorem 5.3.6). Assume that H = Qn. The elements b0aγ
0 (γ ∈Z2n) are the elements of order four and

there exist proper endomorphisms xγ = y(b0aγ
0; 1) of G. By the construction, x2

γ = 0. Since the number of
such endomorphisms is 2n ≥ 4, some of them are different from the endomorphisms given in Lemma 5.8.
This contradiction implies that H 6= Qn. Hence H is cyclic. The lemma is proved.

Lemma 5.10. s = 2.

Proof. On the contrary, assume that s≥ 3. If the order of c2s
is two, then the order of c2s−1

is four and there
exist a proper endomorphism z = y(c2s−1

; 1). We have z2 = 0:

cz2 = c2s−1
z = (c2s−1

)2s−1
= c2s+s−2

= 1, az2 = 1.

The endomorphism z differs from the endomorphisms which were given in Lemma 5.8. Therefore,
o(c2s

) 6= 2 and there exists an integer k such that the order of c2sk is four. By Lemma 5.8, there exist an
element h = c2s−1

d of order two, where d ∈ G
′
. Since c2sk ∈ G

′
, the elements c2sk and h commute. Hence

there exists the proper endomorphism z = y(c2sk; h). In this case also z2 = 0:

cz2 = c2skz = (c2sk)2sk = 1,

az2 = hz = (c2s−1
d)z = (cz)2

s−1

= (c2sk)2s−1
= 1.

The endomorphism z differs from the endomorphisms which were given in Lemma 5.8. Therefore, the case
s≥ 3 is impossible. The lemma is proved.

By Lemma 5.9, the group 〈a, G
′〉 is cyclic. Therefore, we can assume that 〈a, G

′〉= 〈a〉 ∼= C2m for some
m. By (5.6) and Lemmas 5.3, 5.7, and 5.10, m≥ 3 and c4 = a2u for some u ∈ Z2m−1 . Let us present u in the
form

u = u02n, u0 ≡ 1(mod2), 0≤ n≤ m−2

(by (5.7), n 6= m− 1). We can assume that u0 = 1, because we can replace a with suitable ai, where
i ≡ 1(mod2). By (5.6), c−1ac = ar for some r ∈ Z2m , r ≡ 1(mod2). Since c−iaci = ari

and c4 = a2u,
we have r4 ≡ 1(mod2m).

Let us summarize the obtained results on the group G:

G = 〈c, a | a2m
= 1, c4 = a2n+1

, c−1ac = ar〉, (5.12)

where
r4 ≡ 1(mod2m), m≥ 3, 0≤ n≤ m−2.

Since r = 1+2v for an integer v, we have

r2 = 1+4v+4v2, r2 ≡ 1(mod4), (5.13)

1+ r2 = 2(1+2v+2v2) = 2(1+2v0).

Our next aim is to find all elements g∈G such that g4 = 1 and to prove that these elements commute with
each other. Using the obtained results, we find the proper endomorphisms of G and certain automorphisms
of G. It allows us to prove that m = 3 and n = 1. Finally, this implies the order structure of elements of G
and the isomorphism G∼= G32.
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Lemma 5.11. If g ∈ G and g4 = 1, then

g = as2m−2
or g = c2a−2n(1+2v0)−1+s2m−2

,

where s ∈ Z4.

Proof. Clearly, if g = ai, i ∈ Z2m , then g4 = 1 if and only if g = as2m−2
for some s ∈ Z4. Assume g 6∈ 〈a〉

and g4 = 1. Then g = ckai for some k ∈ {1, 2, 3} and i ∈ Z2m . If k = 1 or k = 3, then G = 〈a〉h 〈g〉 and the
projection of G onto 〈g〉 contradicts property 30. Hence g = c2ai for some i ∈ Z2m and

g2 = c2ai · c2ai = c4 · c−2aic2 ·ai = a2n+1 ·air2 ·ai = a2n+1+i(1+r2),

g4 = (c2ai)4 = a2n+2+2i(1+r2).
(5.14)

Therefore, g4 = 1 if and only if

2n+2 +2i(1+ r2)≡ 0(mod2m),

2n+2 +4i(1+2v0)≡ 0(mod2m),

i≡−2n(1+2v0)−1 (mod2m−2),

i =−2n(1+2v0)−1 + s2m−2

for some s ∈ Z4. The lemma is proved.
Similarly, using (5.14), we get

Lemma 5.12. If g ∈ G and g2 = 1, then

g = aw2m−1
or g = c2a−2n(1+2v0)−1+w2m−1

,

where w ∈ Z2.

Lemma 5.13. If g, h ∈ G and g4 = h4 = 1, then gh = hg.

Proof. By (5.12) and (5.13),

c−2a2m−2
c2 = ar22m−2

= a2m−2
, c2 ·a2m−2

= a2m−2 · c2.

By Lemma 5.11, if g = as2m−2
(s ∈ Z4), then gh = hg for each h ∈ G such that h4 = 1. Assume that

g = c2ak+s12m−2
, h = c2ak+s22m−2

,

where k =−2n(1+2v0)−1. Then

gh = c2ak+s12m−2 · c2ak+s22m−2
= c4 · c−2ak+s12m−2

c2 ·ak+s22m−2

= a2n+1 ·ar2(k+s12m−2) ·ak+s22m−2
= a2n+1+k(1+r2)+(s1+s2)2m−2

,

because
r2(k + s12m−2)≡ r2k +(1+4v+4v2)s12m−2 ≡ r2k + s12m−2 (mod2m).

It follows from here that gh = hg. The lemma is proved.
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Lemma 5.14. We have

End(G)\Aut(G) = {y(g; h) | g, h ∈ G; g4 = h2 = 1}. (5.15)

If x ∈ End(G)\Aut(G), then
G

′ ⊂ Kerx. (5.16)

Proof. In view of Lemma 5.13 and 〈cG
′〉× 〈aG

′〉 ∼= C4×C2, the proper endomorphism y(g; h) exists for
each g, h ∈G such that g4 = h2 = 1. By Lemmas 5.11 and 5.12, the numbers of elements g and h, satisfying
g4 = h2 = 1, are 8 and 4, respectively. Therefore, the number of proper endomorphisms y(g; h) of G is
8 · 4 = 32. Property 20 implies that each proper endomorphism of G has this form. Hence (5.15) holds. It
follows also that Imx is Abelian and hence G

′ ⊂Kerx for each proper endomorphism x of G. The lemma is
proved.

Lemma 5.15. The map y : G−→ G given by

cy = c1+4i = cai2n+1
, ay = a j, i ∈ Z2m−n−1 , j ∈ Z2m , (5.17)

on the generators of G, induces an endomorphism of G if and only if

j ≡ 1+4i(mod2m−n−1). (5.18)

The number of such endomorphisms is 2m and those endomorphisms are automorphisms of G.

Proof. The map y given by (5.17) induces an endomorphism of G if and only if it preserves the generating
relations (5.12) of G, i.e.,

(ay)2m
= 1, (cy)4 = (ay)2n+1

, (cy)−1(ay)(cy) = (ay)r. (5.19)

Clearly, (ay)2m
= 1 for all values of i and j. The last equation of (5.19) holds also for all values of i and j:

(cy)−1(ay)(cy) = c−(1+4i)a jc1+4i = a jr1+4i
= a jr = (ay)r.

Since
(cy)4 = c4(1+4i) = a2n+1(1+4i), (ay)2n+1

= a j2n+1
,

the second equation of (5.19) holds if and only if equivalence (5.18) is true. The first part of the lemma is
proved.

In view of (5.18) and (5.19), we have j ≡ 1(mod2), and, therefore, G = 〈c, a〉 = 〈cy, ay〉, i.e., y is an
automorphism of G. The solutions of (5.19) are

i ∈ Z2m−n−1 , j = 1+4i+ s2m−n−1, s ∈ Z2n+1

and the number of solutions is 2m−n−1 ·2n+1 = 2m. The lemma is proved.

Lemma 5.16. m≤ 4, n≤ m−2≤ 2.

Proof. Assume that x is a proper endomorphism of G and let y be an automorphism of G given by
Lemma 5.15. Then

c−1 · cy, a−1 ·ay ∈ 〈a2〉= G
′
.

By (5.16),
(c−1 · cy)x = (a−1 ·ay)x = 1, c(yx) = cx, a(yx) = ax,

i.e., yx = x. Property 60 and Lemma 5.15 follow m≤ 4. Hence n≤ m−2≤ 2. The lemma is proved.
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Lemma 5.17. m = 3.

Proof. Let us examine the map y : G−→ G given as follows:

cy = ca2i, ay = a j, (cwat)y = (cy)
w
(ay)t ,

where i ∈ Z2m−1 ; j, t ∈ Z2m , w = 0, 1, 2, 3. It is easy to check that the map y preserves the generating
relations and induces an endomorphism of G if and only if

2n+1 +2i(1+ r)(1+ r2)≡ j2n+1 (mod2m).

The solution of the last congruence is

j ≡ 1+22−ni(1+ v)(1+2v0)(mod2m−n−1),

i.e.,
j = 1+22−ni(1+ v)(1+2v0)+ s2m−n−1, s ∈ Z2n+1 . (5.20)

By Lemma 5.16, m = 3 or m = 4. Assume on the contrary that m = 4.
If v is odd, then similarly to Lemma 5.16, the obtained endomorphism is an automorphism and yx = x

for each proper endomorphism of G. Therefore, by property 60, the number of solutions (5.20) is ≤ 16.
The numbers of possible values for i and s are 2m−1 = 23 and 2n+1, respectively. Hence the number of
automorphisms y is 23 ·2n+1 = 2n+4. By property 60, 2n+4 ≤ 16, i.e., n = 0.

If v is even and n < 2, then similarly to the previous segment, n = 0. If v is even and n = 2, then we can
choose s = 0 and i such that

i(1+ v)(1+2v0)≡ 1(mod16).

In this case, we get an endomorphism
cy = ca2i, ay = a2,

which is a proper endomorphism and ay is of order eight. This contradicts Lemma 5.14.
We have proved that if m = 4, then n = 0 and G is given by the relations

a16 = 1, c4 = a2, c−1ac = ar

or, equivalently, by the relations
c32 = 1, a2 = c4, a−1ca = cρ

for some ρ 6= 1 such that
ρ2 ≡ 1(mod32). (5.21)

Congruence (5.21) is satisfied only for ρ ∈ {15,−15,−1}. If ρ = 15, then [c, a] = cρ−1 = c14 and c2 ∈ G
′
,

which is impossible. Similarly, the case ρ =−1 is impossible. If ρ =−15, then [c, a] = c−16 = c16 ∈ Z(G)
and G

′
= 〈c16〉 ∼= C2, which is also impossible. Therefore, the case m = 4 is impossible and m = 3. The

lemma is proved.

By Lemmas 5.16 and 5.17, the group G is a group of order 32 and it is given by the relations

a8 = 1, c4 = a2n+1
, c−1ac = ar, 0≤ n≤ 1.

Similarly to the last part of the proof of Lemma 5.17, it is easy to check that the case n = 0 is impossible.
Hence n = 1 and

c4 = a4.

We have r 6= 1, because G is non-Abelian. Also r 6= −3, because otherwise [a, c] = a−4, and we have
G

′
= 〈a4〉 ∼= C2, which is impossible. Hence r = 3 or r = −1. In both cases the numbers of elements of

order two is 3, of order four is 4, and of order eight is 24. By [5], there is only one non-Abelian group of
order 32 which has this order structure of its elements. This group is G32. The theorem is proved.
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Theorem 5.2. The group G32 is determined by its endomorphism semigroup in the class of all groups.

Proof. Let G∗ be a group such that the endomorphism semigroups of G∗ and G32 are isomorphic:

End(G∗)∼= End(G32). (5.22)

Since End(G∗) is finite, so is G∗ ([1], Theorem 2). The group G32 satisfies properties 10–60 of Theorem 5.1.
In view of isomorphism (5.22), the group G∗ satisfies also these properties. Properties 10–30 imply that G∗
is a 2-group. By Lemma 3.5 and isomorphism (5.22), |G∗| ≥ 32. Theorem 5.1 implies the isomorphism
G∗ ∼= G32. The theorem is proved.
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Maksimaalset alamrühma C8×C2 omavate 32. järku
rühmade endomorfismidest

Piret Puusemp ja Peeter Puusemp

On tõestatud, et kõik 32. järku rühmad, mille üheks maksimaalseks alamrühmaks on C8×C2, on määratud
oma endomorfismipoolrühmadega kõigi rühmade klassis. Ühtlasi on antud mainitud rühmade kirjeldused
nende endomorfismipoolrühmade kaudu.


