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Abstract. We consider invariant submanifolds of a trans-Sasakian manifold and obtain the conditions under which the submanifolds
are totally geodesic. We also study invariant submanifolds of a trans-Sasakian manifold satisfying Z(X ,Y ).h = 0, where Z is the
concircular curvature tensor.
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1. INTRODUCTION

Invariant submanifolds of a contact manifold have been a major area of research for a long time since
the concept was borrowed from complex geometry. It helps us to understand several important topics
of applied mathematics; for example, in studying non-linear autonomous systems the idea of invariant
submanifolds plays an important role [9]. A submanifold of a contact manifold is said to be totally geo-
desic if every geodesic in that submanifold is also geodesic in the ambient manifold. In 1985, Oubina [14]
introduced a new class of almost contact manifolds, namely, trans-Sasakian manifold of type (α,β ), which
can be considered as a generalization of Sasakian, Kenmotsu, and cosymplectic manifolds. Trans-Sasakian
structures of type (0,0), (0,β ), and (α,0) are cosymplectic [2], β -Kenmotsu [10], and α-Sasakian [10],
respectively. Kon [12] proved that invariant submanifolds of a Sasakian manifold are totally geodesic
if the second fundamental form of the immersion is covariantly constant. On the other hand, any sub-
manifold M of a Kenmotsu manifold is totally geodesic if and only if the second fundamental form of the
immersion is covariantly constant, provided ξ ∈ T M [11]. Recently, Sular and Özgür [16] proved some
equivalent conditions regarding the submanifolds of a Kenmotsu manifold to be totally geodesic. Several
studies ([5,17]) have been done on invariant submanifolds of trans-Sasakian manifolds. Recently, Sarkar
and Sen [15] proved some equivalent conditions of an invariant submanifold of trans-Sasakian manifolds to
be totally geodesic. In the present paper we rectify proofs of most of the major theorems of [15] and [17],
show some theorems of [15] as corollary of our present results, and also introduce some new equivalent
conditions for an invariant submanifold of a trans-Sasakian manifold to be totally geodesic.

2. PRELIMINARIES

Let M be a connected almost contact metric manifold with an almost contact metric structure (φ ,ξ ,η ,g),
that is, φ is a (1,1)-tensor field, ξ is a vector field, η is a one-form, and g is the compatible Riemannian
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metric such that
φ 2(X) =−X +η(X)ξ , η(ξ ) = 1, φξ = 0, η ◦φ = 0, (2.1)

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ), (2.2)

g(X ,φY ) =−g(φX ,Y ), g(X ,ξ ) = η(X), (2.3)

for all X ,Y ∈ T M ([2,18]). The fundamental two-form Φ of the manifold is defined by

Φ(X ,Y ) = g(X ,φY ), (2.4)

for X ,Y ∈ T M.
An almost contact metric structure (φ ,ξ ,η ,g) on a connected manifold M is called a trans-Sasakian

structure [14] if (M×R, J, G) belongs to the class W4 [8], where J is the almost complex structure on
M×R defined by

J(X , f d/dt) = (φX− f ξ ,η(X)d/dt),

for all vector fields X on M and smooth functions f on M×R, and G is the product metric on M×R. This
may be expressed by the condition [3]

(∇̄X φ)Y = α(g(X ,Y )ξ −η(Y )X)+β (g(φX ,Y )ξ −η(Y )φX) (2.5)

for smooth functions α and β on M. Here we say that the trans-Sasakian structure is of type (α,β ). From
the formula (2.5) it follows that

∇̄X ξ =−αφX +β (X−η(X)ξ ), (2.6)

(∇̄X η)Y =−αg(φX ,Y )+βg(φX ,φY ). (2.7)

In a (2n+1)-dimensional trans-Sasakian manifold we also have the following:

S(X ,ξ ) = 2n(α2−β 2)η(X)− (2n−1)Xβ −η(X)ξ β − (φX)α, (2.8)
R(X ,Y )ξ = (α2−β 2)(η(Y )X−η(X)Y )+2αβ (η(Y )φX−η(X)φY )

−(Xα)φY +(Y α)φX− (Xβ )φ 2X +Y βφ 2X , (2.9)
R(X ,ξ )ξ = (α2−β 2)(X−η(X)ξ )+2αβφX +(ξ α)φX +(ξ β )φ 2X , (2.10)

where S is the Ricci tensor of type (0,2) and R is the curvature tensor of type (1,3).
Let M be a submanifold of a contact manifold M. We denote by ∇ and ∇̄ the Levi-Civita connections

of M and M, respectively, and by T⊥(M) the normal bundle of M. Then for vector fields X ,Y ∈ T M, the
second fundamental form h is given by the formula

h(X ,Y ) = ∇̄XY −∇XY. (2.11)

Furthermore, for N ∈ T⊥M
ANX = ∇⊥

X N− ∇̄X N, (2.12)

where ∇⊥ denotes the normal connection of M. The second fundamental form h and AN are related by
g(h(X ,Y ),N) = g(ANX ,Y ) [4].

The submanifold M is totally geodesic if and only if h = 0.
An immersion is said to be parallel and semi-parallel [6] if for all X ,Y ∈ T M we get ∇.h = 0 and

R(X ,Y ).h = 0, respectively.
It is said to be pseudo-parallel [7] if for all X ,Y ∈ T M we get

R(X ,Y ).h = f Q(g,h), (2.13)
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where f denotes a real function on M and Q(E,T ) is defined by

Q(E,T )(X ,Y,Z,W ) =−T ((X ∧E Y )Z,W )−T (Z,(X ∧E Y )W ), (2.14)

where X ∧E Y is defined by
(X ∧E Y )Z = E(Y,Z)X−E(X ,Z)Y.

If f = 0, the immersion is semi-parallel.
Similarly, an immersion is said to be 2-pseudo-parallel if for all X ,Y ∈ T M we get R(X ,Y ).∇h =

f Q(g,∇h), and Ricci generalized pseudo-parallel [13] if R(X ,Y ).h = f Q(S,h), for all X ,Y ∈ T M.
The second fundamental form h satisfying

(∇Zh)(X ,Y ) = A(Z)h(X ,Y ), (2.15)

where A is a nonzero one-form, is said to be recurrent. It is said to be 2-recurrent if h satisfies

(∇X ∇Y h−∇∇XY h)(Z,W ) = B(X ,Y )h(Z,W ), (2.16)

where B is a nonzero two-form.

Proposition 2.1. [5] An invariant submanifold of a trans-Sasakian manifold is also trans-Sasakian.

Proposition 2.2. [5] Let M be an invariant submanifold of a trans-Sasakian manifold M̄. Then we have

h(X ,φY ) = φ(h(X ,Y )), (2.17)
h(φX ,φY ) = −(h(X ,Y )), (2.18)

h(X ,ξ ) = 0, (2.19)

for any vector fields X and Y on M.

For a Riemannian manifold, the concircular curvature tensor Z is defined by

Z(X ,Y )V = R(X ,Y )V − τ
n(n−1)

[g(Y,V )X−g(X ,V )Y ], (2.20)

for vectors X ,Y,V ∈ T M, where τ is the scalar curvature of M. We also have

(Z(X ,Y ).h)(U,V ) = R⊥(X ,Y )h(U,V )−h(Z(X ,Y )U,V )−h(U,Z(X ,Y )V ). (2.21)

In the next section we consider the submanifold M to be tangent to ξ .

3. INVARIANT SUBMANIFOLDS OF A TRANS-SASAKIAN MANIFOLD WITH
α,β = CONSTANT

Lemma 3.1. If a non-flat Riemannian manifold has a recurrent second fundamental form, then it is semi-
parallel.

Proof. The second fundamental form h is said to be recurrent if

∇h = A⊗h,

where A is an everywhere nonzero one-form.
We define a function e on M by

e2 = g(h,h). (3.1)
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Then we have e(Ye) = e2A(Y ). So we obtain Ye = eA(Y ), since f is nonzero. This implies that

X(Ye)−Y (Xe) = (XA(Y )−YA(X))e.

Therefore we get
[∇̄X ∇̄Y − ∇̄Y ∇̄X − ∇̄[X ,Y ]]e = [XA(Y )−YA(X)−A([X ,Y ])]e.

Since the left-hand side of the above equation is identically zero and e is nonzero on M by our assumption,
we obtain

dA(X ,Y ) = 0, (3.2)

that is, the one-form A is closed.
Now from (∇X h)(U,V ) = A(X)h(U,V ) we get

(∇̄U ∇̄V h)(X ,Y )− (∇̄∇̄UV h)(X ,Y ) = [(∇̄U A)V +A(U)A(V )]h(X ,Y ) = 0.

Using (3.2) we get
(R(X ,Y ).h)(U,V ) = [2dA(X ,Y )]h(X ,Y ) = 0.

Therefore, for a recurrent second fundamental form we have

R(X ,Y ).h = 0

for any vectors X ,Y on M.
If e = 0, then from (3.1) we get h = 0 and thus R(X ,Y ).h = 0.
Hence the lemma.

Theorem 3.1. An invariant submanifold of a non-cosymplectic trans-Sasakian manifold is totally geodesic
if and only if its second fundamental form is parallel.

Proof. Since h is parallel, we have
(∇X h)(Y,Z) = 0,

which implies
∇⊥

X h(Y,Z)−h(∇XY,Z)−h(Y,∇X Z) = 0.

Putting Z = ξ in the above equation and applying (2.19) we obtain

h(Y,∇X ξ ) = 0. (3.3)

So from (2.6) and the above equation (3.3) we obtain

αh(X ,Y ) = βϕh(X ,Y ). (3.4)

Applying ϕ to both sides of (3.4) we get

αϕh(X ,Y ) =−βh(X ,Y ). (3.5)

From (3.4) and (3.5) we conclude that

(α2 +β 2)h(X ,Y ) = 0.

Hence for a non-cosymplectic trans-Sasakian manifold h(X ,Y ) = 0, for all X ,Y ∈ T M.
The converse part is trivial. Hence the result.
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Remark 3.1. In Theorem 3.1 [15] the authors proved the same result, but they actually proved h(Y,∇X ξ ) =
0, and h(Y,ξ ) = 0, ∀X ,Y ∈ T M. Since ∇X ξ is not an arbitrary vector of T M, hence from this we can not
conclude that the submanifold is totally geodesic.

Remark 3.2. Again in the proof of Theorem 4.8 [17] the authors assumed φ(h(X ,Y )) = 0, ∀X ,Y ∈ T M,
which is not true in general because this condition directly implies that the submanifold is totally geodesic.

Theorem 3.2. An invariant submanifold of a non-cosymplectic trans-Sasakian manifold is totally geodesic
if and only if its second fundamental form is semi-parallel.

Proof. Since h is semi-parallel, we have

(R(X ,Y ).h)(U,V ) = 0, (3.6)

which implies
R⊥(X ,Y )h(U,V )+h(R(X ,Y )U,V )−h(U,R(X ,Y )V ) = 0. (3.7)

Putting V = ξ = Y and applying (2.19) we get from Eq. (3.7)

h(U,R(X ,ξ )ξ ) = 0.

So from (2.10) and (2.19) we get

(α2−β 2)h(U,X) = 2αβϕh(U,X). (3.8)

Applying ϕ to both sides of Eq. (3.8) we obtain

(α2−β 2)ϕh(U,X) =−2αβh(U,X). (3.9)

So from (3.8) and (3.9) we conclude that

(α2 +β 2)2h(U,X) = 0.

Hence as in the previous case, for non-cosymplectic trans-Sasakian manifolds the invariant submanifold is
totally geodesic. The converse part follows trivially.

Now, by Lemma 3.1 we get that if a second fundamental form is recurrent, then it is semi-parallel. Also,
the second fundamental form of a totally geodesic submanifold is trivially recurrent, so from Theorem 3.2
we obtain the following:

Corollary 3.1. An invariant submanifold of a non-cosymplectic trans-Sasakian manifold is totally geodesic
if and only if its second fundamental form is recurrent.

Remark 3.3. In Theorem 3.2 [15] the authors proved the above corollary, but they just showed that
h(Y,∇X ξ ) = 0, and h(Y,ξ ) = 0, ∀X ,Y ∈ T M. Since ∇X ξ is not an arbitrary vector of T M, we can not
conclude from this that the submanifold is totally geodesic.

In [1] Aikawa and Matsuyama proved that if a tensor field T is 2-recurrent, then R(X ,Y ).T = 0. Also
it can be easily seen that in a totally geodesic submanifold the second fundamental form is 2-recurrent.
Therefore by Theorem 3.2 we also obtain the following:

Corollary 3.2. An invariant submanifold of a non-cosymplectic trans-Sasakian manifold is totally geodesic
if and only if its second fundamental form is 2-recurrent.

Remark 3.4. In Theorem 3.4 [15] the authors proved the above corollary, but they considered ∇X ξ
as an arbitrary vector of T M, and actually proved h(Y,∇X ξ ) = 0, ∀X ,Y ∈ T M, hence the proof of
Theorem 3.4 [15] is incorrect.
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Theorem 3.3. An invariant submanifold of a trans-Sasakian manifold is totally geodesic if and only if its
second fundamental form is 2-semi-parallel, provided α2(α2−3β 2)2 +β 2(β 2−3α2)2 6= 0.

Proof. Since, the second fundamental form is 2-semi-parallel, we have

(R(X ,Y ).(∇U h))(Z,W ) = 0,

which implies

(R⊥(X ,Y )(∇U h))(Z,W )− (∇U h)(R(X ,Y )Z,W )− (∇U h)(Z,R(X ,Y )W ) = 0.

Now,
(R⊥(X ,ξ )(∇U h))(ξ ,ξ ) = 0,

(∇U h)(R(X ,ξ )ξ ,ξ ) = (∇U h)((α2−β 2)(X−η(X)ξ )+2αβφX ,ξ )

=−h((α2−β 2)(X−η(X)ξ )+2αβφX ,−αφU−βφ 2U)

= α(α2−β 2)h(X ,φU)+2α2βh(φX ,φU)+β (α2−β 2)h(X ,φ 2U)

+2αβ 2h(φX ,φ 2U)

= α(α2−3β 2)φh(X ,U)+β (β 2−3α2)h(X ,U).

Similarly,
(∇U h)(ξ ,R(X ,ξ )ξ ) = α(α2−3β 2)φh(X ,U)+β (β 2−3α2)h(X ,U). (3.10)

So putting Y = Z = W = ξ in (3.10) we obtain

α(α2−3β 2)φh(X ,U)+β (β 2−3α2)h(X ,U) = 0. (3.11)

Applying φ on both sides of (3.11) we get

α(α2−3β 2)h(X ,U) = β (β 2−3α2)φh(X ,U). (3.12)

From (3.11) and (3.12) we conclude that

[α2(α2−3β 2)2 +β 2(β 2−3α2)2]h(X ,U) = 0.

Hence the submanifold is totally geodesic. The converse holds trivially.

Theorem 3.4. An invariant submanifold of a trans-Sasakian manifold is totally geodesic if and only if its
second fundamental form is pseudo-parallel, provided [(α2−β 2− f )2 +4α2β 2] 6= 0.

Proof. Since the second fundamental form is pseudo-parallel, we have

(R(X ,Y ).h)(U,V ) = f Q(g,h)(X ,Y,U,V ),

which implies

(R⊥(X ,Y ))h(U,V )−h(R(X ,Y )U,V )−h(U,R(X ,Y )V )
= f (−g(V,X)h(U,Y )+g(U,X)h(V,Y )−g(V,Y )h(U,X)+g(U,Y )h(V,X)). (3.13)

Putting V = ξ = Y in Eq. (3.13) and applying (2.19) and (2.10) we obtain

−h(U,(α2−β 2)X +2αβϕX) = f (−h(U,X)). (3.14)
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Applying ϕ to both sides of (3.14) we obtain

(α2−β 2− f )ϕh(U,X) = 2αβh(U,X). (3.15)

From (3.14) and (3.15) we conclude that

[(α2−β 2− f )2 +4α2β 2]h(U,X) = 0.

Hence the submanifold is totally geodesic. The converse holds trivially.

Theorem 3.5. An invariant submanifold of a trans-Sasakian manifold is totally geodesic if and only if its
second fundamental form is 2-pseudo-parallel.

Proof. Since, the second fundamental form is 2-pseudo-parallel, we have

(R(X ,Y ).∇Zh)(U,V ) = f Q(g,∇Zh)(X ,Y,U,V ). (3.16)

Now,

(R(X ,Y ).∇Zh)(U,V ) = R⊥(X ,Y )(∇Zh)(U,V )− (∇Zh)(R(X ,Y )U,V )− (∇Zh)(U,R(X ,Y )V ). (3.17)

From (2.10) and (2.19) we have
(∇Zh)(ξ ,ξ ) = 0 (3.18)

and

(∇Zh)(R(X ,ξ )ξ ,ξ ) =−h(R(X ,ξ )ξ ,∇Zξ )

= α(α2−β 2)h(X ,φZ)+β (α2−β 2)h(X ,φ 2Z)−2α2βh(φX ,φZ)−2αβ 2h(φX ,φ 2Z)

= (α2 +β 2)(αφh(X ,Z)+βh(X ,Z)). (3.19)

So, putting Y = U = V = ξ in (3.16) we obtain

2(α2 +β 2)(αφh(X ,Z)+βh(X ,Z)) = 0, (3.20)

which implies
αφh(X ,Z)+βh(X ,Z) = 0. (3.21)

Applying φ on both sides of Eq. (3.21) we get

αh(X ,Z) = βφh(X ,Z). (3.22)

Combining (3.21) and (3.22) we conclude that

[α2 +β 2]h(X ,Z) = 0. (3.23)

Hence the submanifold is totally geodesic. The converse holds trivially.

Theorem 3.6. An invariant submanifold of a trans-Sasakian manifold is totally geodesic if and only
if its second fundamental form is Ricci generalized pseudo-parallel, provided
[(α2−β 2)2(1−2n f )2 +4α2β 2] 6= 0.
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Proof. Since the submanifold is Ricci generalized pseudo-parallel, we have

(R(X ,Y ).h)(U,V ) = f Q(S,h)(X ,Y,U,V ). (3.24)

So,

R(X ,Y )h(U,V )−h(R(X ,Y )U,V )−h(U,R(X ,Y )V )
= f (−S(V,X)h(U,Y )+S(U,X)h(V,Y )−S(V,Y )h(X ,U)+S(U,Y )h(X ,V )). (3.25)

Putting Y = V = ξ and applying (2.19) we obtain

−h(U,R(X ,ξ )ξ ) =− f S(ξ ,ξ )h(X ,U).

Since α and β are constants, from (2.19), (2.10), and (2.8) we can write

(α2−β 2)(1−2n f )h(X ,U) = 2αβϕh(X ,U). (3.26)

Applying ϕ on both sides of (3.26) we obtain

(α2−β 2)(1−2n f )ϕh(X ,U) =−2αβh(X ,U). (3.27)

From (3.26) and (3.27) we conclude that

[(α2−β 2)2(1−2n f )2 +4α2β 2]h(X ,U) = 0.

Hence the submanifold is totally geodesic. The converse holds trivially.

Theorem 3.7. An invariant submanifold of a trans-Sasakian manifold is totally geodesic if and only if it
satisfies Z(X ,Y ).h = 0, provided (α2−β 2− τ

2n(2n+1))
2 +4α2β 2 6= 0.

Proof. We have
(Z(X ,Y ).h)(U,V ) = 0.

So from (2.21) we can write

R⊥(X ,Y )h(UV )−h(Z(X ,Y )U,V )−h(Z(X ,Y )U,V ) = 0.

Putting Y = V = ξ in the above equation and applying (2.19) we obtain

h(U,Z(X ,ξ )ξ ) = 0,

which implies that

h
(

U,(α2−β 2)X +2αβφX− τ
2n(2n+1)

X
)

= 0,since h(X ,ξ ) = 0.

Simplifying we get [
(α2−β 2)− τ

2n(2n+1)

]
h(U,X)+2αβφh(U,X) = 0. (3.28)

Applying φ on both sides of the above equation we get
[
(α2−β 2)− τ

2n(2n+1)

]
φh(U,X) = 2αβh(U,X). (3.29)

From (3.28) and (3.29) we conclude
[(

α2−β 2− τ
2n(2n+1)

)2

+4α2β 2

]
h(U,X) = 0.

The converse part follows trivially. Hence the result.
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4. CONCLUSION

A trans-Sasakian manifold can be regarded as a generalization of Sasakian, Kenmotsu, and cosymplectic
structures. For an invariant submanifold of a trans-Sasakian manifold with constant coefficients the follow-
ing conditions are equivalent under certain conditions:
• the submanifold is totally geodesic,
• the second fundamental form of the submanifold is parallel,
• the second fundamental form of the submanifold is semi-parallel,
• the second fundamental form of the submanifold is recurrent,
• the second fundamental form of the submanifold is 2-recurrent,
• the second fundamental form of the submanifold is 2-semi-parallel,
• the second fundamental form of the submanifold is pseudo-parallel,
• the second fundamental form of the submanifold is 2-pseudo-parallel,
• the second fundamental form of the submanifold is Ricci generalized pseudo-parallel,
• the second fundamental form of the submanifold satisfies Z(X ,Y ).h = 0.
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Täielikult geodeetilised trans-Sasaki muutkonna alammuutkonnad

Avik De

On vaadeldud invariantseid trans-Sasaki muutkonna alammuutkondi ja täiendatud nende täieliku geodee-
tilisuse tingimusi. Ühtlasi on uuritud trans-Sasaki muutkonna alammuutkondi, mille puhul Z(X ,Y ).h = 0,
kus Z on kontsirkulaarne kõverustensor.


