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Abstract. The paper develops further the algebraic formalism for nonlinear control systems defined on homogeneous time scales.
The delta derivative operator is extended to differential p-forms and vector fields.
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1. INTRODUCTION

Algebraic formalism for nonlinear control systems based on differential one-forms has been developed
separately for continuous-time systems [1] and discrete-time systems [2–4]. In [5] a single common
formalism based on time scale calculus has been introduced. It covers both the continuous- and discrete-
time cases in such a manner that those are the special cases of the formalism. However, it has to be stressed
that in [5] the discrete-time system is described in terms of the difference operator unlike in the majority of
papers where the system is described via the shift operator (see for example [2–4,6,7]).

This paper may be understood as the continuation of paper [5], which developed the algebraic formalism
of differential one-forms associated with the nonlinear control system defined on a homogeneous time scale.
An inversive σ f -differential field K of meromorphic functions in system variables equipped with two
operators, delta derivative ∆ f , and forward jump σ f , was constructed under the nonrestrictive assumption
which guarantees the submersivity of the system. In the continuous-time case the delta derivative is just an
ordinary time derivative and the forward jump is an identity operator. In the discrete-time case the delta
derivative is the forward difference and the forward jump is the forward shift operator. Moreover, a vector
space E (over K ) of differential one-forms was introduced, the operators ∆ f and σ f were extended to E
and some of their properties were studied. The developed formalism has later been used in [8–11] to study
different modelling and analysis problems. In [12] the results of [5] were partly extended for the case of
regular but nonhomogeneous time scales. In the case of nonhomogeneous time scales the delta derivative
and shift operator do not commute. However, the main difficulty is related to the fact that the additional time
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variable t appears in functions from the differential rings associated with the control system. Therefore, in
the construction of the inversive closure of the differential ring the new variables depend on t and have
to be chosen to be smooth at each dense point of the time scale (see [12]). Moreover, the differential ring
associated with the considered system can have zero devisors, so it is impossible to construct its quotient field
(see [12]). One can easily observe that taking the nonhomogeneous time scale the graininess function which
depends on point t from time scale T may not be continuous and consequently not delta differentiable, so
delta differentiability of the graininess function is the problem that one can encounter for nonhomogeneous
time scales. Then the computation of the higher-order delta derivatives of functions is not always possible.

The goal of this paper is to unify the calculus of p-forms, extend the operators of the delta derivative and
forward jump to p-forms and prove some of their properties. Moreover, we also introduce the dual space of
vector fields and extend the operators of the delta derivative and forward jump to vector fields.

2. TIME SCALE CALCULUS AND DIFFERENTIAL FIELD

For a general introduction to the calculus on time scales, see [13]. Here we recall only those notions and
facts that will be used later.

A time scale T is a nonempty closed subset of R. We assume that the topology of T is induced by R.
The forward jump operator σ : T→ T is defined as σ(t) := inf{s ∈ T | s > t}, σ(maxT) = maxT if there
exists a finite maxT, the backward jump operator ρ(t) : T→ T is defined as ρ(t) := sup{s ∈ T | s < t},
ρ(minT) = minT if there exists a finite minT. The graininess functions µ : T→ [0,∞) and ν : T→ [0,∞)
are defined by µ(t) = σ(t)− t and ν(t) = t−ρ(t), respectively. A time scale is called homogeneous if µ
and ν are constant functions.

Let Tκ denote a truncated set consisting of T except for a possible left-scattered maximal point. The
reason for omitting a maximal left-scattered point is to guarantee uniqueness of f ∆, defined below.

Definition 2.1. The delta derivative of a function f : T→R at t ∈ Tκ is the real number f ∆(t) (provided it
exists) such that for each ε > 0 there exists a neighbourhood U(ε) of t, U(ε)⊂T such that for all τ ∈U(ε),
|( f (σ(t))− f (τ))− f ∆(t)(σ(t)− τ)| 6 ε|σ(t)− τ|. Moreover, we say that f is delta differentiable on Tκ

provided f ∆(t) exists for all t ∈ Tκ .

For a function f : T→ R we can define the second delta derivative f [2] :=
(

f ∆)∆ provided that f ∆ is
delta differentiable on Tκ2

:= (Tκ)κ with the derivative f [2] : Tκ2 → R. Similarly we define higher-order

delta derivatives f [n] :Tκn →R, f [n] :=
(

f [n−1]
)∆

, where Tκn
=

(
Tκn−1

)κ
, n > 1. Note that for homogeneous

time scale Tκ = T, i.e. there is no left-scattered maximal point in T, so f [n], n > 1 are uniquely defined for
all t ∈ T. From now on we assume that T is homogeneous.

For f : T→R define f σ := f ◦σ . Denote f ∆σ :=
(

f ∆)σ and f σ∆ := ( f σ )∆.
If f and f ∆ are delta differentiable functions, then for homogeneous time scale one has f σ∆ = f ∆σ .
Consider now the control system, defined on a homogeneous time scale T,

x∆(t) = f (x(t),u(t)), (1)

where (x(t),u(t)) ∈U , U is an open subset of Rn×Rm, m 6 n, and f : U → Rn is analytic. Let us define
f̃ (x,u) := x+ µ f (x,u) and assume1 that there exists a map ϕ : U →Rm such that Φ = ( f̃ ,ϕ)T is an analytic
diffeomorphism from the set U onto U . This means that from (x̄,z) =

(
f̃ (x,u),ϕ(x,u)

)
= Φ(x,u) we can

uniquely compute (x,u) as an analytic function of (x̄,z). For µ = 0 this condition is always satisfied with
ϕ(x,u) = u.

1 This assumption guarantees that the system xσ = f̃ (x,u) is submersive, that is generically rank ∂ f̃ (x,u)
∂ (x,u) = n.
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The basic types of operators covered by the delta derivative are the time derivative, and the difference
operator [ f (t + 1)− f (t)]/µ . So, in the special case T = R, equation (1) becomes an ordinary differential
equation and when T= hZ, for h > 0, it becomes the difference equation.

For notational convenience, (x1, . . . ,xn) will simply be written as x, and
(

u[k]
1 , . . . ,u[k]

m

)
as u[k], for k > 0.

For i 6 k, let u[i...k] :=
(
u[i], . . . ,u[k]

)
. We assume that the input applied to system (1) is infinitely many

times delta differentiable, i.e. u[0...k] exists for all k > 0. Consider the infinite set of real (independent)
indeterminates

C =
{

xi, i = 1, . . . ,n, u[k]
j , j = 1, . . . ,m, k > 0

}

and let K be the (commutative) field of meromorphic functions in a finite number of the variables from the
set C . Let σ f : K →K be an operator defined by

σ f (F)
(

x,u[0...k+1]
)

:= ϕ
(

xσ ,
(

u[0...k]
)σ)

,

where F ∈K depends on x and u[0...k],
(
u[0...k]

)σ
= u[0...k] + µu[1...k+1], for k > 0 and by (1) xσ = x+ µx∆ =

x + µ f (x,u). We assume that (x,u) ∈U and the other variables are restricted in such a way that σ f is well

defined. Under the assumption about the existence of ϕ such that Φ =
(

f̃ ,ϕ
)

is an analytic diffeomorphism,
σ f is an injective endomorphism.

The field K can be equipped with a delta derivative operator ∆ f : K →K defined by

∆ f (F)
(

x,u[0...k+1]
)

=





1
µ

[
F

(
x+ µ f (x,u),u[0...k] + µu[1...k+1]

)
−F

(
x,u[0...k]

)]
, if µ 6= 0

∂F
∂x

(
x,u[0...k]

)
f (x,u)+ ∑

k>0

∂F
∂u[0...k]

(
x,u[0...k]

)
u[1...k+1], if µ = 0,

(2)

where F ∈K depends on x and u[0...k].
The more compact notations Fσ f and F∆ f will be sometimes used instead of σ f (F) and ∆ f (F).
The delta derivative ∆ f satisfies, for all F,G ∈K , the conditions

(i) ∆ f (F +G) = ∆ f (F)+∆ f (G),
(ii) ∆ f (FG) = ∆ f (F)G+σ f (F)∆ f (G) (generalized Leibniz rule).

An operator satisfying the generalized Leibniz rule is called a “σ f -derivation” and a commutative
field endowed with a σ f -derivation is called a σ f -differential field [14]. Therefore, under the assumption

about the existence of ϕ such that Φ =
(

f̃ ,ϕ
)

is an analytic diffeomorphism, K endowed with the delta

derivative ∆ f is a σ f -differential field. For µ = 0, σ f = σ−1
f = id and K is inversive. Although K is

not inversive in general, it is always possible to embed K into an inversive σ f -differential overfield K ∗,
called the inversive closure of K [14]. Since σ f is an injective endomorphism, it can be extended to K ∗
so that σ f : K ∗ → K ∗ is an automorphism. It was shown in [5] that for µ 6= 0 the inversive closure
of K may be constructed as the field of meromorphic functions in a finite number of the independent
variables C ∗ = C ∪ {z〈−`〉

s , s = 1, . . . ,m, ` > 1}, where the new variables are related by σ f as follows:

z〈−k〉
i = σ f

(
z〈−k−1〉

i

)
and zi = ϕi(x,u) = σ f

(
z〈−1〉

i

)
. Let z := (z1, . . . ,zm). Then σ−1

f (x,u) = ψ
(
x,z〈−1〉),

where ψ is a certain vector-valued function, determined by f in (1) and the extension z = ϕ(x,u). Although
the choice of variables z is not unique, all possible choices yield isomorphic field extensions. We extend the
operator ∆ f to new variables by

∆ f (z〈−`〉) :=
z〈−`+1〉− z〈−`〉

µ
, l ≥ 1.
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The extension of operator ∆ f to K ∗ can be made in analogy to (2). Such operator ∆ f is now a σ f -derivation
of K ∗. A practical procedure for the construction of K ∗ (for µ 6= 0) is given in [5].

From now on

C ∗ =

{
C , if µ = 0
C ∪{z〈−`〉| ` > 1}, if µ 6= 0.

Consider the infinite set of symbols dC ∗ = {dζi, ζi ∈ C ∗} and define E := spanK ∗dC ∗. Any element of E
is a vector of the form

ω =
n

∑
i=1

Aidxi + ∑
k>0

m

∑
j=1

B jkdu[k]
j + ∑̀

>1

m

∑
s=1

Cs`dz〈−`〉
s ,

where only a finite number of coefficients B jk and Cs` are nonzero elements of K ∗.
The elements of E are called differential one-forms. Let d : K ∗→ E be defined in the standard manner:

dF :=
n

∑
i=1

∂F
∂xi

dxi + ∑
k>0

m

∑
j=1

∂F

∂u[k]
j

du[k]
j + ∑̀

>1

m

∑
s=1

∂F

∂ z〈−`〉
s

dz〈−`〉
s . (3)

One says that ω ∈ E is an exact one-form if ω = dF for some F ∈K ∗. We will refer to dF as to the
total differential (or simply the differential) of F .

If ω = ∑
i

Aidζi is a one-form, where Ai ∈K ∗ and ζi ∈ C ∗, one can define the operators ∆ f : E → E and

σ f : E → E by
∆ f (ω) := ∑

i

{
∆ f (Ai)dζi +σ f (Ai)d [∆ f (ζi)]

}
,

and
σ f (ω) := ∑

i
σ f (Ai)d [σ f (ζi)] .

The operator σ f : E → E is invertible and the inverse operator ρ f := σ−1
f : E → E is defined by

σ−1
f

(
∑

i
Aidζi

)
= ∑

i
σ−1

f (Ai)d
[
σ−1

f (ζi)
]
,

for Ai ∈K ∗ and ζi ∈ C ∗.
Since σ f (Ai) = Ai + µ∆ f (Ai),

∆ f (ω) = ∑
i

{
∆ f (Ai)dζi +(Ai + µ∆ f (Ai))d [∆ f (ζi)]

}
.

It was shown in [5] that for the homogeneous time scale T we have

∆ f [dF ] = d
[
F∆ f

]
,

σ f [dF ] = d [Fσ f ] ,
(4)

where F ∈K ∗.
For one-forms similarly as for functions the more compact notations ω∆ f and ωσ f will be used instead

of ∆ f (ω) and σ f (ω).
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3. THE DUAL SPACE OF VECTOR FIELDS

Let E ′ be the dual vector space of E , i.e. the space of linear mappings from E to K ∗. The elements of E ′
are of the form

X =
n

∑
i=1

ai
∂

∂xi
+ ∑

k>0

m

∑
j=1

b jk
∂

∂u[k]
j

+ ∑̀
>0

m

∑
s=1

cs`
∂

∂ z〈−`〉
s

, (5)

where ai,b jk,cs` ∈ K ∗ and are called the vector fields. Taking ω = ∑n
i=1 Aidxi + ∑p

k=0 ∑m
j=1 B jkdu[k]

j +

∑q
`=1 ∑m

s=1Cs`dz〈−`〉
s ∈ E and the vector field X ∈ E ′ of the form (5), we get

X(ω) =: 〈X ,ω〉=
n

∑
i=1

aiAi +
p

∑
k=0

m

∑
j=1

b jkB jk +
q

∑̀
=1

m

∑
s=1

cs`Cs` . (6)

Note that even if the linear combination (5) is infinite, it nevertheless defines an element of E ′ because, for
all ω ∈ E , 〈X ,ω〉 may be written as a sum with only finitely many nonzero terms; see (6).

The delta-derivative X∆ f and forward-shift Xσ f of X ∈ E ′ may be defined uniquely by the equations

〈X∆ f ,ω〉= 〈X ,σ−1
f (ω)〉∆ f −

〈
X ,

[
σ−1

f (ω)
]∆ f

〉
(7)

and
〈Xσ f ,ω〉= 〈X ,σ−1

f (ω)〉σ f , (8)

respectively, where ω is an arbitrary one-form. Note that 〈X ,σ−1
f (ω)〉 ∈ K ∗, so 〈X ,σ−1

f (ω)〉σ f and
〈X ,σ−1

f (ω)〉∆ f are well defined.
Evaluating (7) and (8) with the elements of canonical basis (i.e. with the elements from the set dC ∗),

we obtain two systems of equations that define X∆ f and Xσ f , respectively.

Proposition 3.1. Let X ∈ E ′. Then for arbitrary ω ∈ E

Xσ f = X + µX∆ f , (9)

〈X ,ω〉∆ f = 〈X∆ f ,ω〉+ 〈Xσ f ,ω∆ f 〉 .

Proof. Let X ∈ E ′. Note that 〈X ,ω〉 ∈K ∗ for arbitrary ω ∈ E and

〈X ,ω〉σ f = 〈X ,ω〉+ µ〈X ,ω〉∆ f .

Then by (7) and (8) we get

〈Xσ f ,ωσ f 〉= 〈X ,ω〉σ f = 〈X ,ω〉+ µ
[〈X∆ f ,ωσ f 〉+ 〈X ,ω∆ f 〉]

= 〈X ,ωσ f 〉+ µ〈X∆ f ,ωσ f 〉= 〈X + µX∆ f ,ωσ f 〉 . (10)

From the invertibility of operator σ f : E → E we get σ f (E ) = E . Therefore by (10) the relation (9) holds.
Moreover, from (7) and (9) we get

〈X ,ω〉∆ f = 〈X∆ f ,ωσ f 〉+ 〈X ,ω∆ f 〉= 〈X∆ f ,ω〉+ µ〈X∆ f ,ω∆ f 〉+ 〈X ,ω∆ f 〉
= 〈X∆ f ,ω〉+ 〈X + µX∆ f ,ω∆ f 〉= 〈X∆ f ,ω〉+ 〈Xσ f ,ω∆ f 〉 ,

for arbitrary ω ∈ E .

We show below on a simple example how to compute X∆ f and Xσ f .
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Example 3.2. Consider the system described by

x∆
1 = x1x2,

x∆
2 = u,

defined on U = {(x1,x2,u) ∈ R3 : 1+ µx2 > 0,u > 0}.
For µ > 0 the system can be rewritten as

xσ
1 = x1 + µx1x2,

xσ
2 = x2 + µu.

Then the inversive closure of K can be chosen as the field of meromorphic functions in a finite number of
variables x1, x2, u[k], z〈−`〉, k > 0, ` > 1, where z〈−1〉 = σ−1

f (z) and z〈−`〉 = σ−1
f (z〈−`+1〉).

We construct below the field extension in three different ways (choosing z as u, x2 or x1, respectively) and
compute X∆ f and Xσ f on different canonical bases of E ′, corresponding to three choices of the variable z.

Let X = ∂
∂x2

be an element of E ′. Note that X∆ f and Xσ f have the following forms:

X∆ f = a1
∂

∂x1
+a2

∂
∂x2

+ ∑
j>0

b j
∂

∂u[ j] + ∑̀
>1

c`
∂

∂ z〈−`〉 (11)

and

Xσ f = ã1
∂

∂x1
+ ã2

∂
∂x2

+ ∑
j>0

b̃ j
∂

∂u[ j] + ∑̀
>1

c̃`
∂

∂ z〈−`〉 . (12)

Case 1 (z = u). Since X∆ f , Xσ f have the form (11), (12), respectively, σ f (dxi) = dxσ
i and ∆ f (dxi) = dx∆

i ,
i = 1,2,

〈X ,dx1〉∆ f = 0 = 〈X∆ f ,dxσ
1 〉+ 〈X ,dx∆

1 〉= (1+ µx2)a1 + µx1a2 + x1, (13)

〈X ,dx2〉∆ f = 0 = 〈X∆ f ,dxσ
2 〉+ 〈X ,dx∆

2 〉= a2 + µb0, (14)

〈X ,du[k]〉∆ f = 0 = 〈X∆ f ,d(u[k] + µu[k+1])〉+ 〈X ,du[k+1]〉= bk + µbk+1, k > 0, (15)

〈X ,du〈−1〉〉∆ f = 0 = 〈X∆ f ,du〉+
〈

X ,d

(
u−u〈−1〉

µ

)〉
= b0, (16)

〈X ,du〈−`−1〉〉∆ f = 0 =
〈

X∆ f ,d
(

u〈−`〉
)〉

+
〈

X ,d
(

1
µ

[
u〈−`〉−u〈−`−1〉

])〉
= c`, ` > 1 (17)

and

〈X ,dx1〉σ f = 0 = 〈Xσ f ,dxσ
1 〉= (1+ µx2)ã1 + µx1ã2, (18)

〈X ,dx2〉σ f = 1 = 〈Xσ f ,dxσ
2 〉= ã2 + µ b̃0, (19)

〈X ,du[k]〉σ f = 0 = 〈Xσ f ,d(u[k] + µu[k+1])〉= b̃k + µ b̃k+1, k > 0, (20)

〈X ,du〈−1〉〉σ f = 0 = 〈Xσ f ,du〉= b̃0, (21)

〈X ,du〈−`−1〉〉σ f = 0 =
〈

Xσ f ,d
(

u〈−`〉
)〉

= c̃`, ` > 1 . (22)
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Then bk = c` = 0, for k > 0, ` > 1, a1 = − x1
1+µx2

, a2 = 0 and b̃k = c̃` = 0, for k > 0, ` > 1, ã1 = −µx1
1+µx2

,
ã2 = 1. Therefore

X∆ f =− x1

1+ µx2

∂
∂x1

and Xσ f =− µx1

1+ µx2

∂
∂x1

+
∂

∂x2
;

in particular, for µ = 0 we have

X∆ f =−x1
∂

∂x1
and Xσ f =

∂
∂x2

. (23)

Case 2 (z = x2). Alternatively, the inversive closure can be chosen as a field of meromorphic functions in a
finite number of variables x1, x2, u[k], x〈−`〉

2 , k > 0, ` > 1, where x〈−1〉
2 = σ−1

f (x2) and x〈−`〉
2 = σ−1

f (x〈−`+1〉
2 ).

Since X∆ f has the form (11), σ f (dxi) = dxσ
i and ∆ f (dxi) = dx∆

i , i = 1,2, taking 〈X ,dx1〉∆ f , 〈X ,dx2〉∆ f ,
〈X ,du[k]〉∆ f , k > 0, we get equations (13), (14), (15), respectively. For the considered vector field X and the
differential one-form corresponding to new variable x〈−1〉

2 we have

〈X ,dx〈−1〉
2 〉∆ f = 0 = 〈X∆ f ,dx2〉+

〈
X ,d

(
x2− x〈−1〉

2
µ

)〉
= a2 +

1
µ

,

which is different from (16) given in Case 1 for the vector field X and the differential of new variable u〈−1〉,
but taking 〈X ,dx〈−`−1〉

2 〉∆ f , ` > 1, we get equations (17), i.e. c` = 0, ` > 1. Similarly, since Xσ f have the
form (12) and σ f (dxi) = dxσ

i , i = 1,2, for 〈X ,dx1〉σ f , 〈X ,dx2〉σ f , 〈X ,du[k]〉σ f , k > 0, we have equations (18),
(19), (20), respectively. For 〈X ,dx〈−1〉

2 〉σ f we have

〈X ,dx〈−1〉
2 〉σ f = 0 = 〈Xσ f ,dx2〉= ã2 , (24)

which is different from (21) in Case 1, but taking 〈X ,dx〈−`−1〉
2 〉σ f , ` > 1, we get equations (22), i.e. c̃` = 0,

` > 1. Then, as in Case 1, we get c` = 0 and c̃` = 0, for ` > 1, but

bk =

{
(−1)k

µk+2 , if µ 6= 0

0, if µ = 0
, for k > 0, a1 =

{
0, if µ 6= 0
−x1, if µ = 0

, a2 =

{
− 1

µ , if µ 6= 0

0, if µ = 0

and

b̃k =

{
(−1)k

µk+1 , if µ 6= 0

0, if µ = 0
, for k > 0, ã1 = 0, ã2 =

{
0, if µ 6= 0
1, if µ = 0

are different from coefficients given in Case 1. Therefore

X∆ f =





− 1
µ

∂
∂x2

+ ∑
k>0

(−1)k

µk+2
∂

∂u[k] , if µ 6= 0

−x1
∂

∂x1
, if µ = 0

(25)

and

Xσ f =





∑
k>0

(−1)k

µk+1
∂

∂u[k] , if µ 6= 0

∂
∂x2

, if µ = 0.
(26)

Note that for µ = 0 the vector fields X∆ f and Xσ f coincide with (23).
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Case 3 (z = x1). A third possibility is to choose z = x1 and define inversive closure K ∗ as a field of
meromorphic functions in a finite number of variables x1, x2, u[k], x〈−`〉

1 , k > 0, ` > 1, where x〈−1〉
1 = σ−1

f (x1)

and x〈−`〉
1 = σ−1

f (x〈−`+1〉
1 ).

Since X∆ f has the form (11), σ f (dxi) = dxσ
i and ∆ f (dxi) = dx∆

i , i = 1,2, taking 〈X ,dx1〉∆ f , 〈X ,dx2〉∆ f ,
〈X ,du[k]〉∆ f , k > 0, we get equations (13), (14), (15), respectively. For 〈X ,x〈−1〉

1 〉∆ f we have

〈X ,dx〈−1〉
1 〉∆ f = 0 = 〈X∆ f ,dx1〉+

〈
X ,d

(
x1− x〈−1〉

1
µ

)〉
= a1 ,

which is different from (16) and (21) given for the vector field X and the differential of new variable u〈−1〉

in Case 1 and x〈−1〉
2 in Case 2, but taking 〈X ,dx〈−`−1〉

1 〉∆ f , ` > 1, we get equations (17), i.e. c` = 0, ` > 1.
Similarly, since Xσ f have the form (12) and σ f (dxi) = dxσ

i , i = 1,2, for 〈X ,dx1〉σ f , 〈X ,dx2〉σ f , 〈X ,du[k]〉σ f ,
k > 0, we have equations (18), (19), (20), respectively. For 〈X ,dx〈−1〉

1 〉σ f we have

〈X ,dx〈−1〉
1 〉σ f = 0 = 〈Xσ f ,dx1〉= ã1 ,

which is again different from (21) and (24) in Cases 1 and 2, but taking 〈X ,dx〈−`−1〉
1 〉σ f , ` > 1, we get

equations (22), i.e. c̃` = 0, ` > 1. Then the coefficients c`, ` > 1, bk, k > 0, a1, a2, and c̃`, ` > 1, b̃k, k > 0,
ã1, ã2 are the same as in Case 2, so X∆ f and Xσ f have the form (25) and (26), respectively. Moreover, for
µ = 0, X∆ f and Xσ f coincide with (23). The fact that for µ = 0 the vector fields X∆ f and Xσ f are the same
in all considered cases is related to the fact that σ f = id for µ = 0 and consequently, K = K ∗.

Note that even if the vector field X is given by the finite linear combination (5), as in Example 3.2
where we have X = ∂

∂x2
, it may happen that Xσ f and X∆ f are the infinite vector fields as in Cases 2 and 3 of

Example 3.2.

4. p-FORMS

In this section we unify the calculus of p-forms, extend the operators ∆ f and σ f to p-forms, and prove some
of their properties.

For any integer p, p > 1, consider the infinite set of symbols

∧pdC ∗ = {dζ1∧dζ2∧·· ·∧dζp, ζi ∈ C ∗, i = 1, . . . , p}
and denote by ∧pE the vector space spanned over K ∗ by the elements of ∧pdC ∗:

∧pE := spanK ∗{∧pdC ∗}
and

∧0E := K ∗ .

In ∧pE , p > 2, we consider the equivalence relation R defined by the equalities

dζi1 ∧dζi2 ∧·· ·∧dζip = (−1)kdζ j1 ∧dζ j2 ∧·· ·∧dζ jp , (27)

where {i1, i2, . . . , ip} = { j1, j2, . . . , jp} and k is the signature of the permutation
(

i1 i2 . . . ip
j1 j2 . . . jp

)
. The

vector space ∧pE mod R will be denoted2 by E p. Its elements are called forms of degree p or simply
p-forms. Every p-form α ∈ E p has a unique representative of the form

α = ∑
i1<...<ip

Ai1...ipdζi1 ∧·· ·∧dζip ,

2 Wedge of p one-forms.
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where Ai1...ip ∈ K ∗. Usually such a representative will be used. For instance, if [A12dx1 ∧ dx2] =
{A12dx1 ∧ dx2,−A12dx2 ∧ dx1} ∈ E 2, then A12dx1 ∧ dx2 is chosen as a representative of the considered
2-form. By the constructions described above we obtain a sequence of vector spaces E 0 := K ∗, E 1 := E ,
E 2, E 3, . . ., E p, . . .

The exterior product (alternatively called the wedge product) of a p-form representative ω1 =
∑k

i=1 Fidζi1 ∧ . . .∧ dζip and a q-form representative ω2 = ∑`
j=1 G jdζ j1 ∧ . . .∧ dζ jq , denoted as ω1 ∧ω2, is

defined by a (p+q)-form representative in the following way:

ω1∧ω2 =
k

∑
i=1

`

∑
j=1

FiG jdζi1 ∧ . . .∧dζip ∧dζ j1 ∧ . . .∧dζ jq ,

where Fi,G j ∈K ∗ and ζil ,ζ js ∈C ∗, l = 1, . . . , p, s = 1, . . . ,q. This definition does not depend on the choice
of the representative in the equivalence class. It can be easily verified that the exterior product is bilinear and
associative, moreover, it induces a map ∧ : E p×E q → E p+q, p,q > 0, given by ∧(ω1,ω2) = ω1 ∧ω2 for
some representatives ω1 and ω2 in equivalence classes. In general, the exterior product for representatives
ω1 and ω2 is not commutative, since (27) implies

ω1∧ω2 = (−1)pqω2∧ω1.

Note that for F,G ∈ E 0 and ζi ∈ C ∗ we have F ∧G = F ·G ∈ E 0 and

F ∧dζ1∧ . . .∧dζp = Fdζ1∧ . . .∧dζp ∈ E p.

Exterior differential d is an R-linear operator

d : E p → E p+1

that satisfies the following properties:
(i) d(α ∧β ) = dα ∧β +(−1)sα ∧dβ , where α ∈ E s and β ∈ E p−s,

(ii) if F ∈K ∗, then dF coincides with ordinary differential (see (3)),
(iii) d2 = 0, where d2 = d◦d : E p → E p+2.

Properties (i)–(iii) define uniquely the operator d.
A differential p-form α ∈ E p is said to be closed if dα = 0 and exact if there exists a differential

(p−1)-form β ∈ E p−1 such that α = dβ . An exact differential form is closed.
A subspace V ⊂ E 1 is said to be closed (or completely integrable) if V admits (locally) a basis

composed of closed forms. To check whether the subspace V is integrable, one may use the Frobenius
Theorem (see for instance [15]).

Theorem 4.1 (Frobenius). Let V be the subspace of E 1 generated by the one-forms {ω1, . . . ,ωr}. V is
closed if and only if

dωi∧ω1∧·· ·∧ωr = 0,

for any i = 1, . . . ,r.

Example 4.2. Let x 6= 0. The one-form ω = xdu− udx is not closed (therefore neither exact) since
dω = 2dx∧du. However, the vector space spanK ∗{ω} is integrable since dω ∧ω = 0 and one may choose
the integrating factor A = 1

x2 such that Aω = d
[u

x

]
.
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Let
E := E 0⊕E 1⊕·· ·

An element ω ∈ E can be written in a unique way as

ω = ω0 +ω1 + · · ·+ωN

for some N > 0, where ω p ∈ E p is called the pth component of ω . E is called the exterior algebra over E .
It has a structure of a graded algebra with multiplication given by the exterior product ∧.

Note that the space of forms with the exterior product is a ring. A subring I ⊂ E is called an algebraic
ideal of E if
(i) α ∈ I implies α ∧β ∈ I for all β ∈ E,

(ii) α ∈ I implies that all of its components in E are contained in I.
Observe that α ∈ I implies β ∧α ∈ I for all β ∈ E. Thus algebraic ideals are two-sided ideals. An

exterior differential system is an algebraic ideal I that is stable with respect to exterior differentiation.
The operators ∆ f : K ∗ → K ∗ and σ f : K ∗ → K ∗, related to system (1), induce the operators

∆ f : E p → E p and σ f : E p → E p by

∆ f

(
∑

i1<...<ip

Ai1...ipdζi1 ∧·· ·∧dζip

)
:= ∑

i1<...<ip

[
A∆ f

i1...ip
dζi1 ∧·· ·∧dζip +Aσ f

i1...ip
dζ ∆ f

i1 ∧dζi2 ∧·· ·∧dζip

+Aσ f
i1...ip

dζ σ f
i1 ∧dζ ∆ f

i2 ∧dζi3 ∧·· ·∧dζip + · · ·
+Aσ f

i1...ip
dζ σ f

i1 ∧·· ·∧dζ σ f
ip−1

∧dζ ∆ f
ip

]
(28)

and

σ f

(
∑

i1<...<ip

Ai1...ipdζi1 ∧·· ·∧dζip

)
:= ∑

i1<...<ip

[
Aσ f

i1...ip
dζ σ f

i1 ∧·· ·∧dζ σ f
ip

]
, (29)

where ζi1 , . . . ,ζip ∈ C ∗ and Ai1...ip ∈K ∗.

Proposition 4.3. Let ω ∈ E p, p > 1. Then for homogeneous time scale T

d
[
ω∆ f

]
= [dω]∆ f and d [ωσ f ] = [dω]σ f .

Proof. Let ω = ∑i1<...<ip Ai1...ipdζi1 ∧·· ·∧dζip ∈ E p. Then we have

dω = ∑
i1<...<ip

dAi1...ip ∧dζi1 ∧·· ·∧dζip ,

ω∆ f = ∑
i1<...<ip

[
A∆ f

i1...ip
dζi1 ∧·· ·∧dζip +Aσ f

i1...ip
dζ ∆ f

i1 ∧dζi2 ∧·· ·∧dζip

+Aσ f
i1...ip

dζ σ f
i1 ∧dζ ∆ f

i2 ∧dζi3 ∧·· ·∧dζip + · · ·+Aσ f
i1...ip

dζ σ f
i1 ∧·· ·∧dζ σ f

ip−1
∧dζ ∆ f

ip

]

and
ωσ f = ∑

i1<...<ip

Aσ f
i1...ip

dζ σ f
i1 ∧·· ·∧dζ σ f

ip
.
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Using (4) and definitions (28), (29), we have

d
[
ω∆ f

]
= ∑

i1<...<ip

[
d
(

A∆ f
i1...ip

)
∧dζi1 ∧·· ·∧dζip +d

(
Aσ f

i1...ip

)
∧dζ ∆ f

i1 ∧dζi2 ∧·· ·∧dζip

+d
(

Aσ f
i1...ip

)
∧dζ σ f

i1 ∧dζ ∆ f
i2 ∧dζi3 ∧·· ·∧dζip + · · ·+d

(
Aσ f

i1...ip

)
∧dζ σ f

i1 ∧·· ·∧dζ σ f
ip−1

∧dζ ∆ f
ip

]

= ∑
i1<...<ip

[(
dAi1...ip

)∆ f ∧dζi1 ∧·· ·∧dζip +
(
dAi1...ip

)σ f ∧dζ ∆ f
i1 ∧dζi2 ∧·· ·∧dζip

+
(
dAi1...ip

)σ f ∧dζ σ f
i1 ∧dζ ∆ f

i2 ∧dζi3 ∧·· ·∧dζip + · · ·+ (
dAi1...ip

)σ f ∧dζ σ f
i1 ∧·· ·∧dζ σ f

ip−1
∧dζ ∆ f

ip

]

=

[
∑

i1<...<ip

dAi1...ip ∧dζi1 ∧·· ·∧dζip

]∆ f

= [dω]∆ f ,

d [ωσ f ] = ∑
i1<...<ip

d
(

Aσ f
i1...ip

)
∧dζ σ f

i1 ∧·· ·∧dζ σ f
ip

= ∑
i1<...<ip

(
dAi1...ip

)σ f ∧dζ σ f
i1 ∧·· ·∧dζ σ f

ip

=

[
∑

i1<...<ip

dAi1...ip ∧dζi1 ∧·· ·∧dζip

]σ f

= [dω]σ f .

Now let us consider a K ∗-linear operator iX : E p → E p−1 associated with a vector field X ∈ E ′ that
satisfies the following properties:
1. iX(ω1∧ω2) = iX(ω1)∧ω2 +(−1)pω1∧ iX(ω2), where p is the degree of ω1;
2. iX(F) = 0, for all F ∈K ∗;
3. iX(dxi) = Xi, where Xi denotes the ith component of X .

Note that iX(dζi) = 〈X ,dζi〉 so that for a differential 2-form ϑ = ∑i, j ai jdζi∧dζ j we have

iX ϑ = ∑
i, j

ai j (〈X ,dζi〉dζ j−〈X ,dζ j〉dζi) .

Taking the delta derivative of both sides in this identity yields, by (7),

[iX ϑ ]∆ f = iX∆ f ϑ σ f + iX ϑ ∆ f .

The characteristic vector fields associated with an exterior differential system I are the elements of the
set

A(I ) =
{

X ∈ E ′ | iX(I )⊂I
}

.

The annihilator C(I ) of A(I ) is the characteristic system of I . The characteristic system is
completely integrable, see [15].

5. CONCLUSIONS

The paper extends further the algebraic formalism of differential one-forms, described in [5] for nonlinear
control systems defined on homogeneous time scale. First, we unify the calculus of p-forms by extending
the main concept of time scale calculus – delta-derivative – to p-forms and prove a number of its properties.
In particular, we prove that the operators of the exterior derivative and the delta derivative commute when
applied to p-forms. Second, we introduce the dual space of the vector fields over the field of meromorphic
functions. The vector fields may be interpreted as the linear mappings from the space of one-forms
into the field of meromorphic functions. A collection of Mathematica functions has been developed in
order to simplify the computations with vector fields. These functions are part of the larger package
NLControl, addressing various nonlinear control problems. Moreover, the functions are made available
on the NLControl website [16], so that everyone can use them via the internet browser.
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Diferentsiaalsete p-vormide ja vektorväljade algebraline formalism mittelineaarsete
juhtimissüsteemide jaoks ajaskaaladel

Zbigniew Bartosiewicz, Ülle Kotta, Ewa Pawłuszewicz, Maris Tõnso ja Małgorzata Wyrwas

Varasemas artiklis on välja töötatud diferentsiaalsetel üksvormidel põhinev algebraline formalism mitte-
lineaarsete juhtimissüsteemide jaoks homogeensetel ajaskaaladel, mis võimaldab ühildada pidevate ja disk-
reetsete süsteemide uurimist. Antud artiklis on algebralist formalismi edasi arendatud: on ühildatud ka p-
vormide arvutus ja defineeritud (üksvormide ruumi) duaalne ruum üle meromorfsete funktsioonide korpuse,
mille elementideks on vektorväljad. Ajaskaala põhimõiste, delta-tuletis, on üldistatud nii p-vormidele kui
ka vektorväljadele. On tõestatud antud operaatori rida omadusi, muuhulgas p-vormi delta-tuletise kommu-
teeruvus diferentsiaali võtmise operatsiooniga.


