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Abstract. The paper extends the concept of the Lie derivative of the vector field, used in the study of the continuous-time dynamical
systems, for the discrete-time case. In the continuous-time case the Lie derivative of a vector field (1-form or scalar function) with
respect to the system dynamics is defined as its rate of change in time. In the discrete-time case we introduce the algebraic definition
of the Lie derivative, using the concepts of forward and backward shifts. The definitions of discrete-time forward and backward
shifts of the vector field are based on the concepts of already known forward and backward shifts of the 1-forms and on the scalar
product of 1-form and vector field. Further we show that the interpretation of the discrete-time Lie derivative agrees with its
interpretation as the rate of change in the continuous-time case. Finally, the geometric property of the discrete-time Lie derivative
is also examined and shown to mimic the respective property in the continuous-time case.
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1. INTRODUCTION

The Lie derivative is an important concept of differential geometry (see e.g. [1]). In continuous time the
vector field defining the dynamics of the system generates a one-parameter group of transformations, called
the flow. The Lie derivative of a function, vector field or 1-form with respect to the generating vector field
is defined as its rate of change along the trajectories of the generating vector field.

The aim of this paper is to extend the concept of the Lie derivative of the vector field to the discrete-
time case, with a long-range goal to work out a more general theory covering both the continuous- and
discrete-time systems using the tools of time scale calculus [2]. In doing so one has to assume that the state
transition map of the discrete-time system is reversible, the property not necessarily satisfied automatically
in the discrete-time case, except for models obtained by sampling the continuous-time systems [3]. Some
concepts related to the discrete-time Lie derivative of a vector field, defined in this paper, have already
been used in some earlier works [4–8], although the concept itself has never been introduced. For example,
in [6] the forward shift of the vector field was defined and used in the study of the accessibility. Moreover,
in [4] and [5] the so-called Ad-operator was introduced and used in addressing the problems of feedback
linearization and transformation of equations into the observer form, respectively. The Ad-operator may
be interpreted as the backward shift of the vector field, though this interpretation was not given in [4,5].
In [7] the it-operator1 was introduced in the analogy of the Ad-operator in the continuous-time case,

∗ Corresponding author, tanel@parsek.yf.ttu.ee
1 “It” stands for iterated.
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which again may be interpreted as the backward shift. Rieger, Schlacher, and Holl in [8] are close to
the introduction of the concept of the discrete-time Lie derivative. Namely, in [8] the specific geometric
property of a Lie derivative of a vector field has been extended into the discrete-time domain. According to
this property, the Lie derivative of a vector field is identically zero if and only if the one-parameter group of
transformations generated by the vector field commutes with the flow. However, the new concept was not
explicitly introduced but was hidden in the solution of the specific (observability analysis) problem. Note
that papers [4,6–8] study the dynamical systems with the inputs, whereas [5] addresses the input-free case.
Since the concept of the Lie derivative plays a key role in the solutions of numerous (control) problems, it
is advisable explicitly to extend the concept to the discrete-time case, and study its properties. In this paper,
in order to simplify the presentation, we focus on the input-free case.

Finally, note that the concept of the discrete Lie derivative was introduced some time ago within the
framework of discrete exterior calculus (DEC), developed with the aim to preserve, in discrete space,
the structure and invariants of smooth (continuous) theory ([9,10]). Unlike DEC that addresses spatial
discretization, we discretize the time.

The paper is organized as follows. In Section 2 the interpretation of the Lie derivative of a vector
field with respect to the time derivative operator is recalled. Section 3 describes the discrete-time nonlinear
system together with the algebraic structures associated with it, which are necessary in our studies, including
the definitions of the forward and backward shift operators of the vector field. Moreover, in this section the
algebraic definition of the concept of the Lie derivative is given. It is shown that this definition may be
interpreted as the discrete-time analogue of the corresponding continuous-time interpretation recalled in
Section 2. Section 4 focuses on the geometric property of the Lie derivative and relates the results of this
paper to those of [8]. Section 5 contains the examples and Section 6 concludes the paper.

2. INTERPRETATION OF THE LIE DERIVATIVE

The Lie derivative of a vector field Ξ with respect to another vector field F , denoted by LFΞ, describes the
rate of change of Ξ along a trajectory of the vector field F . Although this is a well-known fact, we will
demonstrate it below step by step, in order to repeat the analogous steps in the extension of the concept of
the Lie derivative to the discrete-time case. A vector field

F =
n

∑
i=1

Fi(x)
∂

∂xi
(1)

defined on IRn generates a flow Φτ = eτF , given by the solution of the differential equation

ẋ = F(x). (2)

The flow Φτ maps a point x(t) in IRn, corresponding to the time instant t, into another point x(t + τ),
corresponding to the time instant t + τ , according to

x(t + τ) = Φτ
(
x(t)

)
= x(t)+F(x(t))τ +

∂F
∂x

∣∣∣∣
x=x(t)

F(x(t))
τ2

2
+ . . . . (3)

The flow Φτ is called the exponential map, corresponding to the vector field F ; the vector field F is called
the infinitesimal generator of Φτ , or, according to (2), the time derivative operator. Formula (3) describes
the trajectory of the vector field F in time, starting from the initial point x(t).

Compute next the rate of change of a vector field Ξ = ∑n
i=1 Ξi(x) ∂/∂xi along the trajectory (3) in three

steps. The vector field Ξ defines two vectors,

Ξ(x(t)) =
n

∑
i=1

Ξi(x(t))
∂

∂xi
(4)
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at the initial point of the trajectory, and

Ξ(x(t + τ)) =
n

∑
i=1

Ξi(x(t + τ))
∂

∂ xi
(5)

at the endpoint of the trajectory. First, compute the components of Ξ(x(t + τ)) given by (5) in the
first approximation with respect to τ using the Taylor series and replacing in the latter the difference
xi(t + τ)− xi(t) by Fi(x(t))τ; see (3):

Ξi
(
x(t + τ)

)≈ Ξi (x(t))+
n

∑
j=1

∂Ξi

∂x j

∣∣∣∣
x=x(t)

Fj(x(t))τ. (6)

Second, compute the change ∆Ξ of the vector field Ξ along the trajectory of F , subtracting from the vector
Ξ(x(t + τ)) the vector (T Φτ ·Ξ)(x(t)), where the latter may be interpreted as Ξ(x(t)), transferred along the
trajectory of F from the point x(t) into the point x(t + τ) by the tangent map T Φτ of the flow Φτ . Computing
the partial derivative of (3) with respect to x and taking the first approximation with respect to τ , one gets

T Φτ(x(t))≈ I +
∂F
∂x

∣∣∣∣
x=x(t)

τ. (7)

Consequently, the ith component of the vector field T Φτ ·Ξ reads in the first approximation as

(T Φτ ·Ξ)i (x(t + τ))≈ Ξi(x(t))+
n

∑
j=0

∂Fi

∂x j

∣∣∣∣
x=x(t)

Ξ j(x(t))τ + . . . . (8)

Due to (6) and (8), the components of the vector ∆Ξ, defined at the point x(t + τ), are in the first
approximation as follows:

∆Ξi(x(t + τ)) = Ξi(x(t + τ))−T Φτ ·Ξi(x(t))

≈
n

∑
j=1

(
∂Ξi

∂x j

∣∣∣∣
x=x(t)

Fj(x(t))− ∂Fi

∂x j

∣∣∣∣
x=x(t)

Ξ j(x(t))

)
τ = [F, Ξ]i τ.

The third step is to compute the rate of change by dividing ∆Ξ by τ and approaching the limit τ → ∞. The
result is the Lie derivative

Ξ̇(x(t)) = limτ→0
∆Ξ(x(t + τ))

τ
= [F, Ξ](x(t)) = (LFΞ)(x(t)). (9)

Remark 1. The Lie derivative of a vector field may be and is usually defined by the alternative formula (see
for example [11], p. 51)

(LFΞ)(x(t)) = limτ→0
1
τ
(
T Φ−1

τ ·Ξ(x(t + τ))−Ξ(x(t))
)
. (10)

Note that (9) and (10) can be easily shown to yield the same result if we use in (10) the first approximation
of T Φ−1

τ = I− (∂F/∂x)τ .
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3. LIE DERIVATIVE OF A VECTOR FIELD WITH RESPECT TO THE DISCRETE-TIME
DYNAMICS

The goal of this section is to extend the concept of the Lie derivative of an arbitrary vector field to the
discrete-time case. Consider now the discrete-time system

x(t +1) = Φ(x(t)), (11)

where x ∈ X , an open subset of IRn, such that Φ is analytic diffeomorphism from X onto X . This implies
that Φ is invertible (on X) and its inverse is also analytic. Denote by K the inversive difference field of the
meromorphic functions in variable x [6]. The forward shift operator σ of the variable x is defined by the
state transition map Φ of the discrete-time system

σ(x) := Φ(x), (12)

and the backward shift operator ρ := σ−1 of the variable x is defined by

ρ(x) := Φ−1(x). (13)

Moreover, the assumption on X guarantees that X is invariant with respect to forward and backward
dynamics of our system.

Hereinafter, in order to simplify the presentation, we often use the notations

xσ = Φ(x), xρ = Φ−1(x). (14)

The forward and backward shift operators σ ,ρ : K →K are defined as the composite functions

ϕσ (x) := ϕ(Φ(x)) (15)

and

ϕρ(x) := ϕ
(
Φ−1(x)

)
, (16)

respectively.
The discrete-time analogue of the Lie derivative of a function ϕ(x) is its difference, which can be defined

in two different ways, either as the forward difference
(
L∆

Φϕ
)
(x) := ϕ∆(x) = ϕσ (x)−ϕ(x) (17)

(see e.g. [12], p. 270), or also as the backward difference
(

L∇
Φϕ

)
(x) := ϕ∇(x) = ϕ(x)−ϕρ(x). (18)

Furthermore, define the vector space E := spanK {dx1, . . . ,dxn} := spanK {dx} [6]. Any element of E ,
called a differential 1-form, is a vector

ω(x) =
n

∑
i=1

ωi(x)dxi. (19)

The differential operator d : K → E is defined as

dϕ(x) :=
n

∑
i=1

∂ϕ(x)
∂xi

dxi.
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The forward and backward shift operators σ ,ρ : E → E of ω(x) in (19) are defined by

ωσ (x) =
n

∑
i=1

ωσ
i (x)dxσ

i =
n

∑
i, j=1

ωi (Φ(x))
∂Φi(x)

∂x j
dx j (20)

and

ωρ(x) =
n

∑
i=1

ωρ
i (x)dxρ

i =
n

∑
i, j=1

ωi
(
Φ−1(x)

) ∂
(
Φ−1(x)

)
i

∂x j
dx j, (21)

respectively [6]. The discrete-time analogue of a Lie derivative of a 1-form is, according to [12], its forward
difference

(
L∆

Φω
)
(x) := ωσ (x)−ω(x). (22)

Another possibility is to define it as the backward difference
(

L∇
Φω

)
(x) := ω(x)−ωρ(x). (23)

Note that (22) mimics (17), and (23) mimics (18).
Next define the space E ∗, dual to E , whose elements are the vector fields. The vector field Ξ is a map

Ξ : E →K , mapping an arbitrary 1-form ω ∈ E into a function, called a scalar product

Ξ(ω) = 〈ω,Ξ〉 ∈K .

In a natural (canonical) basis of E ∗, dual to the canonical basis {dx} of E , the vector field has the form

Ξ =
n

∑
i=1

Ξi(x)
∂

∂xi
. (24)

We define the discrete-time forward and backward Lie derivatives of a vector field (24) analogously to
formulae (22) and (23), i.e. as the forward and backward differences

(
L∆

ΦΞ
)
(x) = Ξσ (x)−Ξ(x), (25)(

L∇
ΦΞ

)
(x) = Ξ(x)−Ξρ(x), (26)

respectively. Definitions (25) and (26) depend on Ξσ and Ξρ , respectively, which will be defined using the
scalar products of 1-forms and vector fields, as well as formulae (20) and (21). First, define Ξρ from the
equality

〈ω(x),Ξρ(x)〉= 〈ωσ (x),Ξ(x)〉ρ , (27)

taking into account that the backward shift of a scalar product as a function in K is well defined. Note that,
according to (15) and (20),

〈ωσ (x),Ξ(x)〉ρ = 〈(ω(Φ)) ·T Φ,Ξ〉(Φ−1(x)
)
,

where T Φ is the Jacobi matrix corresponding to the map Φ,

T Φ(x) =
(

∂Φ(x)
∂x

)
, (28)

whose elements are the partial derivatives of Φ with respect to the states x.
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Due to the associativity property of the matrix multiplication and interpreting ω as the row vector and Ξ
as the column vector, one may rewrite this result as

〈ωσ (x),Ξ(x)〉ρ =
〈
ω(x),(T Φ ·Ξ)

(
Φ−1(x)

)〉
. (29)

Therefore, in case of an arbitrary 1-form, (27) holds iff

Ξρ(x) := (T Φ ·Ξ)
(
Φ−1(x)

)
. (30)

Analogously, the forward shift of a vector field can be defined by

Ξσ (x) := (T Φ)−1 · (Ξ(Φ(x))) . (31)

Remark 2. Definition (30) agrees with the formulae in the books [11], p. 148, and [13], p. 145, where
the authors address the question of how the vector field Ξ transforms under the coordinate transformation
z = Φ(x) in IRn. Interpreting x as the state at time instant t − 1, i.e. x(t − 1) and z as x(t), formula
(T Φ ·Ξ)

(
Φ−1(z)

)
in [11] and [13] corresponds to (30).

As expected, for σ ,ρ : E ∗ → E ∗, ρσ = σρ = Id. Really, applying the backward shift operator ρ ,
defined by (30), to Ξσ in (31) yields again Ξ, as does the application of the forward shift σ , defined by (31)
to Ξρ in (30):

(Ξρ)σ (x) = (T Φ)−1 (x) · (Ξρ (Φ(x))) =
(
(T Φ)−1 · (T Φ ·Ξ)

)
(x) = Ξ(x), (32)

(Ξσ )ρ(x) = (T Φ ·Ξσ )(Φ−1(x)) = Ξ(Φ(Φ−1(x))) = Ξ(x). (33)

Remark 3. Note that only the definition of ωσ does not require invertibility of Φ, whereas ωρ , Ξρ , and Ξσ

may be defined only if Φ−1 exists.
Next we compare the calculation of two dual operations, the forward shift of a 1-form and the backward

shift of a vector field. The forward shift of a 1-form (19) may be computed in the following two steps.
1. Evaluate ω as in (19) at the point xσ ,

ω (xσ ) =
n

∑
i=1

ωi (xσ )dxσ
i .

2. Express xσ in terms of x using the composition with Φ, defined by system dynamics (12),

ωσ (x) =
n

∑
i=1

ωi(Φ(x))dΦi(x) =
n

∑
i, j=1

ωi(Φ(x))
∂Φi(x)

∂x j
dx j.

In case we interpret the 1-form as a row vector, this step may be rewritten as

ωσ (x) = ω (Φ(x)) ·T Φ(x). (34)

In order to calculate the backward shift of a vector field (24), we make the inverse operations in the
opposite order.
1. Multiply Ξ as in (24) from the left by T Φ and express in the result2 x in terms of xσ , using the composition

with Φ−1 (xσ ) defined by the inverse of system dynamics (12)

Ξρ(xσ ) = (T Φ ·Ξ)(Φ−1(xσ )). (35)

2 Since T Φ ·Ξ is defined at the point xσ .
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Vector field (35), interpreted as a column vector, may be alternatively rewritten as a linear combination
of the basis vectors as follows:

Ξρ(xσ ) =
n

∑
i, j=1

(
∂Φi

∂x j
Ξ j

)(
Φ−1 (xσ )

) ∂
∂xσ

i
. (36)

2. Evaluate (36) at the point x:

Ξρ(x) =
n

∑
i, j=1

(
∂Φi

∂x j
Ξ j

)(
Φ−1 (x)

) ∂
∂xi

.

Below we will show that the backward Lie derivative defined by (26) may be understood as the discrete-
time analogue of the continuous-time Lie derivative defined by (9). For that purpose we will repeat the
discrete-time counterparts of three steps in Section 2, leading to (9) and demonstrate that the result agrees
with (26).

Consider the vector field (24) and examine its change caused by the forward shift from point x to point
xσ instead of the continuous flow. At the first step define, like in (5), a vector Ξ at the endpoint xσ = Φ(x)
by

Ξ(xσ ) =
n

∑
i=1

Ξi (xσ )
∂

∂xσ
i

. (37)

At the second step compute the change of the vector field Ξ. This step splits into two substeps. At the first
substep one has to bring Ξ(x) from the initial point x into the endpoint xσ like in Section 2 (see e.g. [14],
p. 62), multiplying it by the Jacobi matrix T Φ and rewriting the result (T Φ ·Ξ)(x), as a linear combination
of basis vectors

n

∑
i=1

(
∂Φi

∂x
Ξ
)

(x)
∂

∂xσ
i

. (38)

At the second substep we replace x by Φ−1 (xσ ), yielding

n

∑
i=1

(
∂Φi

∂x
Ξ
)(

Φ−1 (xσ )
) ∂

∂xσ
i

.

Finally, the change of the vector field Ξ may be found as the difference

Ξ(xσ )− (
T Φ ·Ξ)(

Φ−1 (xσ )
)
. (39)

In the continuous-time case at the third step we divided the result by ∆t = τ , having no discrete-time
analogue when ∆t = 1, and “brought the vector back” to the initial point x by approaching the limit ∆t → 0.
In the discrete-time case, the corresponding step is to evaluate (39) at the point x, yielding definition (26) of
the backward Lie derivative.

To conclude, the backward Lie derivative of the vector field, defined by (26), is a discrete-time analogue
of the continuous-time Lie derivative defined by (9). In a similar manner it may be shown that the forward
Lie derivative of a vector field defined by (25) is a direct analogue of the alternative continuous-time Lie
derivative given by (10).
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4. THE GEOMETRIC PROPERTY OF THE LIE DERIVATIVE

The goal of this section is to show how the concept of the backward Lie derivative as defined by (26) is
related to the geometric property of the vector field studied by Rieger, Schlacher, and Holl in [8], providing
alternative interpretation for L∇

ΦΞ.
Consider, like in [8], the one-parameter group of transformations Ψs : IRn → IRn, generated by the vector

field Ξ = ∑n
i=1 Ξi(x)∂/∂xi. This group Ψs = exp(sΞ), s ∈ IR, transforms the point x ∈ IRn into the point

x̃ = Ψs(x); see Fig. 1, left vertical curve3.
The upper dotted line corresponds to the forward shift of the point x into the point xσ = Φ(x) by system

dynamics. The lowest dotted line shows the forward shift x̃σ = Φ(x̃) of the point x̃ again by system dynamics.
On the other hand, the flow Ψs generated by Ξ transfers the point xσ into the point Ψs(xσ ) (the right vertical
curve). That is, the forward shift x → Φ(x) has been transferred by the flow Ψs into a shift x̃ → Φ̃s(x̃),
modified by the flow Ψs = exp(sΞ) and called shortly the modified forward shift (the middle dotted line),
which can be calculated by the composition

Φ̃s(x̃) := (Ψs ◦Φ◦Ψ−s)(x̃) . (40)

Fig. 1. The backward Lie derivative as the generator of the modified forward shift.

3 Figure 1 mimics the corresponding figure in [15] for the continuous-time case.
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The diagram in Fig. 1 does not commute, in general, or said alternatively, the modified forward shift
Φ̃s(x̃) of the point x̃ does not coincide with Φ(x̃), except when the difference

δsx := Ψs(Φ(x))−Φ(Ψs(x))≡ 0, (41)

i.e. if the flow Ψs commutes with the forward shift generated by Φ for an arbitrary s ∈ IR; see [8]. Note that
according to the chain rule [8],

∂ (δsx)
∂ s

∣∣∣∣
s=0

=

(
∂Ψs

∂ s

∣∣∣∣
Φ(x)

− ∂Φ
∂Ψs

∣∣∣∣
Ψs(x)

∂Ψs

∂ s

∣∣∣∣
x

)

s=0

. (42)

Because the vector field Ξ is the infinitesimal generator of the flow Ψs, the first term on the right-hand
side gives the vector Ξ evaluated at the point xσ = Φ(x). The second term is the product of two factors.
The first one is the Jacobi matrix (∂Φ/∂Ψs) evaluated at Ψs(x), which for s = 0 when Ψ0(x) = x, gives
(∂Φ/∂x) = T Φ. The second factor is the vector Ξ defined at x. Consequently, we get

∂ (δsx)
∂ s

∣∣∣∣
s=0

= Ξ(Φ(x))− ∂Φ(x)
∂x

Ξ(x). (43)

Continuing the study in [8], notice that the vector field (43) is defined at the point xσ , therefore one has to
express its components also in terms of xσ , using the fact that Φ−1(xσ ) = x:

∂
∂ s

[
δs(Φ−1(xσ ))

]∣∣∣∣
s=0

= Ξ(xσ )−
(

∂Φ
∂x

Ξ
)

(Φ−1(xσ )). (44)

Evaluating (44) at x results in the backward Lie derivative (26). It follows from the above discussion that
if the flow Ψs, generated by Ξ, commutes with the forward shift Φ (see (41)), then L∇

ΦΞ ≡ 0. This is in
agreement with the corresponding property of the Lie derivative in the continuous-time case.

Next we examine the general case L∇
ΦΞ 6≡ 0 and show that L∇

ΦΞ generates the transformation of x̃σ into
Φ̃s(x), that is it transfers the forward shift of the point x̃ into its modified forward shift. To show this,
examine the terms on the right-hand side of (44) separately. As already known, Ξ(xσ ) generates the motion
of xσ into the modified forward shift Φ̃s(x̃); see Fig. 1. We will prove that the second term in (44) which is,
according to (30), just Ξρ but defined at xρ , generates the motion of xσ into the forward shift of x̃ = Φ(x̃).
Note that x̃σ = Φ(Ψs(Φ−1(xσ ))); see Fig. 1. Taking the partial derivative of this composition with respect
to s at s = 0, we get, using the chain rule,

∂
∂ s

[
Φ(Ψs(Φ−1(xσ )))

]
s=0 =

∂Φ
∂Ψs

∣∣∣∣
Ψs(Φ−1(xσ ))

∂Ψs

∂ s

∣∣∣∣
Φ−1(xσ ),s=0

=
∂Φ
∂x

∣∣∣∣
Φ−1(xσ )

Ξ(Φ−1(xσ )) = Ξρ(xσ ), (45)

meaning that Ξρ(xσ ) is really the infinitesimal generator of the composition Φ(Ψs(Φ−1(xσ ))).
To conclude, the vector Ξ(xσ ) generates the transfer of xσ into the modified forward shift Φ̃s(x̃) of x̃.

The vector Ξρ(xσ ) generates the transfer of xσ into the forward shift Φ(x̃) of x̃. Consequently, the backward
Lie derivative (L∇

ΦΞ)(xσ ) as the difference of the vector field and its backward shift generates the transfer
of x̃σ into the modified forward shift Φ̃s(x̃) of x̃. In the special case where L∇

ΦΞ ≡ 0, the forward shift of x̃
equals its modified forward shift Φ(x̃) = Φ̃s(x̃) for all x ∈ IRn and for all s.
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5. EXAMPLES

The first example demonstrates how to compute the backward Lie derivatives of the vector fields.
Example 1. Consider the system

xσ
1 = x2, xσ

2 = x1x2

whose Jacobi matrix is

T Φ(x) =
(

0 1
x2 x1

)

and the inverse map Φ−1, applied to the coordinates x, gives their backward shifts

xρ
1 =

x2

x1
, xρ

2 = x1. (46)

Calculate, according to (26), the backward Lie derivatives of the basis vector fields. We start with ∂/∂x1
and calculate its Lie derivative by (26), (30), and (14).

First compute, according to (30),
(

∂
∂x1

)ρ
=

(
T Φ ·

[
1
0

])(
Φ−1(x)

)
,

rewritten as a linear combination of the basis vectors

xρ
2

∂
∂x2

= x1
∂

∂x2
,

and then by (26)

L∇
Φ

(
∂

∂x1

)
(x) =

∂
∂x1

− x1
∂

∂x2
.

In a similar manner one calculates the Lie derivative of ∂/∂x2:

L∇
Φ

(
∂

∂x2

)
(x) =− ∂

∂x1
+

(
1− x2

x1

)
∂

∂x2
.

Compute also the backward Lie derivatives of a vector field Ξ = x1 ∂/∂x1 + x2 ∂/∂x2. Its backward shift,
according to (30), is

Ξρ =
(

T Φ ·
[

x1
x2

])(
Φ−1(x)

)
=

[
x2

2x1x2

](
Φ−1(x)

)
,

rewritten as a linear combination of the basis vectors as

xρ
2

∂
∂x1

+2xρ
1 xρ

2
∂

∂x2
= x1

∂
∂x1

+2x2
∂

∂x2
,

and then by (26)

L∇
Φ

(
∂

∂x1

)
(x) =−x2

∂
∂x2

.
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In the second example we show how the backward Lie derivative L∇
ΦΞ transfers the forward shift Φ(x̃)

of a point x̃ into its modified forward shift Φ̃s(x̃), provided the vector field Ξ generates the flow Ψs and
x̃ = Ψs(x), as described in Section 4.

Example 2. Consider the forward shift σ defined on IR2 by the map Φ

xσ
1 = x1 cosφ − x2 sinφ ,

xσ
2 = x1 sinφ + x2 cosφ ,

(47)

describing the rotation around the origin by an angle φ . The inverse Φ−1 of the map Φ is given by

x1 = xσ
1 cosφ + xσ

2 sinφ ,

x2 = −xσ
1 sinφ + xσ

2 cosφ .

Compute

T Φ =
(

cosφ −sinφ
sinφ cosφ

)
. (48)

The vector field Ξ = ∂/∂x1 generates the flow

Ψs : x̃1 = x1 + s, x̃2 = x2. (49)

Calculate Ξρ(xρ) as the column vector
(

cosφ −sinφ
sinφ cosφ

)
·
(

1
0

)
=

(
cosφ
sinφ

)
.

Consequently

Ξρ(xσ ) = cosφ
∂

∂xρ
1

+ sin phi
∂

∂xρ
2
, (50)

and by (26)

(L∇
ΦΞ)(xσ ) = (1− cosφ)

∂
∂xσ

1
− sinφ

∂
∂xσ

2
. (51)

Figure 2 illustrates how the vector field L∇
ΦΞ, defined by (51), transfers the point x̃σ = Φ(x̃) into the

point Φ̃s(x̃) (the upper dotted line). That is, it shows the transfer from the forward shift of x̃ into its modified
forward shift, when the the Ξ-generated flow Ψs acts in IRn. The vector sΞ(x) transfers the point x with the
coordinates (x1,0) into the point x̃ with the coordinates (x1 + s,0). The forward shifts of the points x and x̃
are, respectively, the point xσ with coordinates (x1 cosφ ,x1 sinφ) (along the arc of the small circle), and the
point x̃σ = Φ(x̃) with the coordinates ((x1 + s)cosφ ,(x1 + s)sinφ) (along the arc of the large circle). The
vector sΞρ(xσ ) transfers xσ into x̃σ .

Moreover, the vector sΞ(xσ ) transfers xσ as the forward shift of x into Φ̃s(x̃), which is the modified
forward shift of x̃ (marked by the lower dotted line) and has the coordinates (s+ x1 cosφ ,x1 sinφ).
Consequently, the difference of the vectors sΞ(xσ ) and sΞρ (xσ ), which is

(
L∇

ΦΞ
)
(xσ ), transfers the point

x̃σ = Φ(x̃) into Φ̃s(x̃). The difference of the coordinates of these points is

Φ(x̃)− Φ̃s(x̃) = [s(1− cosφ),−ssinφ ]T , (52)

which coincides with the components of sL∇
ΦΞ in (51). This means, the vector

(
L∇

ΦΞ
)
(xσ ) really transfers

the forward shift of x into its modified forward shift.
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Fig. 2. The modification of a rotation by forcing it with the backward Lie derivative.

6. CONCLUSION

In this paper the concept of the Lie derivative of a vector field, applied frequently in the study of continuous-
time dynamical systems, has been extended to the discrete-time case. Actually, in the discrete-time
domain the single concept branches into two concepts, backward and forward Lie derivatives, depending
on whether one applies in its definition the forward or backward difference (see formulae (9) and (10)). The
introduced algebraic definition of the backward Lie derivative agrees with the discrete-time analogue of its
continuous-time interpretation and also satisfies the geometric property of the Lie derivative known from
the continuous-time theory. The interpretation of the forward Lie derivative also agrees with the continuous-
time interpretation.

Our future goals are to extend the results of this paper (i) for discrete-time nonlinear control systems and
(ii) for systems defined on homogeneous time scale. The first steps towards (i) were made in [16]. However,
note that in [16] we took off from the continuous-time interpretation of the Lie derivative as recalled in
Section 2 and repeated the discrete-time counterparts of the respective steps to get the definition in discrete
time. In doing so we overlooked the algebraic meaning of the definition. For example, we did not recognize
that the so-called Θ-operator in [16] is actually a backward shift operator. Note that the algebraic definition
of Lie derivative for control systems requires extension of the difference field, associated with the state
equations, up to its inversive closure. This aspect was also not worked out fully in [16].

Once the Lie derivative is defined either for discrete-time control systems of for control systems on
time scales, it possibly allows extension of the numerous results/methods/algorithms that are based on the
concept of the Lie derivative into the discrete-time or time scale domain. The problems addressed in terms
of Lie derivatives include for example accessibility [11], feedback linearization [13], realization in state-
space form [17–20], and lowering the maximal order of the input time derivatives in the generalized state
equations [18].
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Lie tuletise üldistus diskreetajaga süsteemidele

Tanel Mullari, Ülle Kotta, Zbigniew Bartosiewicz ja Ewa Pawłuszewicz

Pideva ajaga süsteemis on skalaarfunktsiooni, vektorvälja või 1-vormi Lie tuletis süsteemi dünaamika
suhtes defineeritud tema muutumise kiirusena ajas. Artikkel annab esmalt vektorvälja Lie tuletise mõiste
algebralise definitsiooni diskreetaja süsteemidele, kasutades otsest analoogiat funktsiooni muuduga. Lie
tuletise arvutamiseks vajalikud vektorvälja edasi- ja tagasinihked defineeritakse juba teadaolevate 1-vormi
edasi- ning tagasinihete ja 1-vormi ning vektorvälja skalaarkorrutise abil. Järgnevalt näidatakse, et selliselt
defineeritud vektorvälja diskreetaja Lie tuletis on tema muut, mis vastab ajakoordinaadi kasvule ühe võrra,
olles otsene analoog vektorvälja muutumise kiirusele ajas. Samuti uuritakse lähemalt vektorvälja diskreetaja
Lie tuletise geomeetrilisi omadusi.


